物理化学学报 >> 2023, Vol. 39 >> Issue (12): 2303012.doi: 10.3866/PKU.WHXB202303012

所属专题: 电催化功能材料

综述 上一篇    下一篇

自支撑过渡金属海水电解析氧催化剂研究进展

吴倩1,*(), 高庆平2, 单彬2, 王文政2, 齐玉萍1, 台夕市1, 王霞1,*(), 郑冬冬3, 严虹3, 应斌武3, 罗永嵩3, 孙圣钧4, 刘倩5, Hamdy Mohamed S.6, 孙旭平3,4,*()   

  1. 1 潍坊学院化学化工与环境工程学院, 山东 潍坊 261061
    2 潍坊职业学院化学工程学院, 山东 潍坊 262737
    3 电子科技大学基础与前沿研究院, 成都 610054
    4 山东师范大学化学化工与材料科学学院, 济南 250014
    5 成都大学高等研究院, 成都 610106
    6 哈立德国王大学理学院化学系催化研究课题组, 阿卜哈 61413
  • 收稿日期:2023-03-06 录用日期:2023-04-05 发布日期:2023-04-12
  • 通讯作者: 吴倩,王霞,孙旭平 E-mail:qianwu@wfu.edu.cn;xiawangwfu@163.com;xpsun@uestc.edu.cn; xpsun@sdnu.edu.cn
  • 作者简介:第一联系人:

    #These authors contributed equally to this work.

  • 基金资助:
    哈立德国王大学大型团体研究项目(RGP2/199/44)

Recent Advances in Self-Supported Transition-Metal-Based Electrocatalysts for Seawater Oxidation

Qian Wu1,*(), Qingping Gao2, Bin Shan2, Wenzheng Wang2, Yuping Qi1, Xishi Tai1, Xia Wang1,*(), Dongdong Zheng3, Hong Yan3, Binwu Ying3, Yongsong Luo3, Shengjun Sun4, Qian Liu5, Mohamed S. Hamdy6, Xuping Sun3,4,*()   

  1. 1 Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, Shandong Province, China
    2 Department of Chemical Engineering, Weifang Vocational College, Weifang 262737, Shandong Province, China
    3 Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
    4 College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
    5 Institute for Advanced Study, Chengdu University, Chengdu 610106, China
    6 Catalysis Research Group (CRG), Department of Chemistry, College of Science, King Khalid University, 61413 Abha, Saudi Arabia
  • Received:2023-03-06 Accepted:2023-04-05 Published:2023-04-12
  • Contact: Qian Wu, Xia Wang, Xuping Sun E-mail:qianwu@wfu.edu.cn;xiawangwfu@163.com;xpsun@uestc.edu.cn; xpsun@sdnu.edu.cn
  • Supported by:
    the Deanship of Scientific Research at King Khalid University for funding support through Large Group Research Project(RGP2/199/44)

摘要:

海水电解是一种很有前景的可持续绿氢生产技术。然而,由于受到缓慢的动力学、阳极上竞争性的氯释放反应、氯离子腐蚀和电极表面中毒等的影响,致使阳极材料的性能和耐久性下降,析氧反应(OER)的选择性降低。与传统的粉末催化剂相比,自支撑纳米阵列材料具有较低的界面电阻、较大的活性表面和优异的稳定性,已成为先进的催化剂。特别是在需要高电流密度的实际大规模制氢应用中,自支撑催化剂比粉末催化剂更具优势。电解过程中,在电极表面所产生气泡的强烈冲击下,粉末状纳米材料很容易剥离,导致催化活性降低,甚至频繁更换催化剂。相比之下,自支撑纳米材料的活性物质和基底之间具有很强的粘附性,确保了良好的电子导电性和高机械稳定性,有利于长期和循环使用。本文综述了用于海水电解自支撑过渡金属催化剂的最新进展,包括(氧)氢氧化物、氮化物、磷化物、硫族化物等。为确保OER过程中的高活性和高选择性,着重总结了各析氧催化剂在应对耐腐蚀性和屏蔽竞争反应方面所采取的策略。通常,构建具有高孔隙率和粗糙度的3D多孔纳米结构可以使催化剂具有较大的表面积和丰富的活性位点,是提高传质、OER活性和催化效率的有效策略。其次,催化剂表面的Cl阻挡层,特别是兼具催化活性和保护作用的保护层,可以有效抑制Cl的竞争性氧化和腐蚀,提高催化剂的催化活性、选择性和稳定性。此外,设计具有超亲水和超疏水表面的催化材料,以增加电解质的渗透性,促进活性位点的有效利用,并避免大量气泡的积累。最后,简要总结了OER催化剂在海水电解中的发展前景及建议。具体来说,海水电解的介质应从模拟盐水转移到天然海水中。鉴于天然海水电解中面临的诸多挑战,除了设计和合成具有高活性、高选择性和高稳定性的自支撑催化剂外,开发简单、低成本的天然海水预处理技术以最大限度地减少腐蚀和中毒问题也是海水电解未来发展的重要课题。更重要的是,应合理构建自支撑OER电催化剂的标准化评价体系。评估过程中应充分考虑催化剂内在活性、可达活性位点密度、尺寸、质量负荷、基质效应和试验条件等因素。

关键词: 海水电解, 自支撑阵列, 过渡金属催化剂, 抗腐蚀, 析氧反应

Abstract:

Seawater electrolysis is a promising and sustainable technology for green hydrogen production. However, some disadvantages include sluggish kinetics, competitive chlorine evolution reaction at the anode, chloride ion corrosion, and surface poisoning, which has led to a decline in activity and durability and low oxygen evolution reaction (OER) selectivity of the anodic electrodes. Benefiting from the lower interface resistance, larger active surface, and superior stability, the self-supported nanoarrays have emerged as advanced catalysts compared to conventional powder catalysts. Self-supported catalysts have more advantages than powder catalysts, particularly in practical large-scale hydrogen production applications requiring high current density. During electrolysis, due to the influx of bubbles generated on the electrode surface, the powdered nanomaterial is peeled off easily, resulting in reduced catalytic activity and even frequent replacement of the catalyst. In contrast, self-supported nanoarray possessing strong adhesion between the active species and the substrates ensures good electronic conductivity and high mechanical stability, which is conducive to long-term use and recycling. This minireview summarizes the recent progress of self-supported transition-metal-based catalysts for seawater oxidation, including (oxy)hydroxides, nitrides, phosphides, and chalcogenides, emphasizing the strategies in response to the corrosion and competitive reactions to ensure high activity and selectivity in OER processes. In general, constructing three-dimensional porous nanostructures with high porosity and roughness can enlarge the surface areas to expose more active sites for oxygen evolution, which is an efficient strategy for improving mass transfer and catalytic efficiency. Furthermore, the Cl barrier layer on the surface of catalyst, particularly that with both catalytic activity and protection, can effectively inhibit the competitive oxidation and corrosion of Cl, thereby delivering enhanced catalytic activity, selectivity, and stability of the catalysts. Moreover, developing super hydrophilic and hydrophobic surfaces is a promising strategy to increase the permeability of electrolytes and avoid the accumulation of large amounts of bubbles on the surface of the self-supported electrodes, thus promoting the effective utilization of active sites. Finally, perspectives and suggestions for future research in OER catalysts for seawater electrolysis are provided. In particular, the medium for seawater electrolysis should be transferred from simulated saline water to natural seawater. Considering the challenges faced in natural seawater splitting, in addition to designing and synthesizing self-supported catalysts with high activities, selectivity, and stability, developing simple and low-cost natural seawater pretreatment technologies to minimize corrosion and poisoning issues is also an important topic for the future development of seawater electrolysis. More importantly, a standardized, feasible evaluation system for self-supported electrocatalysts should be established. In addition, factors such as the intrinsic activity, density of accessible active sites, size, mass loading, substrate effects, and test conditions of the catalyst should be fully considered.

Key words: Seawater electrolysis, Self-supported nanoarray, Transition metal-based catalyst, Anti-corrosion, Oxygen evolution reaction