物理化学学报 >> 2023, Vol. 39 >> Issue (4): 2207045.doi: 10.3866/PKU.WHXB202207045

所属专题: 庆祝谢有畅教授九十华诞专刊

论文 上一篇    下一篇

多组分纳米纤维体系中载流子动力学的有效级联调制及其高效光催化产氢性能研究

吕娜, 荆雪东, 许瑶, 鲁巍, 刘奎朝, 张振翼()   

  • 收稿日期:2022-07-22 录用日期:2022-08-30 发布日期:2022-08-31
  • 通讯作者: 张振翼 E-mail:zhangzy@dlnu.edu.cn
  • 作者简介:第一联系人:

    These authors contributed equally to this work.

  • 基金资助:
    国家自然科学基金(62005036);国家自然科学基金(12074055);国家自然科学基金(11904046);辽宁省优秀青年科学基金(2022-YQ-13);辽宁省“百千万人才工程”, 辽宁省自然科学基金(2020-MZLH-15);大连市青年科技之星(2020RQ131)

Effective Cascade Modulation of Charge-Carrier Kinetics in the Well-Designed Multi-Component Nanofiber System for Highly-Efficient Photocatalytic Hydrogen Generation

Na Lu, Xuedong Jing, Yao Xu, Wei Lu, Kuichao Liu, Zhenyi Zhang()   

  • Received:2022-07-22 Accepted:2022-08-30 Published:2022-08-31
  • Contact: Zhenyi Zhang E-mail:zhangzy@dlnu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(62005036);the National Natural Science Foundation of China(12074055);the National Natural Science Foundation of China(11904046);Natural Science Foundation of Liaoning Province for Excellent Young Scholars, China(2022-YQ-13);Liaoning BaiQianWan Talents Program, China, Natural Science Foundation of Liaoning Province, China(2020-MZLH-15);Program for Dalian Excellent Talents, China(2020RQ131)

摘要:

利用半导体作为催化剂,将水光催化还原为H2,为缓解全球能源危机以及环境污染问题提供了一种经济环保的途径。优化调控载流子动力学行为对提高半导体光催化分解水还原为绿色燃料-H2的活性具有十分重要的意义。目前,基于半导体异质结效应或局域表面等离激元共振的敏化过程来设计和调控半导体基异质结构体系已成为调控载流子动力学行为的一种经典策略。然而,通过精细设计异质结构,合理耦合上述敏化过程,实现载流子动力学的级联调制,从而获得高效的光催化产H2活性仍然任重道远。在本文中,我们通过原位氧化(g-C3N4的剥离和Ag2S)和还原(Ag)反应,将等离激元Ag纳米颗粒(NPs)和两种不同的半导体Ag2S NPs和g-C3N4纳米片(NSs)组装在电纺TiO2纳米纤维(NFs)中,形成了一种新型四元异质组分纳米纤维(HNFs)体系。结合时间分辨光致发光光谱,3D时域有限差分模拟以及对照实验,我们证明了等离激元Ag NPs和g-C3N4 NSs由于吸收光谱重叠可以诱导从Ag NPs到与其相邻的g-C3N4 NSs上的等离激元共振能量转移,从而促进上述四元HNFs体系中g-C3N4上光生载流子的产生。同时,由Ag NPs产生的等离激元热电子能够进一步转移到与其相接触的TiO2、g-C3N4、以及Ag2S组分上,促进体系中光生载流子的产生和分离。而且,g-C3N4/TiO2异质界面处的能带结构属于“II型”异质结,而TiO2/Ag2S异质界面处的能带结构属于“I型”异质结。这样可以在g-C3N4/TiO2/Ag2S异质界面构建连续的“能带阶梯”,使光生电子从g-C3N4跨越TiO2转移到Ag2S上,从而促进光生电荷-载流子的分离和迁移。因此,将等离激元共振能量转移,热电子转移过程和连续的“能带阶梯”诱导的载流子分离过程合理地整合在所制备的四元Ag/Ag2S/g-C3N4/TiO2 HNFs中,从而实现了光生载流子产生、分离和迁移的有效级联调制。因此,在模拟太阳光的照射下,最优的Ag/Ag2S/g-C3N4/TiO2 HNFs光催化产H2速率与等比例随机机械混合的TiO2 NFs、g-C3N4 NSs、Ag NPs和Ag2S NPs光催化产H2速率相比高~9倍。这种新颖的载流子动力学级联调制为开发高光活性半导体基异质结构体系,实现太阳能-燃料转换提供了一条崭新的途径。

关键词: 级联调制, 载流子动力学, Ag/Ag2S/g-C3N4/TiO2异质结复合纳米纤维, 宽光谱响应, 光催化产氢

Abstract:

The photocatalytic reduction of water to hydrogen (H2) over semiconductors potentially offers an economic way to alleviate the global energy crisis and environmental pollution. Optimal modulation of charge-carrier kinetics is of great importance for enhancing the photocatalytic activity of semiconductors for reducing water to green H2. The design and manufacture of semiconductor-based heterostructure systems have emerged as promising tactics for modulating charge-carrier kinetics based on sensitization either via the semiconductor heterojunction effect or localized surface plasmon resonance. However, the cascade modulation of charge-carrier kinetics is still difficult to achieve through rationally coupling the abovementioned sensitization processes in well-designed heterostructures for highly-efficient photocatalytic H2 generation. In this study, we developed a novel quaternary hetero-component nanofibers (HNFs) system by assembling plasmonic Ag nanoparticles (NPs) and two different semiconductors of Ag2S NPs and g-C3N4 nanosheets (NSs) into the electrospun TiO2 nanofibers (NFs) via in situ oxidation (for g-C3N4 exfoliation and Ag2S) and reduction (for Ag) reactions. By combining time-resolved photoluminescence spectroscopy, three-dimensional finite-difference-time-domain simulation, and control experiments, we found that the overlapping absorption peak of plasmonic Ag NPs and g-C3N4 NSs could induce plasmonic resonant energy transfer from the Ag NPs to the neighboring g-C3N4, thereby improving the generation of photoinduced charge carriers of g-C3N4 in the quaternary HNFs system. Simultaneously, plasmonic hot electrons could be generated on the Ag NPs and transferred to the near-by hetero-components of TiO2, g-C3N4, and Ag2S, to boost the generation and separation of photoinduced charge carriers in the system. Furthermore, the energy band structure at the g-C3N4/TiO2 hetero-interface belongs to the "type II" heterojunction, while the energy band structure at the TiO2/Ag2S hetero-interface can be classified as a "type I" heterojunction. This way, the successive "energy band step" could be constructed at the g-C3N4/TiO2/Ag2S hetero-interface, resulting in improved separation and migration of photoinduced charge carriers through the transfer of photoinduced electrons from g-C3N4 to Ag2S across TiO2. Thus, the plasmonic resonant energy transfer, hot electron transfer, and successive energy-band-step-induced charge separation processes were integrated into the as-synthesized quaternary Ag/Ag2S/g-C3N4/TiO2 HNFs system, thereby achieving the effective cascade modulation of the generation, separation, and migration of photoinduced charge carriers. As such, the photocatalytic H2-generation rate of the optimal Ag/Ag2S/g-C3N4/TiO2 HNFs system was higher than that of the mechanically mixed TiO2 NFs, g-C3N4 NSs, Ag NPs, and Ag2S NPs, with the same amounts as the optimal Ag/Ag2S/g-C3N4/TiO2 HNFs photocatalyst, by approximately 9-fold under simulated sunlight irradiation. This interesting cascade modulation of charge-carrier kinetics might open new avenues for the development of highly active semiconductor-based heterostructure system for solar-to-fuels conversion.

Key words: Cascade modulation, Charge-carrier kinetics, Ag/Ag2S/g-C3N4/TiO2 hetero-component nanofibers, Broad spectral response, Photocatalytic H2 generation