物理化学学报 >> 2023, Vol. 39 >> Issue (3): 2210029.doi: 10.3866/PKU.WHXB202210029

评论 上一篇    下一篇

基于模糊集合的评审决策信息融合

王璐1,2, 李根梓3, 戴亚飞1, 付雪峰1,*()   

  1. 1 国家自然科学基金委员会, 北京 100085
    2 苏州大学功能纳米与软物质研究院, 江苏 苏州 215123
    3 雁栖湖基础制造技术研究院(北京)有限公司, 北京 101407
  • 收稿日期:2022-10-21 录用日期:2022-10-24 发布日期:2022-10-27
  • 通讯作者: 付雪峰 E-mail:fuxf@nsfc.gov.cn

On Information Fusion by Fuzzy Sets for Decision Making in Peer Review

Lu Wang1,2, Genzi Li3, Yafei Dai1, Xuefeng Fu1,*()   

  1. 1 National Natural Science Foundation of China, Beijing 100085, China
    2 Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu Province, China
    3 Yanqi Lake Institute of Basic Manufacturing Technology (Beijing) Co., Ltd., Beijing 101407, China
  • Received:2022-10-21 Accepted:2022-10-24 Published:2022-10-27
  • Contact: Xuefeng Fu E-mail:fuxf@nsfc.gov.cn
  • About author:Xuefeng Fu, Email: fuxf@nsfc.gov.cn

摘要:

同行评议是评价、评审和评估等活动的重要实施方式,尤其对于科学基金项目的评审,同行评议是保证项目质量的有效措施。同行评议过程中固有的模糊属性,会导致评审结果在一定程度上偏离被评价对象的内在价值。本文针对同行评议的模糊属性,提出一种评审决策信息融合的方法,通过对专家评分进行关联分析和自适应调整,实现评审结果围绕被评价对象的内在价值等关键指标达成共识,助力科学基金的评审机制改革和评审决策的智能化。

关键词: 同行评议, 模糊集合, 共识

Abstract:

Peer review plays a crucial role in quality insurance of projects, especially for natural science projects, in evaluation or assessment activities. However, the results of assessment by reviewers for a proposal may scatter due to the intrinsic fuzzy attributes in the peer review process. Specifically, it may introduce a review bias with razor-thin margins in the conversion of descriptive opinions into quantified scores. The accumulation of the bias might cause overturning in the results of evaluation, leading proposals toward a twilight zone between approval and rejection. Here, a novel approach to handling scores in evaluation is presented to address the ambiguity of brink in a tight competition, whereby correlation information from multiple sources could be merged to improve the degree of consensus among reviewers for each proposal according to its essential value. This method may provide an alternate evaluation mechanism for proposal reviews and help tackle the challenges in decision intelligence.

Key words: Peer review, Fuzzy sets, Consensus