物理化学学报 >> 2023, Vol. 39 >> Issue (11): 2301001.doi: 10.3866/PKU.WHXB202301001
所属专题: 多物理场能源催化转化
谢垚1, 张启涛1,*(), 孙宏丽1, 滕镇远2,3, 苏陈良1,*()
收稿日期:
2023-01-01
录用日期:
2023-02-21
发布日期:
2023-03-06
通讯作者:
张启涛,苏陈良
E-mail:qitao-zhang@szu.edu.cn;chmsuc@szu.edu.cn
基金资助:
Yao Xie1, Qitao Zhang1,*(), Hongli Sun1, Zhenyuan Teng2,3, Chenliang Su1,*()
Received:
2023-01-01
Accepted:
2023-02-21
Published:
2023-03-06
Contact:
Qitao Zhang, Chenliang Su
E-mail:qitao-zhang@szu.edu.cn;chmsuc@szu.edu.cn
Supported by:
摘要:
以地表丰富的水和/或氧气为原料,以太阳能为能量来源的光催化合成过氧化氢是面向碳中和的一个颇具吸引力的路径。近年来,以能带、活性位点、组成等可调的聚合物半导体为光催化剂,开展光合成过氧化氢的研究进入了新的高峰期。当前,该研究主要面临两大关键挑战:1)由于材料性质固有的限制,光氧化还原中心通常难以分离,导致光生电荷复合严重,使得光催化合成过氧化氢的活性较差;2)氧化还原中心的利用率低,多数情况下,只有氧化端或还原端参与过氧化氢的合成,另一侧则与牺牲剂反应消耗。对此,本文聚焦光氧化还原中心的空间分离和协同利用来阐述聚合物半导体光催化合成过氧化氢的最新进展。光氧化还原中心空间分离的关键是在聚合物中设计电子给体和供体单元,例如在聚合物框架中引入原子级金属,构建金属-有机给吸电子体系,或构建全有机给吸电子体系。根据氧化还原中心的光催化行为,协同利用主要分为以下三种模型:1)氧还原耦合有机分子氧化;2)水氧化耦合有机分子还原,3)氧还原耦合水氧化。在此基础上,本文详细探讨了针对上述两个关键挑战的调控模式、特性、催化机制和反应途径。最后,我们阐述了光催化合成过氧化氢的潜在应用,并展望了光催化合成过氧化氢中理性设计氧化还原中心协同利用模式的机遇和挑战。
谢垚, 张启涛, 孙宏丽, 滕镇远, 苏陈良. 聚合物半导体光催化合成过氧化氢:光氧化还原中心的空间分离和协同利用[J]. 物理化学学报, 2023, 39(11), 2301001. doi: 10.3866/PKU.WHXB202301001
Yao Xie, Qitao Zhang, Hongli Sun, Zhenyuan Teng, Chenliang Su. Semiconducting Polymers for Photosynthesis of H2O2: Spatial Separation and Synergistic Utilization of Photoredox Centers[J]. Acta Phys. -Chim. Sin. 2023, 39(11), 2301001. doi: 10.3866/PKU.WHXB202301001
Table 1
Three types of synergistic utilization of photo-redox centers."
Reaction modes | Typical photocatalysts | Reduction center products | Oxidation center products | Ref. | |
Type Ⅰ | MIL-125-Rn | H2O2 | Benzaldehyde | ||
TA-Por-sp2-COF | H2O2 | N-Benzylidenebenzylamine | |||
PFBTPCBM | H2O2 | Formate | |||
Type Ⅱ | PCN-10-CP-10 | H2 | H2O2 | ||
C-N-g-C3N4 | H2 | H2O2 | |||
CoP/CDs | H2O2 & H2 | O2 | |||
24%-WO3-MIL-100-Fe | CH4 & CO | H2O2 | |||
Type Ⅲ-4e− WOR | Nv—C≡N—CN | H2O2 | O2 | ||
g-C3N4/PDI/rGO0.05 | H2O2 | O2 | |||
MRFS-7 | H2O2 | O2 | |||
TPE-AQ | H2O2 | O2 | |||
Sb-SAPC15 | H2O2 | O2 | |||
Type Ⅲ-2e− WOR | CTF-EDDBN | H2O2 | H2O2 | ||
CTF-BDDBN | H2O2 | H2O2 | |||
COF-TfpBpy | H2O2 | H2O2 |
Fig 3
(a) Schematic of the spatial separation of Co single-atom cocatalysts (as oxidation centers) and AQ cocatalysts (as reduction centers) on a two-dimensional (2D) ultrathin C3N4. (b) Photooxidative deposition of Mn on Co1/C3N4. (c) Photoreductive deposition of Au on AQ/C3N4. (d) Steady-state photoluminescence (PL) emission spectra (excitation at 375 nm). (e) Time course of the H2O2 production. Adapted from Ref. 42. Copyright 2020, PNAS."
Fig 4
(a) π-conjugated and π-stacked D–A structure. (b) Electronic structures of the π-conjugated and π-stacked (RF resins) D-A couples. Ref. 33, adapted from Nature Materials. Copyright 2019, Springer Nature. (c) Schematic illustrating the mechanism of the photocatalytic production of H2O2 for AQTEE-COP (left) and NATEE-COP (right). Adapted with permission from Ref. 45. Copyright 2022, American Chemical Society."
Fig 5
(a) Synthetic scheme of CHFs. (b) Calculated electron distributions in CHFs under photoexcitation. (c) Calculated free energy diagrams of oxygen reduction and water oxidation pathways toward H2O2 production on different active sites in CHF-BP. (d) Schematic illustration of photocatalytic reaction pathways toward H2O2 production on the spatially separated O2 reduction and water oxidation centers under visible-light irradiation. Adapted from Ref. 32. Copyright 2021, Wiley-VCH."
Fig 6
(a) Synthetic schemes of Bpu-CTF and Bpt-CTF. (b) Time-resolved PL decay curves of Bpt-CTF, Bpu-CTF, and Dc-CTF. (c) TAS spectra of Bpt-CTF acquired using a pump with a wavelength of 375 nm. (d) Dipole moment analysis for Bpt-CTF. (e) Illustration of the charge distribution near the surface of Bpt-CTF obtained from TDDFT calculations. Adapted from Ref. 51. Copyright 2022, Wiley-VCH. (f) Synthetic scheme of TA-Por-sp2-COF. (g) Static and (h) time-resolved decay fluorescence spectra of the trans-por-(CN)2 monomer crystal and TA-Por-sp2-COF. Adapted with permission from Ref. 53. Copyright 2022, American Chemical Society."
Table 2
Summary of the reported high-efficiency photocatalysts for the photosynthesis of H2O2 with and without sacrificial agent."
Reaction conditions | Photocatalysts | Yield of H2O2 | Ref. |
Sacrificial agent | MIL-125-R7 | 2.4 mmol·L−1/3 h | |
TA-Por-sp2-COF | 28.3 mmol·L−1/2 h | ||
CKCN-0.03 | 1.908 mmol·L−1/h | ||
3DBC-C3N4-N | 3.3 mmol·L−1/h | ||
Ni-CAT-CN60 | 1.2 mmol·L−1/h | ||
Ar-C3N4 | 1.22 mmol·L−1/h | ||
O-CNC | 2.01 mmol·L−1/h | ||
TF50-COF | 0.174 mmol·L−1/h | ||
Nv—C≡N—CN | 3.093 mmol·L−1/h | ||
Pure water (4e− WOR) | TPE-AQ | 0.455 mmol·L−1/h | |
TPB-DMTP-COF | ≈ 0.58 mmol·L−1/h | ||
RF523 | ≈ 5.4 mmol·L−1/5 h | ||
RF/P3HT-1.0 | ≈ 2.31 mmol·L−1/5 h | ||
MRFS-7 | ≈ 0.284 mmol·L−1/h | ||
MRF-250 | 0.97 mmol·L−1/h | ||
PCNBA0.2 | ≈ 0.069 mmol·L−1/h | ||
Sb-SAPC15 | 0.365 mmol·L−1/2h | ||
g-C3N4/PDI/rGO0.05 | ≈ 1.238 mmol·L−1/2h | ||
PM-CDs-30 | 0.268 mmol·L−1/h | ||
Nv—C≡N—CN | 0.137 mmol·L−1/h | ||
Pure water (2e− WOR) | CTF-EDDBN | ≈ 0.033 mmol·L−1/h | |
CTF-BDDBN | ≈ 0.068 mmol·L−1/h | ||
CHF-DPA | ≈ 2.75 mmol·L−1/h | ||
CHF-DPDA | ≈ 3.46 mmol·L−1/h | ||
COF-TfpBpy | 1.042 mmol·L−1/h | 66 |
Fig 7
(a) Schematic of the ORR combined with chemical production. (b) Digital photographs of MIL-125-NH2 (left) and MIL-125-R7 (right) dispersed in the two-phase reaction system. (c) Photographs of water droplets on tablets of MIL-125-Rn. (d) Time courses of the H2O2 production under photoirradiation. (e) Reaction mechanism of the H2O2 production in the two-phase system. Adapted from Ref. 68. Copyright 2019, Wiley-VCH. (f) Reaction mechanism of the H2O2 production as well as the benzylamine and thioanisole selective oxidation. (g) Time courses of the H2O2 production as well as the benzylamine and thioanisole selective oxidation under photoirradiation. Adapted with permission from Ref. 53. Copyright 2022, American Chemical Society."
Fig 9
(a) Schematic of the WOR combined with the chemical production. (b) Diagram of the photoelectrode system for the production and recovery of H2O2 and H2 using a WO3/BiVO4 photoanode under solar-light irradiation. Ref. 72, adapted from Chemical Communications. Copyright 2016, The Royal Society of Chemistry. (c) Transmission electron microscopy (TEM) image of the PCN-10-CP-10 photocatalyst. (d) Evolution of the H2 and H2O2 amounts after a 5-h photocatalytic pure water-splitting reaction determined by the RDE current. (e) Reaction mechanism of the H2 and H2O2 production with a detailed presentation of the electron transfer via the formed P-P transmission channel. Ref. 73, adapted from Nano Energy. Copyright 2022, Elsevier Ltd."
Fig 10
(a) Proposed schematic mechanism of the H2 and H2O2 evolution in the hybrid system. (b) Reduction sites and oxidation sites with C-N-g-C3N4 (the blue and green circles represent Ag and PbO2 particles, respectively). (c) Comparison of the H2O2 and H2 evolutions under different atmospheres over 12 h with C-N-g-C3N4. Adapted from Ref. 74. Copyright 2018, WILEY-VCH. (d) H2 and H2O2 evolutions from photocatalytic water splitting with the CoP/CD composite (CD: 8.3%, wt) as the photocatalyst. (e) Photocatalytic mechanism for the overall water splitting with the CoP/CDs photocatalyst via the 4e−-2e− cascaded pathway. Ref. 75, adapted from Applied Catalysis B: Environmental. Copyright 2022, Elsevier."
Fig 11
(a) Illustration of the steps involved in the photocatalytic process in molecular compartments. (b) Production rates of CO and CH4 for WO3·H2O-in-MIL-100-Fe with different WO3·H2O contents and 24%-WO3-in-MIL-100-Fe. Adapted with permission from Ref. 76. Copyright 2022, American Chemical Society."
Fig 12
(a) Schematic diagram of the ORR combined with the 4e- WOR. (b) Schematic illustration of Nv—C≡N—CN. (c) Comparison of the photocatalytic H2O2 generation activity of different samples from pure water. (d) Time course of photocatalytic O2 evolution measured over PCN and Nv—C≡N—CN. Ref. 63, adapted from Energy & Environmental Science. Copyright 2022, The Royal Society of Chemistry. (e) Mechanism for photocatalytic H2O2 production. (f) Photocatalytic H2O2 generation activity and SCC efficiency. Adapted with permission from Ref. 64. Copyright 2016, American Chemical Society. (g) Photocatalytic properties of mesoporous polymer spheres with different mesopore sizes. (h) Schematic illustration of mesoporous phenolic resin for high efficiency photocatalytic production of H2O2. Adapted from Ref. 35. Copyright 2021, Wiley-VCH."
Fig 13
(a) Mechanism of the photosynthesis in green plants and the TPE-AQ system. (b) Photocatalytic pathway for the H2O2 production via TPE-AQ. (c) Photocatalytic performance of the frequently studied photocatalysts for H2O2 production under ambient conditions. Adapted from Ref. 35. Copyright 2021, PNAS. (d) Mechanism of the photocatalytic production of H2O2. (e) Amounts of O2 and H2O2 produced with Sb-SAPC15 in a 0.1 mol∙L−1NaIO3 solution (acting as the electron acceptor). Adapted from Ref. 43. Copyright 2021, Springer Nature."
Fig 14
(a) Schematic of the ORR combined with the 2e− WOR. (b) Time-dependent formation of H2O2 or O2 in a 0.01 mol∙L−1 NaIO3 aqueous solutions under Ar atmosphere. (c) Typical time course of the H2O2 production in pure water saturated with O2 under visible-light irradiation using different CTFs. Adapted from Ref. 38. Copyright 2019, WILEY-VCH. (d) Diagram of the 2e− two-step and 2e− one-step redox processes. (e) Photocatalytic activity of COF-TfpBpy, AP-TfpBpy, and g-C3N4 for the H2O2 production in pure water. (f) Photocatalytic mechanism of the H2O2 synthesis in the presence of COF-TfpBpy (left) and COF-TfpDaaq (right). Adapted from Ref. 66. Copyright 2022, Wiley-VCH."
Fig 15
(a) Structural characterization of Au/TiO2 on a porous hydrophobic carbon substrate. (b) Schematic of the photosynthesis-concentration tandem system for H2O2 production. (c) Time-dependent H2O2 yield for Au/TiO2 NPs under UV irradiation. The insets show the schematic of the diphase (bottom) and triphase (top) photocatalytic systems. (d) Photographs of overnight-cultured plates with spread droplets taken in different time slots during H2O2 (10 mmol∙L−1) oxidation. Adapted with permission from Ref. 80. Copyright 2020, Elsevier."
Fig 16
(a) Illustration of the structure of Cu-C3N4. (b) Aberration-corrected HAADF-STEM image of Cu-C3N4. The circles indicate single Cu atoms. The scale bar is 2 nm. (c) Degradation of 10-μmol∙L−1 RhB in the presence of 1 g∙L−1 H2O2 and selected catalysts. (d) Schematic of the wastewater treatment system. (e) Cost estimate for producing H2O2 solutions using different electrolytes. Adapted from Ref. 82. Copyright 2021, Springer Nature."
1 |
PerryS. C.;PangotraD.;VieiraL.;CsepeiL.-I.;SieberV.;WangL.;Ponce de LeónC.;WalshF. C.Nat. Rev. Chem.2019,3(7),442.
doi: 10.1038/s41570-019-0110-6 |
2 |
HouH.;ZengX.;ZhangX.Angew. Chem. Int. Ed.2020,59(40),17356.
doi: 10.1002/anie.201911609 |
3 |
ChengH.;ChengJ.;WangL.;XuH.Chem. Mater.2022,34(10),4259.
doi: 10.1021/acs.chemmater.2c00936 |
4 |
Campos-MartinJ. M.;Blanco-BrievaG.;FierroJ. L.Angew. Chem. Int. Ed.2006,45(42),6962.
doi: 10.1002/anie.200503779 |
5 | (a) Wang, Y.; Waterhouse, G. I.; Shang, L.; Zhang, T. Adv. Energy Mater. 2021, 11 (15), 2003323. doi: 10.1002/aenm.202003323 |
(b) Zeng, X.;Liu, Y.;Hu, X.;Zhang, X. GreenChem. 2021, 23 (4), 1466.doi: 10.1039/D0GC04236F | |
6 | (a) Fukuzumi, S. Joule 2017, 1 (4), 689. doi: 10.1016/j.joule.2017.07.007 |
(b) Yamada, Y.;Yoneda, M.;Fukuzumi, S. EnergyEnviron.Sci. 2015, 8 (6), 1698.doi: 10.1039/c5ee00748h | |
7 |
TangJ.;ZhaoT.;SolankiD.;MiaoX.;ZhouW.;HuS.Joule2021,5(6),1432.
doi: 10.1016/j.joule.2021.04.012 |
8 | (a) Cai, R.; Hashimoto, K.; Fujishima, A.; Kubota, Y. J. Electroanal. Chem. 1992, 326 (1–2), 345. doi: 10.1016/0022-0728(92)80522-6 |
(b) Baur, E.;Neuweiler, C. Helv.Chim.Acta 1927, 10 (1), 901. doi: 10.1002/hlca.192701001113 | |
9 | (a) Nishiyama, H.; Yamada, T.; Nakabayashi, M.; Maehara, Y.; Yamaguchi, M.; Kuromiya, Y.; Nagatsuma, Y.; Tokudome, H.; Akiyama, S.; Watanabe, T. Nature 2021, 598 (7880), 304. doi: 10.1038/s41586-021-03907-3 |
(b) Xue, Z.-H.;Luan, D.;Zhang, H.;Lou, X.W.D. Joule 2022, 6 (1), 92.doi: 10.1016/j.joule.2021.12.011 | |
(c) Hussain, M.Z.;Yang, Z.;Huang, Z.;Jia, Q.;Zhu, Y.;Xia, Y. Adv.Sci. 2021, 8 (14), 2100625.doi: 10.1002/advs.202100625 | |
(d) Feng, C.;Wu, Z.P.;Huang, K.W.;Ye, J.;Zhang, H. Adv.Mater. 2022, 34 (23), 2200180.doi: 10.1002/adma.202200180 | |
(e) Teng, Z.;Yang, H.;Zhang, Q.;Ohno, T. Chem.Res.Chin.Univ. 2022, 38 (5), 1207.doi: 10.1007/s40242-022-2215-6 | |
10 |
KondoY.;KuwaharaY.;MoriK.;YamashitaH.Chem2022,8(11),2924.
doi: 10.1016/j.chempr.2022.10.007 |
11 |
YuW.;HuC.;BaiL.;TianN.;ZhangY.;HuangH.Nano Energy2022,104(A),107906.
doi: 10.1016/j.nanoen.2022.107906 |
12 | (a) Xie, Y.; Li, Y.; Huang, Z.; Zhang, J.; Jia, X.; Wang, X. -S.; Ye, J. Appl. Catal. B-Environ. 2020, 265 (15), 118581. doi: 10.1016/j.apcatb.2019.118581 |
(b) Liu, W.;Song, C.;Kou, M.;Wang, Y.;Deng, Y.;Shimada, T.;Ye, L. Chem.Eng.J. 2021, 425 (1), 130615. doi: 10.1016/j.cej.2021.130615 | |
13 | (a) Wei, Z.; Liu, M.; Zhang, Z.; Yao, W.; Tan, H.; Zhu, Y. Energy Environ. Sci. 2018, 11 (9), 2581. doi: 10.1039/C8EE01316K |
(b) Zeng, X.;Liu, Y.;Kang, Y.;Li, Q.;Xia, Y.;Zhu, Y.;Hou, H.;Uddin, M.H.;Gengenbach, T.R.;Xia, D. ACSCatal. 2020, 10 (6), 3697.doi: 10.1021/acscatal.9b05247 | |
(c) Feng, C.;Tang, L.;Deng, Y.;Wang, J.;Luo, J.;Liu, Y.;Ouyang, X.;Yang, H.;Yu, J.;Wang, J. Adv.Fun.Mater. 2020, 30 (39), 2001922.doi: 10.1002/adfm.202001922 | |
14 | (a) Yang, Y.; Zhu, B.; Wang, L.; Cheng, B.; Zhang, L.; Yu, J. Appl. Catal. B-Environ. 2022, 317 (15), 121788. doi: 10.1016/j.apcatb.2022.121788 |
(b) He, B.;Wang, Z.;Xiao, P.;Chen, T.;Yu, J.;Zhang, L. Adv.Mater. 2022, 34 (38), 2203225.doi: 10.1002/adma.202203225 | |
(c) Xu, Z.;Liang, J.;Wang, Y.;Dong, K.;Shi, X.;Liu, Q.;Luo, Y.; Li, T.;Jia, Y.;Asiri, A.M. ACSAppl.Mater.Interfaces 2021, 13 (28), 33182.doi: 10.1021/acsami.1c09871 | |
(d) Luo, B.-D.;Xiong, X.-Q.;Xu, Y.-M. ActaPhys.-Chim.Sin. 2016, 32 (7), 1758.[罗邦德, 熊贤强, 许宜铭.物理化学学报, 2016, 32 (7), 1758.]doi: 10.3866/PKU.WHXB2016032805 | |
15 | (a) Wang, Y.; Wang, Y.; Zhao, J.; Chen, M.; Huang, X.; Xu, Y. Appl. Catal. B-Environ. 2021, 284 (5), 119691. doi: 10.1016/j.apcatb.2020.119691 |
(b) Ye, F.;Wang, T.;Quan, X.;Yu, H.;Chen, S. Chem.Eng.J. 2020, 389 (1), 123427.doi: 10.1016/j.cej.2019.123427 | |
(c) Yoon, M.;Oh, Y.;Hong, S.;Lee, J.S.;Boppella, R.;Kim, S.H.;Mota, F.M.;Kim, S.O.;Kim, D.H. Appl.Catal.B-Environ. 2017, 206 (5), 263.doi: 10.1016/j.apcatb.2017.01.038 | |
16 | (a) Zhao, F.; Shi, L. -Q.; Cui, J. -B.; Lin, Y. -H. Acta Phys. -Chim. Sin. 2016, 32 (8), 2069. [赵菲, 时林其, 崔佳宝, 林艳红. 物理化学学报, 2016, 32 (8), 2069.] doi: 10.3866/PKU.WHXB201604224 |
(b) Wang, Y.-Y.;Zhou, G.-Q.;Zhang, L.;Liu, T.-Q. ActaPhys.-Chim.Sin. 2016, 32 (11), 2785.[王元有, 周国强, 张龙, 刘天晴. 物理化学学报, 2016, 32 (11), 2785.] doi: 10.3866/PKU.WHXB201608304 | |
(c) Meng, X.;Zong, P.;Wang, L.;Yang, F.;Hou, W.;Zhang, S.;Li, B.;Guo, Z.;Liu, S.;Zuo, G. Catal.Commun. 2020, 134 (10), 105860.doi: 10.1016/j.catcom.2019.105860 | |
(d) Yi, G.;Agarwal, G.;Zhang, Y. J.Phys.Chem.C 2019, 123 (31), 19230.doi: 10.1021/acs.jpcc.9b05393 | |
17 | (a) Zhu, T. -T.; Xu, S. -Z.; Ge, B. -Q.; Chen, Z. -X. Acta Phys. -Chim. Sin. 2016, 32 (12), 2871. [朱甜甜, 徐淑臻, 葛炳强, 陈忠秀. 物理化学学报, 2016, 32 (12), 2871.] doi: 10.3866/PKU.WHXB201609281 |
(b) Lee, J.H.;Cho, H.;Park, S.O.;Hwang, J.M.;Hong, Y.;Sharma, P.;Jeon, W.C.;Cho, Y.;Yang, C.;Kwak, S.K. Appl.Catal.B-Environ. 2021, 284 (5), 119690.doi: 10.1016/j.apcatb.2020.119690 | |
(c) Wang, C.;E, Y.;Fan, L.;Wang, Z.;Liu, H.;Li, Y.;Yang, S.;Li, Y. Adv.Mater. 2007, 19 (21), 3677.doi: 10.1002/adma.200701386 | |
(d) Zhang, E.;Zhu, Q.;Huang, J.;Liu, J.;Tan, G.;Sun, C.;Li, T.;Liu, S.;Li, Y.;Wang, H. Appl.Catal.B-Environ. 2021, 293 (15), 120213.doi: 10.1016/j.apcatb.2021.120213 | |
18 | (a) Zheng, J.; Song, D.; Chen, H.; Xu, J.; Alharbi, N. S.; Hayat, T.; Zhang, M. Chin. Chem. Lett. 2020, 31 (5), 1109. doi: 10.1016/j.cclet.2019.09.037 |
(b) Li, G.;Chen, M.-Q.;Zhao, S.-X.;Li, P.-W.;Hu, J.;Sang, S.-B.;Hou, J.-J. ActaPhys.-Chim.Sin. 2016, 32 (12), 2905.[李刚, 陈敏强, 赵世雄, 李朋伟, 胡杰, 桑胜波, 侯静静.物理化学学报, 2016, 32 (12), 2905.]doi: 10.3866/PKU.WHXB201609201 | |
19 | (a) Wu, X.; Tan, H. L.; Zhang, C.; Teng, Z.; Liu, Z.; Ng, Y. H.; Zhang, Q.; Su, C. Prog. Mate. Sci. 2023, 133, 101047. doi: 10.1016/j.pmatsci.2022.101047 |
(b) Shi, X.;Zhang, Y.;Siahrostami, S.;Zheng, X. Adv.EnergyMater. 2018, 8 (23), 1801158.doi: 10.1002/aenm.201801158 | |
(c) Wei, L.-W.;Liu, S.-H.;Wang, H.P. ACSAppl.NanoMater. 2022, 5 (10), 15378.doi: 10.1021/acsanm.2c03420 | |
(d) Sun, X.;Chen, J.;Zhai, J.;Zhang, H.;Dong, S. J.Am.Chem.Soc. 2022, 144 (50), 23073.doi: 10.1021/jacs.2c10445 | |
20 | (a) Kosco, J.; Gonzalez-Carrero, S.; Howells, C. T.; Fei, T.; Dong, Y.; Sougrat, R.; Harrison, G. T.; Firdaus, Y.; Sheelamanthula, R.; Purushothaman, B. Nat. Energy 2022, 7 (4), 340. doi: 10.1038/s41560-022-00990-2 |
(b) Gu, J.;Peng, Y.;Zhou, T.;Ma, J.;Pang, H.;Yamauchi, Y. NanoRes.Energy 2022, 1 (1), 9120009.doi: 10.26599/NRE.2022.9120009 | |
21 | (a) Wang, L.; Zhang, Y.; Chen, L.; Xu, H.; Xiong, Y. Adv. Mater. 2018, 30 (48), 1801955. doi: 10.1002/adma.201801955 |
(b) Wang, Y.;Vogel, A.;Sachs, M.;Sprick, R.S.;Wilbraham, L.;Moniz, S.J.;Godin, R.;Zwijnenburg, M.A.;Durrant, J.R.;Cooper, A.I. Nat.Energy 2019, 4 (9), 746.doi: 10.1038/s41560-019-0456-5 | |
(c) Ferguson, C.T.;Zhang, K.A. ACSCatal. 2021, 11 (15), 9547. doi: 10.1021/acscatal.1c02056 | |
22 |
LuoW.;LiY.;WangJ.;LiuJ.;ZhangN.;ZhaoM.;WuJ.;ZhouW.;WangL.Nano Energy2021,87,106168.
doi: 10.1016/j.nanoen.2021.106168 |
23 | (a) Zhang, T.; Schilling, W.; Khan, S. U.; Ching, H. V.; Lu, C.; Chen, J.; Jaworski, A.; Barcaro, G.; Monti, S.; De Wael, K. ACS Catal. 2021, 11 (22), 14087. doi: 10.1021/acscatal.1c03733 |
(b) Zhang, P.;Tong, Y.;Liu, Y.;Vequizo, J.J.M.;Sun, H.;Yang, C.;Yamakata, A.;Fan, F.;Lin, W.;Wang, X. Angew.Chem. 2020, 132 (37), 16343.doi: 10.1002/anie.202006747 | |
(c) Wu, S.;Yu, H.;Chen, S.;Quan, X. ACSCatal. 2020, 10 (24), 14380.doi: 10.1021/acscatal.0c03359 | |
(d) Shiraishi, Y.;Kanazawa, S.;Kofuji, Y.;Sakamoto, H.;Ichikawa, S.;Tanaka, S.;Hirai, T. Angew.Chem.Int.Ed. 2014, 53 (49), 13454. doi: 10.1002/anie.201407938 | |
(e) Kofuji, Y.;Ohkita, S.;Shiraishi, Y.;Sakamoto, H.;Tanaka, S.;Ichikawa, S.;Hirai, T. ACSCatal. 2016, 6 (10), 7021. doi: 10.1021/acscatal.6b02367 | |
24 | (a) Chen, X.; Kuwahara, Y.; Mori, K.; Louis, C.; Yamashita, H. ACS Appl. Energy Mater. 2021, 4 (5), 4823. doi: 10.1021/acsaem.1c00371 |
(b) Wang, Q.;Kong, X.Y.;Wang, Y.;Wang, L.;Huang, Y.;Li, H.;Ma, T.;Ye, L.ChemSusChem 2022, 15 (23), e202201514. doi: 10.1002/cssc.202201514 | |
25 |
ZhaoW.;YanP.;LiB.;BahriM.;LiuL.;ZhouX.;ClowesR.;BrowningN. D.;WuY.;WardJ. W.;et alJ. Am. Chem. Soc.2022,144(22),9902.
doi: 10.1021/jacs.2c02666 |
26 |
KrishnarajC.;Sekhar JenaH.;BourdaL.;LaemontA.;PachfuleP.;RoeserJ. R. M.;ChandranC. V.;BorgmansS.;RoggeS. M.;LeusK.J. Am. Chem. Soc.2020,142(47),20107.
doi: 10.1021/jacs.0c09684 |
27 |
LiL.;XuL.;HuZ.;YuJ. C.Adv. Funct. Mater.2021,31(52),2106120.
doi: 10.1002/adfm.202106120 |
28 |
WangH.;YangC.;ChenF.;ZhengG.;HanQ. AAngew. Chem.2022,134(19),202202328.
doi: 10.1002/ange.202202328 |
29 | (a) Isaka, Y.; Kondo, Y.; Kawase, Y.; Kuwahara, Y.; Mori, K.; Yamashita, H. Chem. Commun. 2018, 54 (67), 9270. doi: 10.1039/C8CC02679C |
(b) Isaka, Y.;Kondo, Y.;Kuwahara, Y.;Mori, K.;Yamashita, H. Catal.Sci.Technol. 2019, 9 (6), 1511.doi: 10.1039/C8CY02599A | |
(c) Kawase, Y.;Isaka, Y.;Kuwahara, Y.;Mori, K.;Yamashita, H. Chem.Commun. 2019, 55 (47), 6743.doi: 10.1039/C9CC02380A | |
30 | (a) Liu, L.; Gao, M. -Y.; Yang, H.; Wang, X.; Li, X.; Cooper, A. I. J. Am. Chem. Soc. 2021, 143 (46), 19287. doi: 10.1021/jacs.1c09979 |
(b) Xu, L.;Liu, Y.;Li, L.;Hu, Z.;Yu, J.C. ACSCatal. 2021, 11 (23), 1448.doi: 10.1021/acscatal.1c03690 | |
31 |
YeY.-X.;PanJ.;ShenY.;ShenM.;YanH.;HeJ.;YangX.;ZhuF.;XuJ.;HeJ.Proc. Natl. Acad. Sci. USA2021,118(46),2115666118.
doi: 10.1073/pnas.2115666118 |
32 |
ChengH.;LvH.;ChengJ.;WangL.;WuX.;XuH.Adv. Mater.2022,34(7),2107480.
doi: 10.1002/adma.202107480 |
33 |
ShiraishiY.;TakiiT.;HagiT.;MoriS.;KofujiY.;KitagawaY.;TanakaS.;IchikawaS.;HiraiT.Nat. Mater.2019,18(9),985.
doi: 10.1038/s41563-019-0398-0 |
34 |
ShiraishiY.;MatsumotoM.;IchikawaS.;TanakaS.;HiraiT.J. Am. Chem. Soc.2021,143(32),12590.
doi: 10.1021/jacs.1c04622 |
35 |
TianQ.;JingL.;YeS.;LiuJ.;ChenR.;PriceC. A. H.;FanF.;LiuJ.Small2021,17(49),2103224.
doi: 10.1002/smll.202103224 |
36 |
ShiraishiY.;HagiT.;MatsumotoM.;TanakaS.;IchikawaS.;HiraiT.Commun. Chem.2020,3(1),169.
doi: 10.1038/s42004-020-00421-x |
37 |
YuanL.;ZhangC.;WangJ.;LiuC.;YuC.Nano Res.2021,14(9),3267.
doi: 10.1007/s12274-021-3517-6 |
38 |
ChenL.;WangL.;WanY.;ZhangY.;QiZ.;WuX.;XuH.Adv. Mater.2020,32(2),1904433.
doi: 10.1002/adma.201904433 |
39 |
YuX.;ViengkeoB.;HeQ.;ZhaoX.;HuangQ.;LiP.;HuangW.;LiY.Adv. Sustain. Syst.2021,5(10),2100184.
doi: 10.1002/adsu.202100184 |
40 | (a) Wang, A.; Li, J.; Zhang, T. Nat. Rev. Chem. 2018, 2 (6), 65. doi: 10.1038/s41570-018-0010-1 |
(b) He, X.;Zhang, H.;Zhang, X.;Zhang, Y.;He, Q.;Chen, H.;Cheng, Y.;Peng, M.;Qin, X.;Ji, H. Nat.Commun. 2022, 13, 5721. doi: 10.1038/s41467-022-33442-2 | |
41 | (a) Hai, X.; Xi, S.; Mitchell, S.; Harrath, K.; Xu, H.; Akl, D. F.; Kong, D.; Li, J.; Li, Z.; Sun, T. Nat. Nanotechnol. 2022, 17 (2), 174. doi: 10.1038/s41565-021-01022-y |
(b) Chen, C.;Ou, W.;Yam, K.M.;Xi, S.;Zhao, X.;Chen, S.;Li, J.;Lyu, P.;Ma, L.;Du, Y. Adv.Mater. 2021, 33 (35), 2008471. doi: 10.1002/adma.202008471 | |
(c) Zhang, S.;Ao, X.;Huang, J.;Wei, B.;Zhai, Y.;Zhai, D.;Deng, W.;Su, C.;Wang, D.;Li, Y. NanoLett. 2021, 21 (22), 9691. doi: 10.1021/acs.nanolett.1c03499 | |
42 |
ChuC.;ZhuQ.;PanZ.;GuptaS.;HuangD.;DuY.;WeonS.;WuY.;MuhichC.;StavitskiE.Proc. Natl. Acad. Sci. USA2020,117(12),6376.
doi: 10.1073/pnas.1913403117 |
43 |
TengZ.;ZhangQ.;YangH.;KatoK.;YangW.;LuY.-R.;LiuS.;WangC.;YamakataA.;SuC.Nat. Catal.2021,4(5),374.
doi: 10.1038/s41929-021-00605-1 |
44 |
HaiX.;ZhaoX.;GuoN.;YaoC.;ChenC.;LiuW.;DuY.;YanH.;LiJ.;ChenZ.ACS Catal.2020,10(10),5862.
doi: 10.1021/acscatal.0c00936 |
45 | (a) Xu, X.; Sa, R.; Huang, W.; Sui, Y.; Chen, W.; Zhou, G.; Li, X.; Li, Y.; Zhong, H. ACS Catal. 2022, 12 (20), 12954. doi: 10.1021/acscatal.2c04085 |
(b) Liu, W.;Xu, R.;Wang, Y.;Huang, N.;Shimada, T.;Ye, L. Int.J.HydrogenEnergy 2022, 47 (36), 16005. doi: 10.1016/j.ijhydene.2022.03.106 | |
46 | (a) Sun, J.; Wu, Y. Angew. Chem. Int. Ed. 2020, 59 (27), 10904. doi: 10.1002/anie.202003745 |
(b) Yu, F.;Wang, K.;Wang, C.;He, X.;Liao, Y.;Zhao, S.;Mao, H.;Li, X.;Ma, J. Chem.Res.Chin.Univ. 2020, 36 (6), 1332. doi: 10.1007/s40242-020-0161-8 | |
47 | (a) Kc, U.; Nasir, E. F.; Farooq, A. Appl. Phys. B 2015, 120 (2), 223. doi: 10.1007/s00340-015-6125-x |
(b) Luppi, B.T.;Muralidharan, A.V.;Ostermann, N.;Cheong, I.T.;Ferguson, M.J.;Siewert, I.;Rivard, E. Angew.Chem.Int.Ed. 2022, 61 (4), 202114586.doi: 10.1002/anie.202114586 | |
48 | (a) Zhai, L.; Xie, Z.; Cui, C. -X.; Yang, X.; Xu, Q.; Ke, X.; Liu, M.; Qu, L. -B.; Chen, X.; Mi, L. Chem. Mater. 2022, 34 (11), 5232. doi: 10.1021/acs.chemmater.2c00910 |
(b) Lv, N.;Ma, T.;Qin, H.;Yang, Z.-R.;Wu, Y.;Li, D.;Tao, J.;Jiang, H.;Zhu, J. Sci.ChinaMater. 2022, 65, 2861. doi: 10.1007/s40843-022-2008-1 | |
49 | (a) Liu, M.; Liu, S.; Cui, C. X.; Miao, Q.; He, Y.; Li, X.; Xu, Q.; Zeng, G. Angew. Chem. Int. Ed. 2022, 61 (49), 202213522. doi: 10.1002/anie.202213522 |
(b) Chen, X.;Zhao, J.;Li, G.;Zhang, D.;Li, H. EnergyMater. 2022, 2 (1), 200001.doi: 10.20517/energymater.2021.24 | |
50 | (a) Yang, C.; Wan, S.; Zhu, B.; Yu, J.; Cao, S. Angew. Chem. 2022, 134 (39), 202208438. doi: 10.1002/ange.202208438 |
(b) Liu, C.;Li, Z.;Liu, H.;Dong, J.;Chi, Y.;Hu, C. ChemCatChem 2022, 14 (11), e202200021.doi: 10.1002/cctc.202200021 | |
(c) Qian, Z.;Wang, Z.J.;Zhang, K.A. Chem.Mater. 2021, 33 (6), 1909.doi: 10.1021/acs.chemmater.0c04348 | |
51 |
WuC.;TengZ.;YangC.;ChenF.;YangH. B.;WangL.;XuH.;LiuB.;ZhengG.;HanQ.Adv. Mater.2022,34(28),2110266.
doi: 10.1002/adma.202110266 |
52 |
JourshabaniM.;AsramiM. R.;LeeB.-K.Appl. Catal. B-Environ.2022,302,120839.
doi: 10.1016/j.apcatb.2021.120839 |
53 |
LiuX.;QiR.;LiS.;LiuW.;YuY.;WangJ.;WuS.;DingK.;YuY.J. Am. Chem. Soc.2022,144(51),23396.
doi: 10.1021/jacs.2c09369 |
54 | (a) Dong, K.; Liang, J.; Ren, Y.; Wang, Y.; Xu, Z.; Yue, L.; Li, T.; Liu, Q.; Luo, Y.; Liu, Y. J. Mater. Chem. A 2021, 9 (46), 26019. doi: 10.1039/D1TA07989A |
(b) Brezny, A.C.;Nedzbala, H.S.;Mayer, J.M. Chem.Commun. 2021, 57 (10), 1202.doi: 10.1039/D0CC06701F | |
(c) Zhao, X.;Yin, Q.;Mao, X.;Cheng, C.;Zhang, L.;Wang, L.;Liu, T.-F.;Li, Y.;Li, Y. Nat.Commun. 2022, 13 (1), 2721. doi: 10.1038/s41467-022-30523-0 | |
(d) Yang, J.;Li, P.;Li, X.;Xie, L.;Wang, N.;Lei, H.;Zhang, C.;Zhang, W.;Lee, Y.M.;Zhang, W. Angew.Chem. 2022, 134 (34), e202208143.doi: 10.1002/ange.202208143 | |
55 | NosakaY.;NosakaA.Introduction to Photocatalysis: From Basic Science to ApplicationsLondon, UK:Royal Society of Chemistry:,2019,1-272. |
56 | (a) Kaneko, M. Prog. Polym. Sci. 2001, 26 (7), 1101. doi: 10.1016/S0079-6700(01)00015-6 |
(b) Qiu, C.;Sun, Y.;Xu, Y.;Zhang, B.;Zhang, X.;Yu, L.;Su, C. ChemSusChem 2021, 14 (16), 3344.doi: 10.1002/cssc.202101041 | |
(c) Ou, W.;Xu, Y.;Zhou, H.;Su, C. Sol.RRL 2021, 5 (2), 2000444. doi: 10.1002/solr.202000444 | |
57 | (a) Liu, J.; Liu, Y.; Liu, N.; Han, Y.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S. -T.; Zhong, J.; Kang, Z. Science 2015, 347 (6225), 970. doi: 10.1126/science.aaa3145 |
(b) Chen, X.;Shen, S.;Guo, L.;Mao, S.S. Chem.Rev. 2010, 110 (11), 6503.doi: 10.1021/cr1001645 | |
58 |
TengZ.;CaiW.;SimW.;ZhangQ.;WangC.;SuC.;OhnoT.Appl. Catal. B-Environ.2021,282,119589.
doi: 10.1016/j.apcatb.2020.119589 |
59 |
TengZ.;CaiW.;LiuS.;WangC.;ZhangQ.Appl. Catal. B-Environ.2020,271,118917.
doi: 10.1016/j.apcatb.2020.118917 |
60 |
ZengZ.;QuanX.;YuH.;ChenS.;ZhangS.J. Catal.2019,375,361.
doi: 10.1016/j.jcat.2019.06.019 |
61 |
ZhaoY.;LiuY.;WangZ.;MaY.;ZhouY.;ShiX.;WuQ.;WangX.;ShaoM.;HuangH.Appl. Catal. B-Environ.2021,289,120035.
doi: 10.1016/j.apcatb.2021.120035 |
62 |
XieH.;ZhengY.;GuoX.;LiuY.;ZhangZ.;ZhaoJ.;ZhangW.;WangY.;HuangY.ACS Sustain. Chem. Eng.2021,9(19),6788.
doi: 10.1021/acssuschemeng.1c01012 |
63 |
ZhangX.;MaP.;WangC.;GanL.;ChenX.;ZhangP.;WangY.;LiH.;WangL.;ZhouX.Energy Environ. Sci.2022,15(2),830.
doi: 10.1039/D1EE02369A |
64 |
KofujiY.;IsobeY.;ShiraishiY.;SakamotoH.;TanakaS.;IchikawaS.;HiraiT.J. Am. Chem. Soc.2016,138(31),10019.
doi: 10.1021/jacs.6b05806 |
65 |
WuQ.;CaoJ.;WangX.;LiuY.;ZhaoY.;WangH.;LiuY.;HuangH.;LiaoF.;ShaoM.Nat. Commun.2021,12(1),483.
doi: 10.1038/s41467-020-20823-8 |
66 |
KouM.;WangY.;XuY.;YeL.;HuangY.;JiaB.;LiH.;RenJ.;DengY.;ChenJ.Angew. Chem. Int. Ed.2022,61(19),e202200413.
doi: 10.1002/anie.202200413 |
67 | (a) Vassilev, S. V.; Baxter, D.; Andersen, L. K.; Vassileva, C. G. Fuel 2010, 89 (5), 913. doi: 10.1016/j.fuel.2009.10.022 |
(b) Deivayanai, V.;Yaashikaa, P.;Kumar, P.S.;Rangasamy, G. BioresourceTechnol. 2022, 128166. doi: 10.1016/j.biortech.2022.128166 | |
68 |
IsakaY.;KawaseY.;KuwaharaY.;MoriK.;YamashitaH.TAngew. Chem.2019,131(16),5456.
doi: 10.1002/ange.201901961 |
69 |
WangS.;CaiB.;TianH.Angew. Chem. Int. Ed.2022,61(23),e202202733.
doi: 10.1002/anie.202202733 |
70 | (a) Ifkovits, Z. P.; Evans, J. M.; Meier, M. C.; Papadantonakis, K. M.; Lewis, N. S. Energy Environ. Sci. 2021, 14 (9), 4740. doi: 10.1039/D1EE01226F |
(b) Zhang, B.;Zheng, Y.;Ma, T.;Yang, C.;Peng, Y.;Zhou, Z.;Zhou, M.;Li, S.;Wang, Y.;Cheng, C. Adv.Mater. 2021, 33 (17), 2006042. doi: 10.1002/adma.202006042 | |
(c) Yu, Z.Y.;Duan, Y.;Feng, X.Y.;Yu, X.;Gao, M.R.;Yu, S.H. Adv.Mater. 2021, 33 (31), 2007100. doi: 10.1002/adma.202007100 | |
(d) Ye, S.;Shi, W.;Liu, Y.;Li, D.;Yin, H.;Chi, H.;Luo, Y.;Ta, N.;Fan, F.;Wang, X. J.Am.Chem.Soc. 2021, 143 (32), 12499. doi: 10.1021/jacs.1c00802 | |
(e) Wang, H.;Cheng, H.;Lv, H.;Xu, H.;Wu, X.;Yang, J. J.Phys.Chem.Lett. 2022, 13 (17), 3949.doi: 10.1021/acs.jpclett.2c00819 | |
71 | (a) Wu, Z.; Li, X.; Zhao, Y.; Li, Y.; Wei, K.; Shi, H.; Zhang, T.; Huang, H.; Liu, Y.; Kang, Z. ACS Appl. Mater. Interfaces 2021, 13 (50), 60561. doi: 10.1021/acsami.1c14735 |
(b) Wang, L.;Cao, S.;Guo, K.;Wu, Z.;Ma, Z.;Piao, L. Chin.J.Catal. 2019, 40 (3), 470.doi: 10.1016/S1872-2067(19)63274-2 | |
72 |
FukuK.;SayamaK.Chem. Commun.2016,52(31),5406.
doi: 10.1039/C6CC01605G |
73 |
XueF.;SiY.;ChengC.;FuW.;ChenX.;ShenS.;WangL.;LiuM.Nano Energy2022,103,107799.
doi: 10.1016/j.nanoen.2022.107799 |
74 |
FuY.;LiuC. A.;ZhangM.;ZhuC.;LiH.;WangH.;SongY.;HuangH.;LiuY.;KangZ.Adv. Energy Mater.2018,8(34),1802525.
doi: 10.1002/aenm.201802525 |
75 |
LiuY.;ZhaoY.;SunY.;CaoJ.;WangH.;WangX.;HuangH.;ShaoM.;LiuY.;KangZ.Appl. Catal. B-Environ.2020,270,118875.
doi: 10.1016/j.apcatb.2020.118875 |
76 |
ZhaoC.;JiangZ.;LiuY.;ZhouY.;YinP.;KeY.;DengH.J. Am. Chem. Soc.2022,144(51),23560.
doi: 10.1021/jacs.2c10687 |
77 |
ChangJ.-N.;LiQ.;ShiJ.-W.;ZhangM.;ZhangL.;LiS.;ChenY.;LiS.-L.;LanY.-Q.Angew. Chem. Int. Ed.2023,62(9),e202218868.
doi: 10.1002/anie.202218868 |
78 | CusslerE. L.;CusslerE. L.Diffusion: Mass Transfer in fluid systemsCambridge:Cambridge university press,2009,1-631. |
79 | (a) Xiong, X.; Wang, Z.; Zhang, Y.; Li, Z.; Shi, R.; Zhang, T. Appl. Catal. B-Environ. 2020, 264, 118518. doi: 10.1016/j.apcatb.2019.118518 |
(b) Sheng, X.;Liu, Z.;Zeng, R.;Chen, L.;Feng, X.;Jiang, L. J.Am.Chem.Soc. 2017, 139 (36), 12402.doi: 10.1021/jacs.7b07187 | |
80 |
HuangH.;ZhangQ.;ShiR.;SuC.;WangY.;ZhaoJ.;ZhangT.Appl. Catal. B-Environ.2022,317,121731.
doi: 10.1016/j.apcatb.2022.121731 |
81 |
XuZ.;GongS.;JiW.;ZhangS.;BaoZ.;ZhaoZ.;WeiZ.;ZhongX.;HuZ.-T.;WangJ.Chem. Eng. J.2022,46(2),137009.
doi: 10.1016/j.cej.2022.137009 |
82 |
XuJ.;ZhengX.;FengZ.;LuZ.;ZhangZ.;HuangW.;LiY.;VuckovicD.;LiY.;DaiS. ONat. Sustain.2021,4(3),233.
doi: 10.1038/s41893-020-00635-w |
83 |
WangW.;XieH.;LiG.;LiJ.;WongP. K.;AnT.ACS EST Water2021,1(6),1483.
doi: 10.1021/acsestwater.1c00048 |
84 |
MaJ.;PengX.;ZhouZ.;YangH.;WuK.;FangZ.;HanD.;FangY.;LiuS.;ShenY.Angew. Chem. Int. Ed.2022,61(43),e202210856.
doi: 10.1002/anie.202210856 |
85 |
AnB.;LiZ.;WangZ.;ZengX.;HanX.;ChengY.;ShevelevaA. M.;ZhangZ.;TunaF.;McInnesE. J.Nat. Mater.2022,21(8),932.
doi: 10.1038/s41563-022-01279-1 |
86 | (a) Fan, W.; Zhang, B.; Wang, X.; Ma, W.; Li, D.; Wang, Z.; Dupuis, M.; Shi, J.; Liao, S.; Li, C. Energy Environ. Sci. 2020, 13 (1), 238. doi: 10.1039/C9EE02247C |
(b) Meng, L.;Li, L. NanoRes.Energy 2022, 1 (2), e9120020. doi: 10.26599/NRE.2022.9120020 | |
(c) Xue, H.;Gong, H.;Yamauchi, Y.;Sasaki, T.;Ma, R. NanoRes.Energy 2022, 1 (1), e9120007.doi: 10.26599/NRE.2022.9120007 | |
87 | (a) Dai, Y.; Xiong, Y. Nano Res. Energy 2022, 1 (1), e9120006. doi: 10.26599/NRE.2022.9120006 |
(b) Li, L.;ulHasan, I.M.;He, R.;Peng, L.;Xu, N.;Niazi, N.K.;Zhang, J.-N.;Qiao, J. NanoRes.Energy 2022, 1 (2), e9120015. doi: 10.26599/NRE.2022.9120015 | |
88 | (a) Zhang, S.; Wang, L.; Fu, X. Sci. Sin. Chim. 2023, 53 (1), 3. doi: 10.1360/ssc-2022-0036 |
(b) Wei, Z.; Wang, J.; Guo, S.; Tan, S. C. Nano Res. Energy 2022, 1 (2), e9120014. doi: 10.26599/NRE.2022.9120014 |
[1] | 汪涛, 董琴, 李存璞, 魏子栋. 锂硫电池中的硫正极电催化认识[J]. 物理化学学报, 2024, 40(2): 2303061 -2303061 . |
[2] | 赖可溱, 李丰彦, 李宁, 高旸钦, 戈磊. 金属-有机骨架衍生的Ni-CNT/ZnIn2S4异质结用于光催化产氢及其电荷转移途径的确定[J]. 物理化学学报, 2024, 40(1): 2304018 - . |
[3] | 曹玥晗, 郭瑞, 马敏智, 黄泽皑, 周莹. 活性位点电子密度变化对光催化CO2活化和选择转化的影响[J]. 物理化学学报, 2024, 40(1): 2303029 - . |
[4] | 张城城, 吴之怡, 沈家辉, 何乐, 孙威. 硅纳米结构阵列:光热CO2催化的新兴平台[J]. 物理化学学报, 2024, 40(1): 2304004 - . |
[5] | 徐涵煜, 宋雪旦, 张青, 于畅, 邱介山. 理论研究Cu@C2N催化剂表面上水分子对电催化CO2还原反应机理的影响[J]. 物理化学学报, 2024, 40(1): 2303040 - . |
[6] | 任书霞, 杨铮, 安帅领, 孟婕, 刘晓敏, 赵晋津. 高效光电调控钙钛矿量子点阻变存储性能[J]. 物理化学学报, 2023, 39(12): 2301033 - . |
[7] | 李景学, 于跃, 徐斯然, 闫文付, 木士春, 张佳楠. 电子自旋效应在电催化剂中的作用[J]. 物理化学学报, 2023, 39(12): 2302049 - . |
[8] | 牟嘉琳, 陈柳伶, 范君, 曾路, 江雪, 焦毅, 王健礼, 陈耀强. 基于活性组分微化学状态调控的高性能Rh/CeO2-ZrO2-Al2O3催化剂构筑及三效催化性能[J]. 物理化学学报, 2023, 39(12): 2302041 - . |
[9] | 吴倩, 高庆平, 单彬, 王文政, 齐玉萍, 台夕市, 王霞, 郑冬冬, 严虹, 应斌武, 罗永嵩, 孙圣钧, 刘倩, Hamdy Mohamed S., 孙旭平. 自支撑过渡金属海水电解析氧催化剂研究进展[J]. 物理化学学报, 2023, 39(12): 2303012 - . |
[10] | 张利君, 吴有林, Tsubaki Noritatsu, 靳治良. CeO2-Cu2O 2D/3D S型异质结界面促进有序电荷转移以实现高效光催化析氢[J]. 物理化学学报, 2023, 39(12): 2302051 - . |
[11] | 刘真, 孟祥福, 古万苗, 查珺, 闫楠, 尤青, 夏楠, 王辉, 伍志鲲. 组合掺杂引入新型、多种镉配位方式增强金纳米团簇的电催化性能[J]. 物理化学学报, 2023, 39(12): 2212064 - . |
[12] | 董少明, 普颖慧, 牛一鸣, 张蕾, 王永钊, 张炳森. 间隙碳调控Ni实现1,3-丁二烯高效加氢[J]. 物理化学学报, 2023, 39(11): 2301012 - . |
[13] | 万宇彤, 方帆, 孙瑞雪, 张杰, 常焜. 金属氧化物半导体用于光热催化CO2加氢反应:最新进展和展望[J]. 物理化学学报, 2023, 39(11): 2212042 - . |
[14] | 胡程, 黄洪伟. 压电极化增强光催化能源转化的研究进展[J]. 物理化学学报, 2023, 39(11): 2212048 - . |
[15] | 焦卓浩, 赵心远, 赵健, 谢瑶, 侯胜利, 赵斌. [Co3]簇基金属有机框架材料实现“一石二鸟”高效催化CO2转化为噁唑烷酮[J]. 物理化学学报, 2023, 39(11): 2301018 - . |
|