物理化学学报 >> 2022, Vol. 38 >> Issue (11): 2204048.doi: 10.3866/PKU.WHXB202204048
所属专题: 新锐科学家专刊
沈沅灏1, 王擎宇1, 刘杰1, 钟澄1,2,*(), 胡文彬1,2
收稿日期:
2022-04-26
录用日期:
2022-06-19
发布日期:
2022-06-27
通讯作者:
钟澄
E-mail:cheng.zhong@tju.edu.cn
基金资助:
Yuanhao Shen1, Qingyu Wang1, Jie Liu1, Cheng Zhong1,2,*(), Wenbin Hu1,2
Received:
2022-04-26
Accepted:
2022-06-19
Published:
2022-06-27
Contact:
Cheng Zhong
E-mail:cheng.zhong@tju.edu.cn
About author:
Cheng Zhong, Email: cheng.zhong@tju.edu.cn; Tel.: +86-22-85356661Supported by:
摘要:
采用K3[Fe(CN)6]作为锌镍电池的电解液添加剂,克服了锌阳极的变形。此外,通过一系列实验设计和表征,探索了电解液中金属锌与K3[Fe(CN)6]的反应机理。通过XRD (X-ray diffraction)和XPS (X-ray photo-electron spectroscopy)测试,我们发现金属锌在KOH水溶液中能够与K3[Fe(CN)6]反应,将[Fe(CN)6]3–还原为[Fe(CN)6]4−。添加K3[Fe(CN)6]的锌镍电池实现了更长的循环寿命,比不添加K3[Fe(CN)6]的锌镍电池长3倍以上。在相同循环次数下,改性电解质中锌阳极循环不仅形状变化较小,而且没有出现“死”锌现象,电极添加剂和粘结剂也没有发生偏析。此外,不同于一般的有机添加剂,K3[Fe(CN)6]的加入不仅不会增大电极的极化,还能够提高锌镍电池的放电容量和倍率性能。因此,考虑到这一改性策略有着较高的可行性和较低的成本,K3[Fe(CN)6]添加剂在锌镍电池的实际应用中具有极大的推广潜力。
沈沅灏, 王擎宇, 刘杰, 钟澄, 胡文彬. 碱性电解液中K3[Fe(CN)6]在锌阳极上的自发还原和吸附延长锌镍电池的循环寿命[J]. 物理化学学报, 2022, 38(11), 2204048. doi: 10.3866/PKU.WHXB202204048
Yuanhao Shen, Qingyu Wang, Jie Liu, Cheng Zhong, Wenbin Hu. Spontaneous Reduction and Adsorption of K3[Fe(CN)6] on Zn Anodes in Alkaline Electrolytes: Enabling a Long-Life Zn-Ni Battery[J]. Acta Phys. -Chim. Sin. 2022, 38(11), 2204048. doi: 10.3866/PKU.WHXB202204048
Fig 1
Immersion test of Zn plates in the pristine electrolyte (marked as 1 in Fig. 1a) and modified electrolyte (marked as 2 in Fig. 1a). (a) The initial stage of immersion (top), and after immersing for 1 day (bottom). XPS spectra of the Zn plates after immersing in the electrolyte with and without K3[Fe(CN)6]: (b) comparison of survey spectra, (c) C 1s, (d) N 1s, and (e) Fe 2p high-resolution spectra of the Zn plate soaked in the modified electrolyte. (f) high-resolution spectrum of Zn plate soaked in the pristine electrolyte in the Fe 2p region. (g–i) High-resolution spectra of C, O, and Zn elements for Zn plate soaked in pristine electrolyte. (j–k) High-resolution spectrum of O and Zn elements for Zn plate soaked in modified electrolyte."
Fig 5
Electrochemical performance of Zn-Ni batteries using the pristine electrolyte and the electrolyte with different mass fractions of K3[Fe(CN)6]. (a) Cycling performance of the batteries discharged at 5 A, (b) discharge curve of the batteries discharged at 5 A, (c) capacity retention of the batteries discharged at 5 A, and (d) rate performance of the batteries."
Fig 7
(a) Optical images of the anodes after 125 cycles in the pristine/modified electrolyte, and (b) XRD patterns of the anode after 125 cycles in the pristine/modified electrolyte. SEM images and EDS results of the anode after 125 cycles in the pristine/modified electrolyte. (c) Morphology of the anode cycling in the pristine electrolyte, (d) EDS results of white region 1 in Fig. 7c, (e) EDS results of dark region 2 in Fig. 7c, (f, g) morphology of Zn anode cycling in the modified electrolyte at different magnifications, and (h) the EDS result of Fig. 7f."
Fig 8
Optical cross-sectional images of different positions in the central region of the anode after 125 cycles (reaction side is facing up). Discharged Zn anode in (a–c) pristine electrolyte, and (d–f) modified electrolyte. Charged Zn anode in (g–i) pristine electrolyte, and (j–l) modified electrolyte."
Fig 9
XPS spectra of the anodes cycling in the pristine electrolyte and the modified electrolyte. (a) Comparison of survey spectra, (b) the C 1s high-resolution XPS spectrum of the anode cycling in the pristine electrolyte, and (c, d) high-resolution XPS spectra of the anode cycling in the modified electrolyte in the (c) C 1s and (d) Fe 2p region."
1 |
GoodenoughJ. B.Energy Environ. Sci.2014,7,14.
doi: 10.1039/c3ee42613k |
2 |
ZhaoZ.;FanX.;DingJ.;HuW.;ZhongC.;LuJ.ACS Energy Lett.2019,4,2259.
doi: 10.1021/acsenergylett.9b01541 |
3 | JiJ.;LiuX.;HuangH.;JiangH.;DuanM.;LiuB.;CuiP.;LiY.;LiM.Acta Phys. -Chim. Sin.2021,37,2008095. |
纪军;刘新;黄浩;蒋皓然;段明君;刘本玉;崔鹏;李英峰;李美成;物理化学学报,2021,37,2008095.
doi: 10.3866/PKU.WHXB202008095 |
|
4 | XueY.;WangX.;ZhangX.;FangJ.;XuZ.;ZhangY.;LiuX.;LiuM.;ZhuW.;ZhuangZ.Acta Phys.-Chim. Sin.2021,37,2009103. |
薛延荣;王兴栋;张向前;方锦杰;许志远;张宇烽;刘雪瑞;刘梦园;朱威;庄仲滨;物理化学学报,2021,37,2009103.
doi: 10.3866/PKU.WHXB202009103 |
|
5 |
LiuX.;FanX.;LiuB.;DingJ.;DengY.;HanX.;ZhongC.;HuW.Adv. Mater.2021,33,e2006461.
doi: 10.1002/adma.202006461 |
6 |
HanY.;LiuS.-Y.;CuiL.;XuL.;XieJ.;XiaX.-K.;HaoW.-K.;WangB.;LiH.;GaoJ.Int. J. Miner. Metall. Mater.2018,25,88.
doi: 10.1007/s12613-018-1550-6 |
7 |
ShenY.;LiuB.;LiuX.;LiuJ.;DingJ.;ZhongC.;HuW.Energy Storage Mater.2021,34,461.
doi: 10.1016/j.ensm.2020.10.011 |
8 |
WangL.;ChenG.;ShenQ.;LiG.;GuanS.;LiB.Int. J. Miner. Metall. Mater.2018,25,1027.
doi: 10.1007/s12613-018-1653-0 |
9 |
ZhaoZ.;LiuB.;ShenY.;WuT.;ZangX.;ZhaoY.;ZhongC.;MaF.;HuW.J. Power Sources2021,510,230393.
doi: 10.1016/j.jpowsour.2021.230393 |
10 |
LuQ.;ZouX.;LiaoK.;RanR.;ZhouW.;NiM.;ShaoZ.Carbon Energy2020,2,461.
doi: 10.1002/cey2.50 |
11 |
WangP.;ShiX.;WuZ.;GuoS.;ZhouJ.;LiangS.Carbon Energy2020,2,294.
doi: 10.1002/cey2.39 |
12 |
WuJ.;LiuB.;FanX.;DingJ.;HanX.;DengY.;HuW.;ZhongC.Carbon Energy2020,2,370.
doi: 10.1002/cey2.60 |
13 |
YuL.;YiQ.;YangX.;ChenY.Sci. China Mater.2019,62,1251.
doi: 10.1007/s40843-019-9439-9 |
14 |
WangL.;YangZ.;ChenX.;QinH.;YanP.J. Power Sources2018,396,615.
doi: 10.1016/j.jpowsour.2018.06.031 |
15 |
ChaoD.;ZhouW.;XieF.;YeC.;LiH.;JaroniecM.;QiaoS.-Z.Sci. Adv.2020,6,eaba4098.
doi: 10.1126/sciadv.aba4098 |
16 |
ZhengX.;AhmadT.;ChenW.Energy Storage Mater.2021,39,365.
doi: 10.1016/j.ensm.2021.04.027 |
17 |
LaiS. B.;JameshM. I.;WuX. C.;DongY. L.;WangJ. H.;GaoM.;LiuJ. F.;SunX. M.Rare Met.2017,36,381.
doi: 10.1007/s12598-017-0905-x |
18 |
RenukaR.;SrinivasanL.;RamamurthyS.;VeluchamyA.;VenkatakrishnanN.J. Appl. Electrochem.2001,31,655.
doi: 10.1023/A:1017562514934 |
19 |
MoserF.;FourgeotF.;RougetR.;CrosnierO.;BrousseT.Electrochim. Acta2013,109,110.
doi: 10.1016/j.electacta.2013.07.023 |
20 |
SatoY.;TakahashiM.;AsakuraH.;YoshidaT.;TadaK.;KobayakawaK.;ChibaN.;YoshidaK.J. Power Sources1992,38,317.
doi: 10.1016/0378-7753(92)80121-Q |
21 |
McLarnonF. R.;CairnsE. J.J. Electrochem. Soc.1991,138,645.
doi: 10.1149/1.2085653 |
22 |
SchröderD.;Sinai BorkerN. N.;KönigM.;KrewerU.J. Appl. Electrochem.2015,45,427.
doi: 10.1007/s10800-015-0817-0 |
23 |
ZhuA. L.;DuchD.;RobertsG. A.;LiS. X. X.;WangH.;DuchK.;BaeE.;JungK. S.;WilkinsonD.;Kulinich S. A.ChemElectroChem2015,2,134.
doi: 10.1002/celc.201402251 |
24 |
AzhagurajanM.;NakataA.;AraiH.;OgumiZ.;KajitaT.;ItohT.;ItayaK.J. Electrochem. Soc.2017,164,A2407.
doi: 10.1149/2.0221712jes |
25 |
ZhouH.;HuangQ.;LiangM.;LvD.;XuM.;LiH.;LiW.Mater. Chem. Phys.2011,128,214.
doi: 10.1016/j.matchemphys.2011.02.061 |
26 |
LinM.;HuangC.;ChengP.;ChengJ.;WangC.J. Mater. Chem. A2020,8,20637.
doi: 10.1039/d0ta06929a |
27 |
SunK. E. K.;HoangT. K. A.;The Nam LongD.;ZhuY. Y. X.;TianY.;ChenP.ACS Appl. Mater. Interfaces2017,9,9681.
doi: 10.1021/acsami.6b16560 |
28 |
HosseiniS.;AbbasiA.;UginetL. O.;HaustraeteN.;PraserthdamS.;YonezawaT.;KheawhomS.Sci. Rep.2019,9,14958.
doi: 10.1038/s41598-019-51412-5 |
29 |
HosseiniS.;HanS. J.;ArponwichanopA.;YonezawaT.;KheawhomS.Sci. Rep.2018,8,11273.
doi: 10.1038/s41598-018-29630-0 |
30 |
EinerhandR. E. F.;VisscherW.;de GoeijJ. J. M.;BarendrechtE.J. Electrochem. Soc.1991,138,1.
doi: 10.1149/1.2085538 |
31 |
EinerhandR. E. F.;VisscherW.;de GoeijJ. J. M.;BarendrechtE.J. Electrochem. Soc.1991,138,7.
doi: 10.1149/1.2085582 |
32 |
HornQ. C.;Shao-HornY.J. Electrochem. Soc.2003,150,A652.
doi: 10.1149/1.1566014 |
33 |
YangQ.;LiQ.;LiuZ.;WangD.;GuoY.;LiX.;TangY.;LiH.;DongB.;ZhiC.Adv. Mater.2020,32,2001854.
doi: 10.1002/adma.202001854 |
34 |
ShenY.;XuL.;WangQ.;ZhaoZ.;DongZ.;LiuJ.;ZhongC.;HuW.ACS Appl. Mater. Interfaces2021,13,51141.
doi: 10.1021/acsami.1c17204 |
35 |
LeeS.-M.;KimY.-J.;EomS.-W.;ChoiN.-S.;KimK.-W.;ChoS.-B.J. Power Sources2013,227,177.
doi: 10.1016/j.jpowsour.2012.11.046 |
36 |
El-SayedA.-R.;MohranH. S.;Abd El-LateefH. M.J. Power Sources2011,196,6573.
doi: 10.1016/j.jpowsour.2011.03.057 |
37 |
ChengQ.;FanW.;HeY.;MaP.;VankaS.;FanS.;MiZ.;WangD.Adv. Mater.2017,29,1700312.
doi: 10.1002/adma.201700312 |
38 |
LinK.;ChenQ.;GerhardtM. R.;TongL.;KimS. B.;EisenachL.;ValleA. W.;David HardeeR. G. G.;AzizM. J.;MarshakM. P.Science2015,349,1529.
doi: 10.1126/science.aab3033 |
39 |
LinK.;Gómez-BombarelliR.;BehE. S.;TongL.;ChenQ.;ValleA.;Aspuru-GuzikA.;AzizM. J.;GordonR. G.Nat. Energy2016,1,16102.
doi: 10.1038/nenergy.2016.102 |
40 |
Forment-AliagaA.;WeitzR. T.;SagarA. S.;LeeE. J.;KonumaM.;BurghardM.;KernK.Small2008,4,1671.
doi: 10.1002/smll.200800803 |
41 |
HeX.;TianL.;QiaoM.;ZhangJ.;GengW.;ZhangQ.J. Mater. Chem. A2019,7,11478.
doi: 10.1039/c9ta02265a |
42 |
WangH.;YuanX.;WuY.;ZengG.;ChenX.;LengL.;WuZ.;JiangL.;LiH.J. Hazard. Mater.2015,286,187.
doi: 10.1016/j.jhazmat.2014.11.039 |
43 |
KwakB. S.;KimD. Y.;ParkS. S.;KimB. S.;KangM.Chem. Eng. J.2015,281,368.
doi: 10.1016/j.cej.2015.06.062 |
44 |
PeiY.;MuC.;LiH.;LiF.;ChenJ.ChemSusChem2018,11,1285.
doi: 10.1002/cssc.201800057 |
45 |
HaoP.;ZhuT.;SuQ.;LinJ.;CuiR.;CaoX.;WangY.;PanA.Front. Chem.2018,6,195.
doi: 10.3389/fchem.2018.00195 |
46 |
WuZ.-G.;ZhongY.-J.;LiJ.-T.;WangK.;GuoX.-D.;HuangL.;ZhongB.-H.;SunS.-G.RSC Adv.2016,6,54404.
doi: 10.1039/c6ra09707c |
47 |
XiaA.;PuX.;TaoY.;LiuH.;WangY.Appl. Surf. Sci.2019,481,852.
doi: 10.1016/j.apsusc.2019.03.197 |
48 |
YanM.;XuC.;SunY.;PanH.;LiH.Nano Energy2021,82,105739.
doi: 10.1016/j.nanoen.2020.105739 |
49 |
ZhaoK.;LiuF.;FanG.;LiuJ.;YuM.;YanZ.;ZhangN.;ChengF.ACS Appl. Mater. Interfaces2021,13,47650.
doi: 10.1021/acsami.1c14407 |
50 |
Al-JibbouriS.;UlrichJ.Cryst. Res. Technol.2001,36,1365.
doi: 10.1002/1521-4079(200112)36:12<1365::AID-CRAT1365>3.0.CO;2-H |
51 |
Al-JibbouriS.;UlrichJ.J. Cryst. Growth2002,234,237.
doi: 10.1016/S0022-0248(01)01656-6 |
52 |
SkvortsovaZ. N.;TraskinV. Y.Colloid J.2018,80,349.
doi: 10.1134/s1061933x18040129 |
53 |
Mohammadi GhaleniM.;Al BalushiA.;KavianiS.;TavakoliE.;BavarianM.;NejatiS.ACS Appl. Mater. Interfaces2018,10,44871.
doi: 10.1021/acsami.8b16621 |
54 |
HunkeH.;SoinN.;ShahT.;KramerE.;PascualA.;KarunaM.;SioresE.Materials2015,8,2258.
doi: 10.3390/ma8052258 |
[1] | 屈卓研, 张笑银, 肖茹, 孙振华, 李峰. 有机硫化合物在锂硫电池中的应用[J]. 物理化学学报, 2023, 39(8): 2301019 -0 . |
[2] | 刘欢, 马宇, 曹斌, 朱奇珍, 徐斌. MXenes在水系锌离子电池中的应用研究进展[J]. 物理化学学报, 2023, 39(5): 2210027 -0 . |
[3] | 冉琴, 孙天霷, 韩冲宇, 张浩楠, 颜剑, 汪靖伦. 多酚类化合物—丹宁酸用作锂金属负极电解液成膜添加剂[J]. 物理化学学报, 2020, 36(11): 1912068 - . |
[4] | 程振杰, 毛亚云, 董庆雨, 金锋, 沈炎宾, 陈立桅. 氟代碳酸乙烯酯添加剂对钠离子电池正极的影响[J]. 物理化学学报, 2019, 35(8): 868 -875 . |
[5] | 王坤,刘娟芳,陈清华. 钯团簇碰撞沉积钯/银基板的分子动力学模拟[J]. 物理化学学报, 2015, 31(11): 2091 -2098 . |
[6] | 刘天庆, 孙玮, 孙相彧, 艾宏儒. 超疏水表面上冷凝液滴发生弹跳的机制与条件分析[J]. 物理化学学报, 2012, 28(05): 1206 -1212 . |
[7] | 曹阳;吕春绪;吕早生;蔡春;魏运洋;李斌栋. 硝酰阳离子和二氧化氮分子的弯曲变形研究[J]. 物理化学学报, 2002, 18(06): 527 -531 . |
[8] | 唐颐, 彭菊芳, 高滋, 叶聚丰, 沈岩, 邱志勇, 周鲁卫. 沸石电流变液材料的研究[J]. 物理化学学报, 1995, 11(01): 61 -65 . |
|