物理化学学报 >> 2023, Vol. 39 >> Issue (6): 2209037.doi: 10.3866/PKU.WHXB202209037
所属专题: S型光催化剂
收稿日期:
2022-09-26
录用日期:
2022-10-26
发布日期:
2022-11-01
通讯作者:
张金锋,代凯
E-mail:jfzhang@chnu.edu.cn;daikai940@chnu.edu.cn
作者简介:
第一联系人:†These authors contributed equally to this work.
Zhongliao Wang, Jing Wang, Jinfeng Zhang(), Kai Dai()
Received:
2022-09-26
Accepted:
2022-10-26
Published:
2022-11-01
Contact:
Jinfeng Zhang, Kai Dai
E-mail:jfzhang@chnu.edu.cn;daikai940@chnu.edu.cn
摘要:
光催化转化CO2为碳氢燃料,分解水产氢,选择性有机合成,还原N2为NH3,降解毒害的有机污染物等对解决能源环境问题有重要意义。早在1972年,研究者利用TiO2通过光催化实现了全面分解水产氢和产氧。由于低的可见光利用率,严重的载流子复合和过高的水氧化能垒导致光催化全面水分解的效率极低。由于氢相对于氧更具有经济价值,因此牺牲剂辅助的光催化产氢被大量研究。由于牺牲剂可以快速的消耗光生空穴,有效降低了氧化端的能垒,光催化产氢的效率相比于光催化水分解的效率提高了3–4个量级。然而,牺牲剂的使用不仅导致了光生空穴的浪费,成本的提高,还导致了潜在的环境问题。近些年,研究者通过将光催化还原反应和光催化氧化反应结合在一起实现了电子空穴的全面利用,并改进了氧化和还原的效率。同时,电子空穴的全面利用也有效的促进了电荷的分离并提高了催化剂的稳定性。然而,由于全面氧化还原的设计难度大,反应过程复杂,因此光催化全面氧化还原的机理尚不够明确,仍然需要大量的探索。在这篇综述中,首先从光捕获、光激发电荷分离、氧化还原反应的热力学和动力学过程等角度讨论了光催化的基本原理。然后根据不同的光催化氧化反应和光催化还原反应的耦合,比如光催化整体水分解、光催化产H2与有机氧化耦合、光催化CO2还原与有机氧化耦合、光催化产H2O2与有机氧化耦合、光催化N2还原与N2氧化耦合、光催化有机还原与有机氧化耦合等光催化全面氧化还原反应进行了系统分类。随后,从光催化材料的设计、反应条件、反应物和产物的多样性等方面详细考虑了光催化氧化还原反应的设计要点。此外,通过功函数、电子密度差、Bader电荷、吸附自由能的变化,讨论了密度泛函理论(DFT)计算在揭示光激发电荷转移、中间体转变过程中的速率决定步骤和氧化还原反应势垒方面的重要作用。然后,结合典型案例,尽可能通过原位表征和DFT计算,详细分析了各种光催化氧化还原反应的活性和机理。最后,从构建S型异质结光催化剂、合理负载助催化剂、设计光催化剂形貌、开发新型光催化剂、合理选择氧化半反应和还原半反应耦合、原位表征和DFT计算的结合等角度对光催化全面氧化还原反应的应用进行了总结和展望。该工作为光催化整体氧化还原反应的设计策略和机理洞察提供了参考。
王中辽, 汪静, 张金锋, 代凯. 光激发电荷在光催化氧化还原反应中的全利用[J]. 物理化学学报, 2023, 39(6), 2209037. doi: 10.3866/PKU.WHXB202209037
Zhongliao Wang, Jing Wang, Jinfeng Zhang, Kai Dai. Overall Utilization of Photoexcited Charges for Simultaneous Photocatalytic Redox Reactions[J]. Acta Phys. -Chim. Sin. 2023, 39(6), 2209037. doi: 10.3866/PKU.WHXB202209037
Table 1
Comparison of various photocatalytic OWS systems."
Semiconductor | Cocatalysts | Light Source | Conditions | H2, O2 yield rate (μmol∙g−1∙h−1) and AQE | Year |
conjugated polymer | Pd, Ir/IrO2 | 300 W Xe-lamp (λ ≥ 420 nm) | H2O | 2.1, 0.9 | (2022) |
BiFeO3@COF | Ultrasonic (40 kHz), visible light (100 W, λ ≥ 420 nm) | H2O | 1416.4, 708.2 | (2022) | |
La, Al-Codoped SrTiO3 | Rh/Cr2O3, CoOOH | 300 W Xe-lamp (λ ≥ 300 nm) | H2O | 1790, 910 AQE 78.43 at 365 nm | (2021) |
Mo: BiVO4/In@InOx/Rh: SrTiO3 | CoOx, Ru@Cr2O3 | 300 W Xe-lamp (λ ≥ 420 nm) or AM 1.5 | H2O | 3.34, 1.78 | (2022) |
LaTaON2-P and Rh: SrTiO3 | CoOx, Ru | 300 W Xe-lamp (λ ≥ 420 nm) | H2O, Fe2+/Fe3+ | 43, 20 AQE 5.7% at 420 ± 20 nm | (2021) |
LP-HER-WOR-MOF | Pt, Ir | 400 nm LED + 450 nm LED | H2O, Fe2+/Fe3+ | 836, 464 AQE (1.5 ± 1)% | (2021) |
MIL-125(Ti)-NH2 | Pt and RuOx | 300 W Xe-lamp | H2O | 9.1, 3.5 | (2019) |
Zn1−xCdxS/NiO | 300 W Xe-lamp (λ ≥ 420 nm) | H2O | 227.3, uncertain AQE 0.66% at 430 nm | (2019) | |
BiOBr/C | C | 150 W Xe-lamp (λ ≥ 420 nm) | H2O | 240, 110 AQE 1.46 at 420 nm | (2021) |
SrTiO3(Al) | Ni SA-NG, CoOx | 280 W Xe-lamp | H2O | 498, 230 | (2021) |
GaInZnON@GaInON | Rh | 300 W Xe-lamp (λ ≥ 420 nm) | H2O | 603, 274 AQE 3.5% at 430 nm | (2019) |
BiVO4 | Rh/Cr2O3, MnOx | 300 W Xe-lamp (λ ≥ 400 nm) | H2O | 65.7, 32.6 AQE 2.3% at 420 nm | (2022) |
PCN/LaOCl | Pt, CoOx | 300 W Xe-lamp (λ ≥ 400 nm) | H2O | 22.3, 10.7 AQE 0.34% at 400 nm | (2020) |
Au/BaTiO3 | RhCrOx and CoOx | 300 W Xe-lamp (λ ≥ 420 nm) | H2O | ~0.9, 0.45 μmol | (2022) |
CTF-HUST-A1 | NiPx, Pt | 300 W Xe-lamp | H2O, K2CO3, KOH, EtOK and tBuOK | 25.4, 12.9 AQE 0.8 at 420 nm | (2020) |
ZnIn2S4/WO3 | PtS, MnO2 | 300 W Xe-lamp (λ ≥ 420 nm) | H2O | 5.94, 2.24 AQE 0.5 at 420 nm | (2019) |
ZnTiO3−xNy | Pt, RhOx | 300 W Xe-lamp with an AM1.5 filter | H2O | ~160, 70 AQE 0.22 at 420 ± 20 nm | (2021) |
BiVO4/Ti3C2 | 300 W Xe-lamp with an AM1.5 filter | H2O | ~250, 125 AQE 1.47 at 420 nm | (2021) | |
oligo (phenylene butadiynylene) (OPB) | 300 W Xe-lamp | H2O | ~40, 18 | (2021) |
Fig 5
(a) The diagram of SrTiO3 transformation from 6 to 18-facet. The SEM images of (b) Pt/18-facet SrTiO3, (c) Co3O4/18-facet SrTiO3, (d) Pt-Co3O4/18-facet SrTiO3, (e) Pt/6-facet SrTiO3, (f) Co3O4/6-facet SrTiO3, (g) Pt-Co3O4/6-facet SrTiO3. (h) Overall water photodecomposing on SrTiO3 with various cocatalysts, (i) Overall water photodecomposing of 18-facet SrTiO3 with photodeposited cocatalysts 138. Copyright 2016, The Royal Society of Chemistry."
Table 2
Comparison of various photocatalytic H2 evolution with organic oxidation systems."
Semiconductor | Light Source | Conditions | Conversion | Selectivity (%) | Activity (mmol∙g−1∙h−1) | Year |
CdS/NiAl-LDH | LED light λ > 400 nm (50 W × 4) | 0.2 mmol of the substrate, 1 mg photocatalyst and 10 mL deionize water | 99 | Anisaldehyde: 99 | H2: 291.8 | (2021) |
Pt/CdS/Fe2O3 | Xe-lamp λ > 420 nm (300 W) | 10.0 mmol of benzylamine, 25 mg of catalyst, 30 mL of DMF, 3 mL of H2O | 90.33 | N-benzylidenebenzylamine: 90.1 | H2: 39.4 | (2022) |
CdS-Pd SAs | Xe-lamp λ > 420 nm (300 W) | 10 mg of catalysts, 10 mmol of benzyl alcohol, 0.1 mmol of N-benzylideneaniline, 5 mL of CH3CN | 100 | Secondary amine N-benzylaniline: 100 | H2: 11.8 | (2022) |
Ptx-C3N4 | LED light λ > 427 nm | 100 mg of lignocellulose substrates, 10 mg of catalyst, and NaOH aqueous solution (10mol∙L−1, 5 cm3) | 100 | lactic acid: 86.0 | H2: 3.39 | (2022) |
2.3 wt% Pt/PCN-777 | Xe-lamp λ > 420 nm (300 W) | 10 mg of catalyst, 5 mL DMF, 50 μL deioned water and 50 μL benzylamine | – | Benzylbenzaldimine: 99 | H2: 0.332 | (2018) |
Zn0.3Cd0.7S | Xe-lamp λ > 420 nm (300 W) | 100 mg of catalyst, 10 mL of aromatic alcohol, 90 mL of DMF and 100 mL CO2 | – | Benzaldehyde: 90 | H2: 0.432, CO: 8.4 × 10−4, CH4: 6.4 × 10−4 | (2021) |
NiS2/CdS-2 | LED light λ > 420 nm | 10 mg of catalysts, 1 mmol of amines in 10 mL of the mixed solvent of 9.4 mL of acetonitrile and 0.6 mL of water | 95.9 | Imines: 94.3 | H2: 0.087 | (2021) |
LaVO4/g-C3N4 | Xe-lamp λ > 400 nm (300 W) | 10 mg of catalysts, 10 mL of FFA or TEOA, 3 wt% H2PtCl6∙6H2O | – | furfural | H2: 0.287 | (2022) |
Fig 8
(a) SEM images of Zn3In2S6; (b) HRTEM of the 2.14%Pt/Zn3In2S6; Photocatalytic decomposition of H2 and PhCHO yields (c) Pt/Zn3In2S6 with various Pt content; (d) Photodecomposing of PhCH2OH for H2 and PhCHO production of 2.14% Pt/Zn3In2S6 composite. (e) Comparison of Zn3In2S6, 2.14% Pt/Zn3In2S6, 1% Pt-NPs/Zn3In2S6, 1% MoS2/Zn3In2S6, 1% MoSe2/Zn3In2S6 and 1% TiN/Zn3In2S6 for photodocomposing of PhCH2OH for H2 and PhCHO evolution. (f) Reaction mechanism of Pt/Zn3In2S6 to produce H2 and PhCHO 147. Copyright 2018, Elsevier."
Fig 9
(a) Photosynthesis of HMF to DFF, H2 production and the selectivity of DFF for various photocatalysts. (b) Catalytic performance under different incident lights of the 1% NiS/ZIS sample. (c) Photosynthesis of HMF for 1% NiS/ZIS composite. (d) Photosynthesis of HMF for various photocatalysts 65. Copyright 2020, Elsevier."
Fig 10
(a) FESEM, (b) TEM and (c) HRTEM image of CdMoOS; (d) Photocatalytic H2 evolution rate. (e) Simultaneous H2 Production and lactic acid oxidation over CdMoOS. (f) The conversion and selectivity of lactic acid oxidation over various samples. (g) in situ DRIFTS over CdMoOS. (h) EPR spectra with lactic acid and H2O. (i) The mass spectra with D2O and lactic acid as the reactants 16. Copyright 2022, Wiley-VCH."
Fig 12
(a) Synthetic route of composite materials, (b)The mechanism of photocatalytic FFA oxidation and hydrogen peroxide generation by the presence of O2 on TBO40 is shown, (c) Photocatalytic hydrogen peroxide production under 1-hour irradiation of 300 W Xe lamp, (d) Fitted evolution and consumption rate constants of TO, BO and TBOx, (e) Hydrogen peroxide decomposition curve of catalyst sample under illumination, (f) Generation rates of hydrogen peroxide and FA in various photocatalysts 63. Copyright 2022, Wiley-VCH."
Fig 13
(a) AFM profile and (b) potential distribution of WO3/CdS under dark; (c) AFM profile and (d) potential distribution of WO3/CdS under light; EPR diagrams of (e) DMPO-ŸOH and (f) DMPO-ŸO2− of various samples; Photocatalytic (g) NH4+ and (h) NO3− yields 64. Copyright 2018, Copyright 2022, Wiley-VCH."
Fig 14
The conversion, selectivity and yield rate under illumination in (a) selective oxidation of p-methoxybenzyl alcohol to p-methoxybenzaldehyde and (b) selective reduction of nitrobenzene to aniline; (c) The selective reduction of nitrobenzene and (d) photooxidation of p-methoxybenzyl alcohol performances on CdLa2S4 in the scavengers of triethanolamine and CCl4 or the condition of O2 or N2. (e) Diagram for integrating selective photooxidation of aromatic alcohols with photoreduction of nitroarenes on CdLa2S4 under illumination 148. Copyright 2018, Elsevier."
Fig 16
(a) The formation rate of ArCHO and H2 by ArCH2OH assistance; (b) catalytic performance of optimized ZnIn2S4/Ni12P5 based on lights with various wavelengths; (c) CO2 photoreduciton of ZnIn2S4/Ni12P5 based on various conditions; (d) N2 fixation of ZnIn2S4/Ni12P5 based on various conditions; (e) reduction ArCH2OH to ArCHO and H2 of distinct samples and systems; (f) diagram of redox processes of ZnIn2S4/Ni12P5 under illumination 62. Copyright 2021, Elsevier."
1 |
Shen H. ; Peppel T. ; Stunk J. ; Sun Z. Solar RRL 2020, 4, 1900546.
doi: 10.1002/solr.201900546 |
2 |
Yang H. ; Dai K. ; Zhang J. ; Dawson G. Chin. J. Catal. 2022, 43, 2111.
doi: 10.1016/s1872-2067(22)64096-8 |
3 | Li J. B. ; Wu X. ; Liu S. W. Acta Phys. -Chim. Sin. 2021, 37, 2009038. |
李嘉碧; 吴熙; 刘升卫; 物理化学学报, 2021, 37, 2009038.
doi: 10.3866/PKU.WHXB202009038 |
|
4 |
Wang Q. ; Hisatomi T. ; Jia Q. ; Tokudome H. ; Zhong M. ; Wang C. ; Pan Z. ; Takata T. ; Nakabayashi M. ; Shibata N. ; et al Nat. Mater. 2016, 15, 611.
doi: 10.1038/nmat4589 |
5 |
Li X. ; Zhang J. ; Dai K. ; Fan K. ; Liang C. Solar RRL 2021, 5, 2100788.
doi: 10.1002/solr.202100788 |
6 | Fei X. ; Tan H. ; Cheng B. ; Zhu B. ; Zhang L. Acta Phys. -Chim. Sin. 2021, 37, 2010027. |
费新刚; 谭海燕; 程蓓; 朱必成; 张留洋; 物理化学学报, 2021, 37, 2010027.
doi: 10.3866/PKU.WHXB202010027 |
|
7 |
Liu L. ; Hu T. ; Dai K. ; Zhang J. ; Liang C. Chin. J. Catal. 2021, 42, 46.
doi: 10.1016/s1872-2067(20)63560-4 |
8 | Liu D. ; Chen S. ; Li R. ; Peng T. Acta Phys. -Chim. Sin. 2021, 37, 2010017. |
刘东; 陈圣韬; 李仁杰; 彭天右; 物理化学学报, 2021, 37, 2010017.
doi: 10.3866/PKU.WHXB202010017 |
|
9 |
Zhao Z. ; Li X. ; Dai K. ; Zhang J. ; Dawson G. J. Mater. Sci. Technol. 2022, 117, 109.
doi: 10.1016/j.jmst.2021.11.046 |
10 |
Fujishima A. ; Honda K. Nature 1972, 238, 37.
doi: 10.1038/238037a0 |
11 |
Yang Y. ; Zhu B. ; Wang L. ; Cheng B. ; Zhang L. ; Yu J. Appl. Catal. B: Environ. 2022, 317, 121788.
doi: 10.1016/j.apcatb.2022.121788 |
12 | Wang Z. J. ; Hong J. J. ; Ng S.-F. ; Liu W. ; Huang J. J. ; Chen P. F. ; Ong W. J. Acta Phys. -Chim. Sin. 2021, 37, 2011033. |
王则鉴; 洪佳佳; NgS.-F.; 刘雯; 黄俊杰; 陈鹏飞; OngW.-J.; 物理化学学报, 2021, 37, 2011033.
doi: 10.3866/PKU.WHXB202011033 |
|
13 |
Zhang J. ; Fu J. ; Dai K. J. Mater. Sci. Technol. 2022, 116, 192.
doi: 10.1016/j.jmst.2021.10.045 |
14 | Mei Z. H. ; Wang G. H. ; Yan S. D. ; Wang J. Acta Phys. -Chim. Sin. 2021, 37, 2009097. |
梅子慧; 王国宏; 严素定; 王娟; 物理化学学报, 2021, 37, 2009097.
doi: 10.3866/PKU.WHXB202009097 |
|
15 |
Takata T. ; Jiang J. ; Sakata Y. ; Nakabayashi M. ; Shibata N. ; Nandal V. ; Seki K. ; Hisatomi T. ; Domen K. Nature 2020, 581, 411.
doi: 10.1038/s41586-020-2278-9 |
16 |
Bie C. ; Zhu B. ; Wang L. ; Yu H. ; Jiang C. ; Chen T. ; Yu J. Angew. Chem. Int. Ed. 2022, 61, 202212045.
doi: 10.1002/anie.202212045 |
17 | Liu S. C. ; Wang K. ; Yang M. X. ; Jin Z. L. Acta Phys. -Chim. Sin. 2022, 38, 2109023. |
刘珊池; 王凯; 杨梦雪; 靳治良; 物理化学学报, 2022, 38, 2109023.
doi: 10.3866/PKU.WHXB202109023 |
|
18 |
Wang Z. ; Hu T. ; Dai K. ; Zhang J. ; Liang C. Chin. J. Catal. 2017, 38, 2021.
doi: 10.1016/S1872-2067(17)62942-5 |
19 |
Li X. ; Zhang J. ; Huo Y. ; Dai K. ; Li S. ; Chen S. Appl. Catal. B: Environ. 2021, 280, 119452.
doi: 10.1016/j.apcatb.2020.119452 |
20 | Huang Y. ; Mei F. F. ; Zhang J. F. ; Dai K. ; Dawson G. Acta Phys. -Chim. Sin. 2022, 38, 2108028. |
黄悦; 梅飞飞; 张金锋; 代凯; DawsonG.; 物理化学学报, 2022, 38, 2108028.
doi: 10.3866/PKU.WHXB202108028 |
|
21 |
Zhao Z. ; Bian J. ; Zhao L. ; Wu H. ; Xu S. ; Sun L. ; Li Z. ; Zhang Z. ; Jing L. Chin. J. Catal. 2022, 43, 1331.
doi: 10.1016/S1872-2067(21)64005-6 |
22 |
Jiang Z. ; Cheng B. ; Zhang Y. ; Wageh S. ; Al-Ghamdi A. A. ; Yu J. ; Wang L. J. Mater. Sci. Technol. 2022, 124, 193.
doi: 10.1016/j.jmst.2022.01.029 |
23 |
Wang Z. ; Cheng B. ; Zhang L. ; Yu J. ; Li Y. ; Wageh S. ; Al-Ghamdi A.A. Chin. J. Catal. 2022, 43, 1657.
doi: 10.1016/s1872-2067(21)64010-x |
24 |
Huang W. ; Li Z. ; Wu C. ; Zhang H. ; Sun J. ; Li Q. J. Mater. Sci. Technol. 2022, 120, 89.
doi: 10.1016/j.jmst.2021.12.028 |
25 |
Wang Z. ; Wang L. ; Cheng B. ; Yu H. ; Yu J. Small Methods 2021, 5, 2100979.
doi: 10.1002/smtd.202100979 |
26 |
Yang H. ; Zhang J. F. ; Dai K. Chin. J. Catal. 2022, 43, 255.
doi: 10.1016/s1872-2067(20)63784-6 |
27 |
Zhang S. ; Cheng G. ; Guo L. ; Wang N. ; Tan B. ; Jin S. Angew. Chem. Int. Ed. 2020, 59, 6007.
doi: 10.1002/anie.201914424 |
28 |
Guan X. ; Fang Q. ; Yan Y. ; Qiu S. Acc. Chem. Res. 2022, 55, 1912.
doi: 10.1021/acs.accounts.2c00200 |
29 |
Guan Q. ; Zhou L. L. ; Dong Y. B. Chem. Soc. Rev. 2022, 51, 6307.
doi: 10.1039/d1cs00983d |
30 |
Chen W.-T. ; Chan A. ; Sun-Waterhouse D. ; Moriga T. ; Idriss H. ; Waterhouse G. I. N. J. Catal. 2015, 326, 43.
doi: 10.1016/j.jcat.2015.03.008 |
31 |
Wen Y. ; Qu D. ; An L. ; Gao X. ; Jiang W. ; Wu D. ; Yang D. ; Sun Z. ACS Sustain. Chem. Eng. 2018, 7, 2343.
doi: 10.1021/acssuschemeng.8b05124 |
32 |
Zhao G. ; Sun Y. ; Zhou W. ; Wang X. ; Chang K. ; Liu G. ; Liu H. ; Kako T. ; Ye J. Adv. Mater. 2017, 29, 1703258.
doi: 10.1002/adma.201703258 |
33 |
Mohamed R. M. ; Aazam E. S. Chin. J. Catal. 2012, 33, 247.
doi: 10.1016/s1872-2067(10)60276-8 |
34 |
Xia B. ; Zhang Y. ; Shi B. ; Ran J. ; Davey K. ; Qiao S.-Z Small Methods 2020, 4, 2000063.
doi: 10.1002/smtd.202000063 |
35 |
He B. ; Bie C. ; Fei X. ; Cheng B. ; Yu J. ; Ho W. ; Al-Ghamdi A. A. ; Wageh S. Appl. Catal. B: Environ. 2021, 288, 119994.
doi: 10.1016/j.apcatb.2021.119994 |
36 | Lei Z. N. ; Ma X. Y. ; Hu X. Y. ; Fan J. ; Liu E. Z. Acta Phys. -Chim. Sin. 2022, 38, 2110049. |
雷卓楠; 马心怡; 胡晓云; 樊君; 刘恩周; 物理化学学报, 2022, 38, 2110049.
doi: 10.3866/PKU.WHXB202110049 |
|
37 |
Maeda K. ; Takata T. ; Hara M. ; Saito N. ; Inoue Y. ; Kobayashi H. ; Domen K. J. Am. Chem. Soc. 2005, 127, 8286.
doi: 10.1021/ja0518777 |
38 |
Shu G. ; Li Y. ; Wang Z. ; Jiang J.-X. ; Wang F. Appl. Catal. B: Environ. 2020, 261, 118230.
doi: 10.1016/j.apcatb.2019.118230 |
39 |
Cheng C. ; He B. ; Fan J. ; Cheng B. ; Cao S. ; Yu J. Adv. Mater. 2021, 33, 2100317.
doi: 10.1002/adma.202100317 |
40 |
Zhang Y. ; Zhao J. ; Wang H. ; Xiao B. ; Zhang W. ; Zhao X. ; Lv T. ; Thangamuthu M. ; Zhang J. ; Guo Y. Nat. Commun. 2022, 13, 58.
doi: 10.1038/s41467-021-27698-3 |
41 | Liu Y. ; Hao X. ; Hu H. ; Jin Z. Acta Phys. -Chim. Sin. 2021, 37, 2008030. |
刘阳; 郝旭强; 胡海强; 靳治良; 物理化学学报, 2021, 37, 2008030.
doi: 10.3866/PKU.WHXB202008030 |
|
42 | Chen Y. ; Li L. ; Xu Q. ; Düren T. ; Fan J. ; Ma D. Acta Phys. -Chim. Sin. 2021, 37, 2009080. |
陈一文; 李铃铃; 徐全龙; DürenT.; 范佳杰; 马德琨; 物理化学学报, 2021, 37, 2009080.
doi: 10.3866/PKU.WHXB202009080 |
|
43 |
Huo Y. ; Zhang J. ; Dai K. ; Liang C. ACS Appl. Energy Mater. 2021, 4, 956.
doi: 10.1021/acsaem.0c02896 |
44 |
Sayed M. ; Xu F. ; Kuang P. ; Low J. ; Wang S. ; Zhang L. ; Yu J. Nat. Commun. 2021, 12, 4936.
doi: 10.1038/s41467-021-25007-6 |
45 |
Dong G. ; Huang X. ; Bi Y. Angew. Chem. Int. Ed. 2022, 61, 202204271.
doi: 10.1002/anie.202204271 |
46 |
Li S. ; Wang C. ; Cai M. ; Yang F. ; Liu Y. ; Chen J. ; Zhang P. ; Li X. ; Chen X. Chem. Eng. J. 2022, 428, 131158.
doi: 10.1016/j.cej.2021.131158 |
47 |
Feng H. ; Li H. ; Liu X. ; Huang Y. ; Pan Q. ; Peng R. ; Du R. ; Zheng X. ; Yin Z. ; Li S. Chem. Eng. J. 2022, 428, 132045.
doi: 10.1016/j.cej.2021.132045 |
48 |
Yang Y. ; Li H. ; Jing X. ; Wu Y. ; Shi Y. ; Duan C. Chem. Commun. 2022, 58, 807.
doi: 10.1039/D1CC06166F |
49 |
Wang J. ; Wang M. ; Li X. ; Gu X. ; Kong P. ; Wang R. ; Ke X. ; Yu G. ; Zheng Z. Appl. Catal. B: Environ. 2022, 313, 121449.
doi: 10.1016/j.apcatb.2022.121449 |
50 | Li X. ; Liu J. ; Huang J. ; He C. ; Feng Z. ; Chen Z. ; Wan L. ; Deng F. Acta Phys. -Chim. Sin. 2021, 37, 2010030. |
李喜宝; 刘积有; 黄军同; 何朝政; 冯志军; 陈智; 万里鹰; 邓芳; 物理化学学报, 2021, 37, 2010030.
doi: 10.3866/PKU.WHXB202010030 |
|
51 |
Lu G. ; Chu F. ; Huang X. ; Li Y. ; Liang K. ; Wang G. Coord. Chem. Rev. 2022, 450, 214240.
doi: 10.1016/j.ccr.2021.214240 |
52 |
Wen Y. ; Rentería-Gómez A. N. ; Day G. S. ; Smith M. F. ; Yan T.-H. ; Ozdemir R. O. K. ; Gutierrez O. ; Sharma V. K. ; Ma X. ; Zhou H.-C. J. Am. Chem. Soc. 2022, 144, 11840.
doi: 10.1021/jacs.2c04341 |
53 |
Cheng Y.-Z. ; Ji W. ; Wu X. ; Ding X. ; Liu X.-F. ; Han B.-H. Appl. Catal. B: Environ. 2022, 306, 121110.
doi: 10.1016/j.apcatb.2022.121110 |
54 |
Zhang B. ; Wong P. W. ; An A. K. Chem. Eng. J. 2022, 430, 133054.
doi: 10.1016/j.cej.2021.133054 |
55 |
Tong H. ; Ouyang S. ; Bi Y. ; Umezawa N. ; Oshikiri M. ; Ye J. Adv. Mater. 2012, 24, 229.
doi: 10.1002/adma.201102752 |
56 | Zhou X. Acta Phys. -Chim. Sin. 2021, 37, 2008064. |
周雪梅; 物理化学学报, 2021, 37, 2008064.
doi: 10.3866/PKU.WHXB202008064 |
|
57 |
Sun S. ; Hisatomi T. ; Wang Q. ; Chen S. S. ; Ma G. J. ; Liu J. Y. ; Nandy S. ; Minegishi T. ; Katayama M. ; Domen K. ACS Catal. 2018, 8, 1690.
doi: 10.1021/acscatal.7b03884 |
58 |
Wang L. ; Zhang J. ; Zhang Y. ; Yu H. ; Qu Y. ; Yu J. Small 2022, 18, 2104561.
doi: 10.1002/smll.202104561 |
59 |
Chen S. S. ; Takata T. ; Domen K. Nat. Rev. Mater. 2017, 2, 17050.
doi: 10.1038/natrevmats.2017.50 |
60 |
Zhang L. ; Zhang J. ; Yu H. ; Yu J. Adv. Mater. 2022, 34, 2107668.
doi: 10.1002/adma.202107668 |
61 | Zhu B. ; Hong X. ; Tang L. ; Liu Q. ; Tang H. Acta Phys. -Chim. Sin. 2022, 38, 2111008. |
朱弼辰; 洪小洋; 唐丽永; 刘芹芹; 唐华; 物理化学学报, 2022, 38, 2111008.
doi: 10.3866/PKU.WHXB202111008 |
|
62 |
Meng S. ; Chen C. ; Gu X. ; Wu H. ; Meng Q. ; Zhang J. ; Chen S. ; Fu X. ; Liu D. ; Lei W. Appl. Catal. B: Environ. 2021, 285, 119789.
doi: 10.1016/j.apcatb.2020.119789 |
63 |
He B. ; Wang Z. ; Xiao P. ; Chen T. ; Yu J. ; Zhang L. Adv. Mater. 2022, 34, 2203225.
doi: 10.1002/adma.202203225 |
64 |
Xia P. ; Pan X. ; Jiang S. ; Yu J. ; He B. ; Ismail P. M. ; Bai W. ; Yang J. ; Yang L. ; Zhang H. ; et al Adv. Mater. 2022, 34, 2200563.
doi: 10.1002/adma.202200563 |
65 |
Meng S. ; Wu H. ; Cui Y. ; Zheng X. ; Wang H. ; Chen S. ; Wang Y. ; Fu X. Appl. Catal. B: Environ. 2020, 266, 118617.
doi: 10.1016/j.apcatb.2020.118617 |
66 |
Dai X. ; Xie M. ; Meng S. ; Fu X. ; Chen S. Appl. Catal. B: Environ. 2014, 158–159, 382.
doi: 10.1016/j.apcatb.2014.04.035 |
67 |
Zhao L. M. ; Meng Q. Y. ; Fan X. B. ; Ye C. ; Li X. B. ; Chen B. ; Ramamurthy V. ; Tung C. H. ; Wu L. Z. Angew. Chem. Int. Ed. 2017, 56, 3020.
doi: 10.1002/anie.201700243 |
68 | Wang W. ; Zhang H. ; Chen Y. ; Shi H. Acta Phys. -Chim. Sin. 2022, 38, 2201008. |
王文亮; 张灏纯; 陈义钢; 史海峰; 物理化学学报, 2022, 38, 2201008.
doi: 10.3866/PKU.WHXB202201008 |
|
69 |
Huo Y. ; Zhang J. ; Dai K. ; Li Q. ; Lv J. ; Zhu G. ; Liang C. Appl. Catal. B: Environ. 2019, 241, 528.
doi: 10.1016/j.apcatb.2018.09.073 |
70 |
Lv J. ; Zhang J. ; Liu J. ; Li Z. ; Dai K. ; Liang C. ACS Sustain. Chem. Eng. 2017, 6, 696.
doi: 10.1021/acssuschemeng.7b03032 |
71 |
Wang Z. ; Liu R. ; Zhang J. ; Dai K. Chin. J. Struct. Chem. 2022, 41, 2206015.
doi: 10.14102/j.cnki.0254-5861.2022-0108 |
72 | Li H. ; Li F. ; Yu J. ; Cao S. Acta Phys. -Chim. Sin. 2021, 37, 2010073. |
李瀚; 李芳; 余家国; 曹少文; 物理化学学报, 2021, 37, 2010073.
doi: 10.3866/PKU.WHXB202010073 |
|
73 |
Bie C. ; Cheng B. ; Fan J. ; Ho W. ; Yu J. Energy Chem. 2021, 3, 100051.
doi: 10.1016/j.enchem.2021.100051 |
74 |
Sasmal H.S. ; Kumar Mahato A. ; Majumder P. ; Banerjee R. J. Am. Chem. Soc. 2022, 144, 11482.
doi: 10.1021/jacs.2c02301 |
75 |
Dai K. ; Lv J. ; Zhang J. ; Zhu G. ; Geng L. ; Liang C. ACS Sustain. Chem. Eng. 2018, 6, 12817.
doi: 10.1021/acssuschemeng.8b02064 |
76 |
Huo Y. ; Zhang J. ; Wang Z. ; Dai K. ; Pan C. ; Liang C. J. Colloid Interface Sci. 2021, 585, 684.
doi: 10.1016/j.jcis.2020.10.048 |
77 |
Zhang L. ; Hou S. ; Wang T. ; Liu S. ; Gao X. ; Wang C. ; Wang G. Small 2022, 18, 2202252.
doi: 10.1002/smll.202202252 |
78 |
Wang G. ; Huo T. ; Deng Q. ; Yu F. ; Xia Y. ; Li H. ; Hou W. Appl. Catal. B: Environ. 2022, 310, 121319.
doi: 10.1016/j.apcatb.2022.121319 |
79 |
Dong X. ; Cui Z. ; Shi X. ; Yan P. ; Wang Z. ; Co A. C. ; Dong F. Angew. Chem. Int. Ed. 2022, 61, 202200937.
doi: 10.1002/anie.202200937 |
80 |
Dai K. ; Lu L.H. ; Liang C.H. ; Liu Q. ; Zhu G.P. Appl. Catal. B: Environ. 2014, 156, 331.
doi: 10.1016/j.apcatb.2014.03.039 |
81 |
Zhang Q. ; Wang J. ; Ye X. ; Hui Z. ; Ye L. ; Wang X. ; Chen S. ACS Appl. Mater. Interfaces 2019, 11, 46735.
doi: 10.1021/acsami.9b14450 |
82 |
Wang L. ; Yu J. Chem Catal. 2022, 2, 428.
doi: 10.1016/j.checat.2022.01.010 |
83 |
Bie C. ; Wang L. ; Yu J. Chem 2022, 8, 1567.
doi: 10.1016/j.chempr.2022.04.013 |
84 |
Mei F. ; Zhang J. ; Liang C. ; Dai K. Mater. Lett. 2021, 282, 128722.
doi: 10.1016/j.matlet.2020.128722 |
85 |
Lotfi S. ; Ouardi M.E. ; Ahsaine H.A. ; Assani A. Catal. Rev. 2022, 64, 1.
doi: 10.1080/01614940.2022.2057044 |
86 |
Chen Y. ; Li Y. ; Luo N. ; Shang W. ; Shi S. ; Li H. ; Liang Y. ; Zhou A. Chem. Eng. J. 2022, 429, 132577.
doi: 10.1016/j.cej.2021.132577 |
87 |
Zhao R. ; Wei D. ; Li X. ; Gao J. ; Xiong C. ; Yu M. Mater. Lett. 2022, 327, 133003.
doi: 10.1016/j.matlet.2022.133003 |
88 |
Fragoso J. ; Barreca D. ; Bigiani L. ; Gasparotto A. ; Sada C. ; Lebedev O. I. ; Modin E. ; Pavlovic I. ; Sánchez L. ; Maccato C. Chem. Eng. J. 2022, 430, 132757.
doi: 10.1016/j.cej.2021.132757 |
89 |
Bie C. ; Zhu B. ; Xu F. ; Zhang L. ; Yu J. Adv. Mater. 2019, 31, 1902868.
doi: 10.1002/adma.201902868 |
90 |
Wang L. ; Fei X. ; Zhang L. ; Yu J. ; Cheng B. ; Ma Y. J. Mater. Sci. Technol. 2022, 112, 1.
doi: 10.1016/j.jmst.2021.10.016 |
91 |
Yang Y. ; Tan H. ; Cheng B. ; Fan J. ; Yu J. ; Ho W. Small Methods 2021, 5, 2001042.
doi: 10.1002/smtd.202001042 |
92 |
Huang Y. ; Zhang J. ; Dai K. ; Liang C. ; Dawson G. Ceram. Int. 2022, 48, 8423.
doi: 10.1016/j.ceramint.2021.12.050 |
93 |
Liu L. ; Dai K. ; Zhang J. ; Li L. J. Colloid Interface Sci. 2021, 604, 844.
doi: 10.1016/j.jcis.2021.07.064 |
94 |
Li R. G. ; Weng Y. X. ; Zhou X. ; Wang X. L. ; Mi Y. ; Chong R. F. ; Han H. X. ; Li C. Energy Environ. Sci. 2015, 8, 2377.
doi: 10.1039/c5ee01398d |
95 |
Tao X. P. ; Zhao Y. ; Mu L. C. ; Wang S. Y. ; Li R. G. ; Li C. Adv. Energy Mater. 2018, 8, 1701392.
doi: 10.1002/aenm.201701392 |
96 |
Wang D. ; Hisatomi T. ; Takata T. ; Pan C. ; Katayama M. ; Kubota J. ; Domen K. Angew. Chem. Int. Ed. 2013, 52, 11252.
doi: 10.1002/anie.201303693 |
97 |
Wang Q. ; Hisatomi T. ; Suzuki Y. ; Pan Z. ; Seo J. ; Katayama M. ; Minegishi T. ; Nishiyama H. ; Takata T. ; Seki K. ; et al J. Am. Chem. Soc. 2017, 139, 1675.
doi: 10.1021/jacs.6b12164 |
98 |
Bie C. ; Yu H. ; Cheng B. ; Ho W. ; Fan J. ; Yu J. Adv. Mater. 2021, 33, 2003521.
doi: 10.1002/adma.202003521 |
99 |
Wang Z. ; Fan J. ; Cheng B. ; Yu J. ; Xu J. Mater. Today Phys. 2020, 15, 100279.
doi: 10.1016/j.mtphys.2020.100279 |
100 |
Gao D. ; Liu W. ; Xu Y. ; Wang P. ; Fan J. ; Yu H. Appl. Catal. B: Environ. 2020, 260, 118190.
doi: 10.1016/j.apcatb.2019.118190 |
101 |
Xu J. ; Zhong W. ; Gao D. ; Wang X. ; Wang P. ; Yu H. Chem. Eng. J. 2022, 439, 135758.
doi: 10.1016/j.cej.2022.135758 |
102 |
Liu J. ; Zheng X. ; Pan L. ; Fu X. ; Zhang S. ; Meng S. ; Chen S. Appl. Catal. B: Environ. 2021, 298, 120619.
doi: 10.1016/j.apcatb.2021.120619 |
103 |
He H. ; Cao J. ; Guo M. ; Lin H. ; Zhang J. ; Chen Y. ; Chen S. Appl. Catal. B: Environ. 2019, 249, 246.
doi: 10.1016/j.apcatb.2019.02.055 |
104 |
Wang Z. ; Cheng B. ; Zhang L. ; Yu J. ; Tan H. Solar RRL 2022, 6, 2100587.
doi: 10.1002/solr.202100587 |
105 |
Wang Z. ; Chen Y. ; Zhang L. ; Cheng B. ; Yu J. ; Fan J. J. Mater. Sci. Technol. 2020, 56, 143.
doi: 10.1016/j.jmst.2020.02.062 |
106 |
Yang Y. ; Chen X. ; Pan Y. ; Song H. ; Zhu B. ; Wu Y. Catal. Today 2021, 374, 4.
doi: 10.1016/j.cattod.2020.10.032 |
107 |
Wang J. ; Wang G. ; Cheng B. ; Yu J. ; Fan J. Chin. J. Catal. 2021, 42, 56.
doi: 10.1016/s1872-2067(20)63634-8 |
108 |
Pan J. ; Dong Z. ; Wang B. ; Jiang Z. ; Zhao C. ; Wang J. ; Song C. ; Zheng Y. ; Li C. Appl. Catal. B: Environ. 2019, 242, 92.
doi: 10.1016/j.apcatb.2018.09.079 |
109 |
Li X. ; Xiong J. ; Xu Y. ; Feng Z. ; Huang J. Chin. J. Catal. 2019, 40, 424.
doi: 10.1016/s1872-2067(18)63183-3 |
110 |
Wang Y. ; Yang W. ; Chen X. ; Wang J. ; Zhu Y. Appl. Catal. B: Environ. 2018, 220, 337.
doi: 10.1016/j.apcatb.2017.08.004 |
111 |
Nie Y.-C. ; Yu F. ; Wang L.-C. ; Xing Q.-J. ; Liu X. ; Pei Y. ; Zou J.-P. ; Dai W.-L. ; Li Y. ; Suib S. L. Appl. Catal. B: Environ. 2018, 227, 312.
doi: 10.1016/j.apcatb.2018.01.033 |
112 |
Guo N. ; Zeng Y. ; Li H. ; Xu X. ; Yu H. ; Han X. J. Hazard. Mater. 2018, 353, 80.
doi: 10.1016/j.jhazmat.2018.03.044 |
113 |
Yang C. ; Qin J. ; Xue Z. ; Ma M. ; Zhang X. ; Liu R. Nano Energy 2017, 41, 1.
doi: 10.1016/j.nanoen.2017.09.012 |
114 |
Lu D. ; Fang P. ; Wu W. ; Ding J. ; Jiang L. ; Zhao X. ; Li C. ; Yang M. ; Li Y. ; Wang D. Nanoscale 2017, 9, 3231.
doi: 10.1039/c6nr09137g |
115 |
Jiang Z. ; Zhu C. ; Wan W. ; Qian K. ; Xie J. J. Mater. Chem. A 2016, 4, 1806.
doi: 10.1039/c5ta09919f |
116 |
Liu J. ; Cheng B. ; Yu J. Phys. Chem. Chem. Phys. 2016, 18, 31175.
doi: 10.1039/c6cp06147h |
117 |
Wang Y. ; Tian Y. ; Yan L. ; Su Z. J. Phys. Chem. C 2018, 122, 7712.
doi: 10.1021/acs.jpcc.8b00098 |
118 |
Wang K. ; Wang T. ; Islam Q. A. ; Wu Y. Chin. J. Catal. 2021, 42, 1944.
doi: 10.1016/s1872-2067(21)63861-5 |
119 |
Wang K. ; Yang S. ; Wu Y. J. Environ. Chem. Eng. 2022, 10, 108353.
doi: 10.1016/j.jece.2022.108353 |
120 |
Bai Y. ; Li C. ; Liu L. ; Yamaguchi Y. ; Bahri M. ; Yang H. ; Gardner A. ; Zwijnenburg M. A. ; Browning N. D. ; Cowan A. J. ; et al Angew. Chem. Int. Ed. 2022, 61, 202201299.
doi: 10.1002/anie.202201299 |
121 |
Xu M. L. ; Lu M. ; Qin G. Y. ; Wu X. M. ; Yu T. ; Zhang L. N. ; Li K. ; Cheng X. ; Lan Y. Q. Angew. Chem. Int. Ed. 2022, 61, 202210700.
doi: 10.1002/anie.202210700 |
122 |
Qin Y. ; Fang F. ; Xie Z. ; Lin H. ; Zhang K. ; Yu X. ; Chang K. ACS Catal. 2021, 11, 11429.
doi: 10.1021/acscatal.1c02874 |
123 |
Zhang B. ; Liu K. ; Xiang Y. ; Wang J. ; Lin W. ; Guo M. ; Ma G. ACS Catal. 2022, 12, 2415.
doi: 10.1021/acscatal.2c00306 |
124 |
Chang S. ; Yu J. ; Wang R. ; Fu Q. ; Xu X. ACS Nano 2021, 15, 18153.
doi: 10.1021/acsnano.1c06871 |
125 |
Hu H. ; Wang Z. ; Cao L. ; Zeng L. ; Zhang C. ; Lin W. ; Wang C. Nat. Chem. 2021, 13, 358.
doi: 10.1038/s41557-020-00635-5 |
126 |
Remiro-Buenamañana S. ; Cabrero-Antonino M. ; Martínez-Guanter M. ; Álvaro M. ; Navalón S. ; García H. Appl. Catal. B: Environ. 2019, 254, 677.
doi: 10.1016/j.apcatb.2019.05.027 |
127 |
Ning X. ; Zhen W. ; Zhang X. ; Lu G. ChemSusChem 2019, 12, 1410.
doi: 10.1002/cssc.201802926 |
128 |
Zheng X. ; Feng L. ; Dou Y. ; Guo H. ; Liang Y. ; Li G. ; He J. ; Liu P. ; He J. ACS Nano 2021, 15, 13209.
doi: 10.1021/acsnano.1c02884 |
129 |
Liu Y. ; Xu X. ; Zheng S. ; Lv S. ; Li H. ; Si Z. ; Wu X. ; Ran R. ; Weng D. ; Kang F. Carbon 2021, 183, 763.
doi: 10.1016/j.carbon.2021.07.064 |
130 |
Fu W. ; Guan X. ; Huang Z. ; Liu M. ; Guo L. Appl. Catal. B: Environ. 2019, 255, 117741.
doi: 10.1016/j.apcatb.2019.05.043 |
131 |
Dai D. ; Liang X. ; Zhang B. ; Wang Y. ; Wu Q. ; Bao X. ; Wang Z. ; Zheng Z. ; Cheng H. ; Dai Y. ; et al Adv. Sci. 2022, 9, 2105299.
doi: 10.1002/advs.202105299 |
132 |
Lin Y. ; Su W. ; Wang X. ; Fu X. ; Wang X. Angew. Chem. Int. Ed. 2020, 59, 20919.
doi: 10.1002/anie.202008397 |
133 |
Liu Y. ; Zhang M. ; Wang Z. ; He J. ; Zhang J. ; Ye S. ; Wang X. ; Li D. ; Yin H. ; Zhu Q. ; et al Nat. Commun. 2022, 13, 4245.
doi: 10.1038/s41467-022-32002-y |
134 |
Ding Y. ; Wei D. ; He R. ; Yuan R. ; Xie T. ; Li Z. Appl. Catal. B: Environ. 2019, 258, 117948.
doi: 10.1016/j.apcatb.2019.117948 |
135 |
Wei S. ; Chang S. ; Qian J. ; Xu X. Small 2021, 17, 2100084.
doi: 10.1002/smll.202100084 |
136 |
Li Y. ; Liu Y. ; Xing D. ; Wang J. ; Zheng L. ; Wang Z. ; Wang P. ; Zheng Z. ; Cheng H. ; Dai Y. ; et al Appl. Catal. B: Environ. 2021, 285, 119855.
doi: 10.1016/j.apcatb.2020.119855 |
137 |
Wang L. ; Liu J. ; Wang H. ; Cheng H. ; Wu X. ; Zhang Q. ; Xu H. Sci. Bull. 2021, 66, 265.
doi: 10.1016/j.scib.2020.08.009 |
138 |
Mu L. ; Zhao Y. ; Li A. ; Wang S. ; Wang Z. ; Yang J. ; Wang Y. ; Liu T. ; Chen R. ; Zhu J. ; et al Energy Environ. Sci. 2016, 9, 2463.
doi: 10.1039/c6ee00526h |
139 |
Wang L. ; Wan Y. ; Ding Y. ; Wu S. ; Zhang Y. ; Zhang X. ; Zhang G. ; Xiong Y. ; Wu X. ; Yang J. ; et al Adv. Mater. 2017, 29, 1702428.
doi: 10.1002/adma.201702428 |
140 |
Jiao L. ; Zhang D. ; Hao Z. ; Yu F. ; Lv X.-J ACS Catal. 2021, 11, 8727.
doi: 10.1021/acscatal.1c01520 |
141 |
Liu X. ; Dai D. ; Cui Z. ; Zhang Q. ; Gong X. ; Wang Z. ; Liu Y. ; Zheng Z. ; Cheng H. ; Dai Y. ; et al ACS Catal. 2022, 12, 12386.
doi: 10.1021/acscatal.2c03550 |
142 |
Niu F. ; Tu W. ; Lu X. ; Chi H. ; Zhu H. ; Zhu X. ; Wang L. ; Xiong Y. ; Yao Y. ; Zhou Y. ; et al ACS Catal. 2022, 12, 4481.
doi: 10.1021/acscatal.2c00433 |
143 |
Wang E. ; Mahmood A. ; Chen S.-G. ; Sun W. ; Muhmood T. ; Yang X. ; Chen Z. ACS Catal. 2022, 12, 11206.
doi: 10.1021/acscatal.2c02624 |
144 |
Liu H. ; Xu C. ; Li D. ; Jiang H. L. Angew. Chem. Int. Ed. 2018, 57, 5379.
doi: 10.1002/anie.201800320 |
145 |
Zou J. ; Zhou W. ; Huang L. ; Guo B. ; Yang C. ; Hou Y. ; Zhang J. ; Wu L. J. Catal. 2021, 400, 347.
doi: 10.1016/j.jcat.2021.07.003 |
146 |
Li X. ; Hu J. ; Yang T. ; Yang X. ; Qu J. ; Li C.M. Nano Energy 2022, 92, 106714.
doi: 10.1016/j.nanoen.2021.106714 |
147 |
Meng S. ; Ye X. ; Zhang J. ; Fu X. ; Chen S. J. Catal. 2018, 367, 159.
doi: 10.1016/j.jcat.2018.09.003 |
148 |
Zhang S. ; Huang W. ; Fu X. ; Zheng X. ; Meng S. ; Ye X. ; Chen S. Appl. Catal. B: Environ. 2018, 233, 1.
doi: 10.1016/j.apcatb.2018.03.084 |
149 |
Meng S. ; Ning X. ; Chang S. ; Fu X. ; Ye X. ; Chen S. J. Catal. 2018, 357, 247.
doi: 10.1016/j.jcat.2017.11.015 |
[1] | 曹玥晗, 郭瑞, 马敏智, 黄泽皑, 周莹. 活性位点电子密度变化对光催化CO2活化和选择转化的影响[J]. 物理化学学报, 2024, 40(1): 2303029 - . |
[2] | 张珹博, 陶晓萍, 蒋文超, 郭俊雪, 张鹏飞, 李灿, 李仁贵. 微波辅助合成促进铬酸铋晶体的光生电荷分离[J]. 物理化学学报, 2024, 40(1): 2303034 - . |
[3] | 赖可溱, 李丰彦, 李宁, 高旸钦, 戈磊. 金属-有机骨架衍生的Ni-CNT/ZnIn2S4异质结用于光催化产氢及其电荷转移途径的确定[J]. 物理化学学报, 2024, 40(1): 2304018 - . |
[4] | 宋千伟, 何观朝, 费慧龙. 基于单原子催化剂的光热催化转化:原理和应用[J]. 物理化学学报, 2023, 39(9): 2212038 -0 . |
[5] | 张怡宁, 高明, 陈松涛, 王会琴, 霍鹏伟. Ag/CN/ZnIn2S4 S型异质结等离子体光催化剂的制备及其增强光还原CO2研究[J]. 物理化学学报, 2023, 39(6): 2211051 - . |
[6] | 罗铖, 龙庆, 程蓓, 朱必成, 王临曦. Pt-C3N4/BiOCl S型异质结应用于光催化CO2还原的理论计算研究[J]. 物理化学学报, 2023, 39(6): 2212026 - . |
[7] | 张珂瑜, 李云锋, 袁仕丹, 张洛红, 王倩. S型异质结H2O2光催化剂的研究进展[J]. 物理化学学报, 2023, 39(6): 2212010 - . |
[8] | 王吉超, 乔秀, 史维娜, 贺景, 陈军, 张万庆. 多面体状Cu2O修饰片状BiOI的S型异质结构筑及光催化水蒸气中CO2转化性能研究[J]. 物理化学学报, 2023, 39(6): 2210003 - . |
[9] | 昝忠奇, 李喜宝, 高晓明, 黄军同, 罗一丹, 韩露. 0D/2D碳氮量子点(CNQDs)/BiOBr复合的S型异质结高效光催化降解和产H2O2[J]. 物理化学学报, 2023, 39(6): 2209016 - . |
[10] | 孙涛, 李晨曦, 鲍钰鹏, 樊君, 刘恩周. S-型MnCo2S4/g-C3N4异质结光催化产氢性能研究[J]. 物理化学学报, 2023, 39(6): 2212009 - . |
[11] | 吴新鹤, 陈郭强, 王娟, 李金懋, 王国宏. S-Scheme异质结光催化产氢研究进展[J]. 物理化学学报, 2023, 39(6): 2212016 -0 . |
[12] | 周文杰, 景启航, 李家馨, 陈颖芝, 郝国栋, 王鲁宁. 有机光催化剂用于太阳能水分解:分子水平和聚集体水平改性[J]. 物理化学学报, 2023, 39(5): 2211010 -0 . |
[13] | 雷永刚, 赵天宇, 黄锦鸿, 张颖贞, 臧雪瑞, 李晓, 蔡伟龙, 黄剑莹, 胡军, 赖跃坤. 金属碳化钨与液相染料光敏剂协同促进光催化制氢[J]. 物理化学学报, 2023, 39(4): 2206006 -0 . |
[14] | 项景超, 李静君, 杨雪, 高水英, 曹荣. 阳离子镍基MOF自组装CdS/PFC-8催化剂用于可见光光催化选择性苯甲醇氧化耦合产氢[J]. 物理化学学报, 2023, 39(4): 2205039 -0 . |
[15] | 吕娜, 荆雪东, 许瑶, 鲁巍, 刘奎朝, 张振翼. 多组分纳米纤维体系中载流子动力学的有效级联调制及其高效光催化产氢性能研究[J]. 物理化学学报, 2023, 39(4): 2207045 -0 . |
|