物理化学学报 >> 2023, Vol. 39 >> Issue (1): 2206035.doi: 10.3866/PKU.WHXB202206035
收稿日期:
2022-06-24
录用日期:
2022-07-12
发布日期:
2022-07-20
通讯作者:
任宁,张建军
E-mail:ningren9@163.com;jjzhang6@126.com
基金资助:
Chenlu Wang1, Suling Xu2, Ning Ren3,*(), Jianjun Zhang1,*()
Received:
2022-06-24
Accepted:
2022-07-12
Published:
2022-07-20
Contact:
Ning Ren,Jianjun Zhang
E-mail:ningren9@163.com;jjzhang6@126.com
About author:
Email: ningren9@163.com; +86-310-6260302 (R.N.)Supported by:
摘要:
采用室温溶液挥发法合成了五种结构新颖的镧系配合物,其结构通式为[Ln(2, 4-DFBA)3(phen)]2 (Ln = Sm 1, Eu 2, Er 3, 2, 4-DFBA为2, 4二氟苯甲酸的简写,phen为1, 10-菲啰啉的简写), [Ln(2-Cl-6-FBA)2(terpy)(NO3)(H2O)]2 (Ln = Tb 4, Dy 5, 2-Cl-6-FBA为2-氯-6-氟苯甲酸的简写, terpy为2, 2’: 6’2’’-三联吡啶的简写)。五个配合物可以分为两个系列,使用不同的镧系离子作为中心离子。通过X射线单晶分析,5种配合物均属于单斜晶系,空间群为P21/n。配合物1,2和配合物3虽然具有相同的分子通式,但配位方式明显不同,形成了前者为9配位的松饼型,后者是8配位的双帽三棱柱几何构型。二维面状超分子结构的形成方式也明显不同,区别在于配合物1和2通过微弱的π-π堆积作用形成。配合物4和5是同构的,结构中引入了硝酸根离子较为有趣,通过C―H∙∙∙F氢键和π-π堆积作用形成二维面状超分子结构。在299.25–1073.15 K温度下对配合物1–5通过热重-微分热重-差示扫描量热/红外光谱(TG-DTG-DSC/FTIR)联用技术进行热分解机理的研究。测定了配合物1, 2, 4, 5的固体荧光,特征过渡峰位于4G5/2 → 6H5/2, 4G5/2 → 6H7/2, 4G5/2 → 6H9/2 (1), 5D0 → 7F0, 5D0 → 7F1, 5D0 → 7F2, 5D0 → 7F3, 5D0 → 7F4 (2), 5D4 → 7F6, 5D4 → 7F5, 5D4 → 7F4, 5D4 → 7F3 (4), 和4F9/2 → 6H15/2, 4F9/2 → 6H13/2 (5),均表现出镧系离子的特征过渡峰。此外,还对配合物2和4进行了荧光寿命的研究,其荧光衰减时间分别为1.288和0.648 ms。
王晨璐, 宿素玲, 任宁, 张建军. 卤代芳香族羧酸与含氮配体合成镧系配合物的结构、热化学和荧光性质[J]. 物理化学学报, 2023, 39(1), 2206035. doi: 10.3866/PKU.WHXB202206035
Chenlu Wang, Suling Xu, Ning Ren, Jianjun Zhang. Construction, Thermochemistry, and Fluorescence Properties of Novel Lanthanide Complexes Synthesized from Halogenated Aromatic Carboxylic Acids and Nitrogen-Containing Ligands[J]. Acta Phys. -Chim. Sin. 2023, 39(1), 2206035. doi: 10.3866/PKU.WHXB202206035
Table 1
Structural refinement parameters of complexes 1–5."
Complex | 1 | 2 | 3 | 4 | 5 |
empirical formula | C66H34F12Sm2N4O12 | C66H34F12Eu2N4O12 | C66H34F12Er2N4O12 | C58H38Cl4F4Tb2N8O16 | C58H38Cl4F4Dy2N8O16 |
formula weight/(g?mol?1) | 1603.67 | 1606.89 | 1637.49 | 1638.60 | 1645.76 |
temperature/K | 293(2) | 293(2) | 293(2) | 293(2) | 293(2) |
wavelength/Å | 0.71073 | 0.71073 | 0.71073 | 0.71073 | 0.71073 |
crystal system | monoclinic | monoclinic | monoclinic | monoclinic | monoclinic |
space group | P21/n | P21/n | P21/n | P21/n | P21/n |
a/Å | 15.0399(15) | 14.9790(14) | 14.9639(16) | 10.4500(20) | 10.4626(11) |
b/Å | 13.5892(14) | 13.5227(13) | 13.5102(15) | 19.3360(20) | 19.4362(18) |
c/Å | 15.2214(16) | 15.1193(15) | 15.0220(16) | 14.9297(15) | 14.9887(12) |
α/(°) | 90 | 90 | 90 | 90 | 90 |
β/(°) | 109.562(4) | 109.424(3) | 109.204(3) | 104.040(4) | 104.166(3) |
γ/(°) | 90 | 90 | 90 | 90 | 90 |
volume/Å3 | 2931.4(5) | 2888.2(5) | 2867.9(5) | 2926.6(8) | 2955.3(5) |
Z, calculated density/(mg?m?3) | 2, 1.817 | 2, 1.848 | 2, 1.896 | 2, 1.859 | 2, 1.849 |
absorption coefficient/mm?1 | 2.092 | 2.262 | 3.017 | 2.671 | 2.780 |
F(000) | 1572 | 1576 | 1596 | 1608 | 1612 |
crystal size/mm3 | 0.16 × 0.15 × 0.08 | 0.29 × 0.21 × 0.10 | 0.21 × 0.17 × 0.10 | 0.15 × 0.13 × 0.11 | 0.27 × 0.10 × 0.08 |
θ range for data collection/(°) | 2.06 to 25.02 | 2.08 to 25.02 | 2.08 to 25.01 | 2.15 to 25.02 | 2.10 to 25.02 |
limiting indices | ?17 ≤ h ≤ 17 | ?17 ≤ h ≤ 17 | ?17 ≤ h ≤ 9 | ?12 ≤ h ≤ 12 | ?10 ≤ h ≤ 12 |
?14 ≤ k ≤ 16 | ?16 ≤ k ≤ 15 | ?16 ≤ k ≤ 15 | ?22 ≤ k ≤ 23 | ?21 ≤ k ≤ 23 | |
?9 ≤ l ≤ 18 | ?17 ≤ l ≤ 14 | ?16 ≤ l ≤ 17 | ?17 ≤ l ≤ 12 | ?17 ≤ l ≤ 17 | |
reflections collected/unique | 12356/5139 [R(int) = 0.0875] | 14100/5081 [R(int) = 0.0862] | 13813/5045 [R(int) = 0.1245] | 14531/5156 [R(int) = 0.0628] | 14072/5172 [R(int) = 0.0585] |
completeness to θ = 25.02° | 99.3% | 99.9% | 99.9% | 99.9% | 99.3% |
max. and min. transmission | 0.8505 and 0.7307 | 0.8054 and 0.5599 | 0.7523 and 0.5699 | 0.7577 and 0.6901 | 0.8082 and 0.5206 |
data/restraints/parameters | 5139/36/437 | 5081/36/437 | 5045/0/433 | 5156/114/416 | 5172/120/416 |
goodness-of-fit on F2 | 1.036 | 1.044 | 1.066 | 1.054 | 1.042 |
final R indices [I > 2σ(I)] | R1 = 0.0610, wR2 = 0.1160 | R1 = 0.0537, wR2 = 0.0936 | R1 = 0.0588, wR2 = 0.1239 | R1 = 0.0417, wR2 = 0.0911 | R1 = 0.0463, wR2 = 0.0917 |
R indices (all data) | R1 = 0.1082, wR2 = 0.1289 | R1 = 0.0889, wR2 = 0.0906 | R1 = 0.0882, wR2 = 0.1342 | R1 = 0.0622, wR2 = 0.0980 | R1 = 0.0714, wR2 = 0.0980 |
largest diff. peak and hole (e?Å ?3) | 2.251 and ?1.657 | 1.492 and ?1.471 | 2.083 and ?1.884 | 1.112 and ?1.189 | 1.564 and ?1.987 |
Table 2
Thermal decomposition values for complexes 1-5 at various stages."
Step | Temperature/K | DTG Tp/K | Mass loss rate/% | Probably expelled groups | Intermediate and residue | ||
Found | Calcd. | ||||||
1 | I | 444.15–708.15 | 615.75 | 57.71 | 22.47 a | 2phen + x 2, 4-DFBA | [Sm2(2, 4-DFBA)6?x] |
II | 708.15–1067.15 | 766.75 | 19.89 | 55.78 b | (6 ? x) 2, 4-DFBA | Sm2O3 | |
Sum | 77.6 | 78.25 | |||||
2 | I | 466.15–693.15 | 615.65 | 57.61 | 22.43 a | 2phen + x 2, 4-DFBA | [Eu2(2, 4-DFBA)6?x] |
II | 693.15–1016.15 | 735.65 | 19.29 | 55.67 b | (6 ? x) 2, 4-DFBA | Eu2O3 | |
Sum | 76.9 | 78.1 | |||||
3 | I | 437.15–674.15 | 626.25 | 55.33 | 22.01 a | 2 phen + x 2, 4-DFBA | [Er2(2, 4-DFBA)6?x] |
II | 674.15–801.15 | 787.55 | 12.21 | y 2, 4-DFBA | [Er2(2, 4-DFBA)6?x?y] | ||
III | 801.15–1022.15 | 821.95 | 10.95 | 54.63 b | (6 ? x ? y) 2, 4-DFBA | Er2O3 | |
Sum | 78.49 | 76.64 | |||||
4 | I | 424.15–489.15 | 474.25 | 2.38 | 2.20 c | 2H2O | [Tb(2-Cl-6-FBA)2(terpy)(NO3)]2 |
II | 489.15–627.15 | 601.15 | 36.34 | 36.04 d | 2 terpy + 2NO3? | [Tb(2-Cl-6-FBA)2]2 | |
III | 627.15–786.15 | 765.55 | 24.77 | x 2-Cl-6-FBA | Tb2(2-Cl-6-FBA)4?x | ||
IV | 786.15–996.15 | 798.25 | 12.78 | 38.95 e | (4 ? x) 2-Cl-6-FBA | 1/2 Tb4O7 | |
Sum | 77.19 | ||||||
5 | I | 403.15–480.15 | 423.15 | 2.23 | 2.19 c | 2H2O | [Dy(2-Cl-6-FBA)2(terpy)(NO3)]2 |
II | 480.15–723.15 | 548.75 | 35.90 | 35.88 d | 2 terpy + 2NO3? | [Dy(2-Cl-6-FBA)2]2 | |
III | 723.15–780.15 | 766.85 | 10.54 | x 2-Cl-6-FBA | Dy2(2-Cl-6-FBA)4-x | ||
IV | 780.15–977.15 | 808.05 | 28.64 | 39.27 e | (4 ? x)2-Cl-6-FBA | Dy2O3 | |
Sum | 77.34 |
1 |
GarciaJ.;AllenM. J.Eur. J. Inorg. Chem.2012,2012(29),4550.
doi: 10.1002/ejic.201200159 |
2 |
Carne-SanchezA.;AlbaladJ.;GranchaT.;ImazI.;JuanhuixJ.;LarpentP.;FurukawaS.;MaspochD.J. Am. Chem. Soc.2019,141(9),4094.
doi: 10.1021/jacs.8b13593 |
3 |
HeW.;BaiX.;MaJ.;WangS.;ZhangB.;ShaoL.;ChenH.;LiL.;FuY.;ChenJ.J. Electroanal. Chem.2021,883,115036.
doi: 10.1016/j.jelechem.2021.115036 |
4 |
KotyniaA.;WiatrakB.;KamyszW.;NeubauerD.;JawienP.;MarciniakA.Int. J. Mol. Sci.2021,22,12028.
doi: 10.3390/ijms222112028 |
5 |
BazarganM.;MirzaeiM.;AmiriA.;RitchieC.Mikrochim. Acta2021,188(4),108.
doi: 10.1007/s00604-021-04767-4 |
6 |
XuC.;ChenJ.;WangZ.;XuL.;CaoH.;DongX.Acta Chim. Sin.2021,79,1415.
doi: 10.6023/a21080380 |
7 |
BarhoumiR.;AmokraneA.;KlyatskayaS.;BoeroM.;RubenM.;BucherJ. P.Nanoscale2019,11(44),21167.
doi: 10.1039/c9nr05873g |
8 |
StruhatskaM.;OlyshevetsI.;KariakaN.;DyakonenkoV.;KonovalovaI.;ShishkinaS.;SmolaS.;RusakovaN.;OvchynnikovV.;Yu SlivaT.;et alInorg. Chim. Acta2022,535,120844.
doi: 10.1016/j.ica.2022.120844 |
9 |
WuY.;XiaC.-C.;WangX.-Y.Inorg. Chim. Acta2021,520,120308.
doi: 10.1016/j.ica.2021.120308 |
10 |
ParnickaP.;LisowskiW.;KlimczukT.;ŁuczakJ.;ŻakA.;Zaleska-MedynskaA.Appl. Catal. B2021,291,120056.
doi: 10.1016/j.apcatb.2021.120056 |
11 |
ZhangM. Y.;YiF. Y.;LiuL. J.;YanG. P.;LiuH.;GuoJ. F.Dalton Trans.2021,50(43),15593.
doi: 10.1039/d1dt02312h |
12 |
BrenneckeB.;WangQ.;ZhangQ.;HuH. Y.;NazareM.Angew. Chem. Int. Ed. Engl.2020,59(22),8512.
doi: 10.1002/anie.202002391 |
13 |
ChanC. F.;TsangM. K.;LiH.;LanR.;ChadbourneF. L.;ChanW. L.;LawG. L.;CobbS. L.;HaoJ.;WongW. T.;et alJ. Mater. Chem. B2014,2(1),84.
doi: 10.1039/c3tb21034k |
14 |
CadorO.;Le GuennicB.;PointillartF.Inorg. Chem. Front.2019,6(12),3398.
doi: 10.1039/c9qi00875f |
15 |
MarchalC.;FilinchukY.;ImbertD.;BünzliJ.-C. G.;MazzantiM.Inorg. Chem.2007,46,6242.
doi: 10.1021/ic7009918 |
16 |
BretonnièreY.;MazzantiM.;WietzkeR.;PécautJ.Chem. Commun.2000,1543.
doi: 10.1039/b004152l |
17 |
XueM.;ChenM.;ChangW.;ChenR.;LiP.Colloid Polym. Sci.2020,298(3),233.
doi: 10.1007/s00396-020-04598-4 |
18 |
KhanagwalJ.;KhatkarS. P.;DhankharP.;BalaM.;KumarR.;BooraP.;TaxakV. B.Spectrosc. Lett.2020,53(8),625.
doi: 10.1080/00387010.2020.1817093 |
19 |
ConstableE. C.;HousecroftC. E.Molecules2019,24,3951.
doi: 10.3390/molecules24213951 |
20 |
JunkerA. K. R.;HillL. R.;ThompsonA. L.;FaulknerS.;SorensenT. J.Dalton Trans.2018,47(14),4794.
doi: 10.1039/C7DT04788F |
21 |
SheldrickG. M.;SchneiderT. R.Method. Enzymol.1997,277(277),319.
doi: 10.1016/S0076-6879(97)77018-6 |
22 |
MadanhireT.;DavidsH.;PereiraM. C.;HostenE. C.;AbrahamsA.Polyhedron2020,184,114560.
doi: 10.1016/j.poly.2020.114560 |
23 |
ZhaoX.;YuX.-Y.;ChenT.-L.;LuoY.-H.;YangJ.-J.;ZhangH.Inorg. Chem. Commun.2012,20,247.
doi: 10.1016/j.inoche.2012.03.018 |
24 |
MatthesP. R.;NitschJ.;KuzmanoskiA.;FeldmannC.;SteffenA.;MarderT. B.;Muller-BuschbaumK.Chem. Eur. J.2013,19(51),17369.
doi: 10.1002/chem.201302504 |
25 |
FangX.;CaiL. M.;ShaoY. C.;LinM. J.J. Coord. Chem.2014,67(21),3542.
doi: 10.1080/00958972.2014.969723 |
26 |
CasanovasB.;PorcarO.;SpeedS.;VicenteR.;Font-BardíaM.;El FallahM. S.Magnetochemistry2021,7,124.
doi: 10.3390/magnetochemistry7090124 |
27 |
BokobzaL.Polymers2019,11,1159.
doi: 10.3390/polym11071159 |
28 |
YouL.-X.;GuoY.;XieS.-Y.;WangS.-J.;XiongG.;DragutanI.;DragutanV.;DingF.;SunY.-G.J. Solid State Chem.2019,278,120900.
doi: 10.1016/j.jssc.2019.120900 |
29 |
IshikawaR.;MichiwakiS.;NodaT.;KatohK.;YamashitaM.;KawataS.Magnetochemistry2019,5,30.
doi: 10.3390/magnetochemistry5020030 |
30 |
HeS. M.;SunS. J.;ZhengJ. R.;ZhangJ. J.Spectrochim. Acta A2014,123,211.
doi: 10.1016/j.saa.2013.12.023 |
31 |
ZhuM.-M.;CuiJ.;ZengY.-L.;RenN.;ZhangJ.-J.Polyhedron2019,158,485.
doi: 10.1016/j.poly.2018.11.031 |
32 |
LiY. Y.;RenN.;HeS. M.;WangS. P.;ZhangJ. J.Appl. Organomet. Chem.2019,33,5212.
doi: 10.1002/aoc.5212 |
33 | MiaoJ.;GuoR. F.;LiuZ. H.Acta Phys. -Chim. Sin.2020,36(6),1905052. |
苗静;郭睿凤;刘志宏;物理化学学报,2020,36(6),1905052.
doi: 10.3866/PKU.WHXB201905052 |
|
34 | ZhangM.;ZhaoF. Q.;YangY. J.;LiH.;ZhangJ. K.;MaW. Z.;GaoH. X.;LiN.Acta Phys. -Chim. Sin.2020,36(6),1904027. |
张明;赵凤起;杨燕京;李辉;张建侃;马文喆;高红旭;李娜;物理化学学报,2020,36(6),1904027.
doi: 10.3866/PKU.WHXB201904027 |
|
35 |
QiX.-X.;ShiQ.;RenN.;ZhangJ.-J. J. Therm. Anal. Calorim.2018,135(4),2583.
doi: 10.1007/s10973-018-7269-9 |
36 | ZhouM. X.;RenN.;ZhangJ. J.Acta Phys. -Chim. Sin.2021,37(10),2004071. |
周孟雪;任宁;张建军;物理化学学报,2021,37(10),2004071.
doi: 10.3866/PKU.WHXB202004071 |
|
37 |
ZhaoJ.-Y.;RenN.;ZhangJ.-J. Polyhedron2021,194,114892.
doi: 10.1016/j.poly.2020.114892 |
38 |
WeiC.;SunB.;ZhaoZ.;CaiZ.;LiuJ.;TanY.;WeiH.;LiuZ.;BianZ.;HuangC.Inorg. Chem.2020,59(13),8800.
doi: 10.1021/acs.inorgchem.0c00444 |
39 |
YuanF. G.;ZhangM. M.;LiL.;ZhuX. H.Polym. Sci. Ser. B2020,62(5),451.
doi: 10.1134/S1560090420050140 |
40 |
Yılmaz ObalıA.;KurşunluA. N.J. Lumin.2020,228,117614.
doi: 10.1016/j.jlumin.2020.117614 |
41 |
ChenY.;LiuS.;GaoR.;WangY.;ZhangW.;JuZ.J. Solid State Chem.2019,279,120931.
doi: 10.1016/j.jssc.2019.120931 |
42 |
KotK.;OczkoG.;PuchalskaM.;StarynowiczP.Polyhedron2019,173,114119.
doi: 10.1016/j.poly.2019.114119 |
43 |
WangY.;DuH.;XieJ.;GaoQ.;ZhouJ.Integr. Ferroelectr.2018,190,20.
doi: 10.1080/10584587.2018.1456115 |
[1] | 樊晔, 曹崇梅, 方云, 夏咏梅. 自交联共轭亚油酸囊泡基荧光纳米点的构筑及其荧光特性[J]. 物理化学学报, 2022, 38(3): 2002032 - . |
[2] | 谢文,周莲娇,徐娟,郭清莲,蒋风雷,刘义. 生物热化学和热动力学研究进展[J]. 物理化学学报, 2020, 36(6): 1905051 - . |
[3] | 靳成伟,王叶,宿素玲,张建军. 3, 4-二乙氧基苯甲酸与2, 2'-联吡啶三元稀土配合物的合成、晶体结构及热化学性质[J]. 物理化学学报, 2016, 32(9): 2232 -2240 . |
[4] | 霍建霞,宋素伟,靳成伟,任宁,耿丽娜,张建军. 配合物[Eu(4-MOBA)3(terpy)(H2O)]2的合成、表征、热分解机理及性质[J]. 物理化学学报, 2016, 32(4): 901 -906 . |
[5] | 刘影, 佟文超, 杨利, 张同来, 冯长根. 298.15 K时斯蒂芬酸钾盐和铯盐在水和DMF中的溶解热[J]. 物理化学学报, 2013, 29(03): 467 -472 . |
[6] | 王官耀, 闫伟伟, 张晓红, 阮文娟, 朱志昂. 具有π共轭骨架的Salen-卟啉型同、异双核配合物的合成及谱学性质[J]. 物理化学学报, 2012, 28(12): 2774 -2782 . |
[7] | 段林强, 乔成芳, 魏青, 夏正强, 陈三平, 张国春, 周春生, 高胜利. 基于1H-苯并咪唑-2-羧酸的三个镧系超分子化合物的结构、热分解动力学和荧光性质[J]. 物理化学学报, 2012, 28(12): 2783 -2789 . |
[8] | 蔡龙成, 王一杰, 李娟, 黄建滨. 金属离子/胆酸钠超分子水凝胶特殊温度响应性的机理研究[J]. 物理化学学报, 2012, 28(10): 2298 -2304 . |
[9] | 刘佳, 郭莉芹, 张晓红, 阮文娟, 朱志昂. Salen型化合物的合成、表征及性质[J]. 物理化学学报, 2012, 28(02): 265 -272 . |
[10] | 张洁, 王娟芬, 张建军. 5-氯-2-甲氧基苯甲酸与1,10-邻菲啰啉稀土配合物的合成、表征及热分解机理[J]. 物理化学学报, 2012, 28(02): 290 -296 . |
[11] | 张胜飞, 孙丽丽, 徐俊波, 周涵, 温浩. 重质油胶体聚集结构的耗散粒子动力学模拟[J]. 物理化学学报, 2010, 26(01): 57 -65 . |
[12] | 王文;林美娟;凌启淡;章文贡. 多功能合一的含稀土铽高聚物的性质表征[J]. 物理化学学报, 2005, 21(08): 857 -861 . |
[13] | 于学春;彭海琳;张然;张莹莹;刘忠范. 含碘系列电荷转移复合物的热分解温度对烧孔阈值电压的影响[J]. 物理化学学报, 2004, 20(06): 565 -568 . |
[14] | 于学春;张然;彭海琳;张莹莹;刘忠范. DPA(TCNQ)2的烧孔阈值电压对脉宽的依赖关系[J]. 物理化学学报, 2004, 20(06): 561 -564 . |
[15] | 沈雪松;刘义;侯安新;赵儒铭;屈松生. Pr3+或La3+与克拉红霉素对大肠杆菌的协同作用[J]. 物理化学学报, 2003, 19(06): 560 -563 . |
|