物理化学学报 >> 2023, Vol. 39 >> Issue (11): 2301001.doi: 10.3866/PKU.WHXB202301001

所属专题: 多物理场能源催化转化

综述 上一篇    下一篇

聚合物半导体光催化合成过氧化氢:光氧化还原中心的空间分离和协同利用

谢垚1, 张启涛1,*(), 孙宏丽1, 滕镇远2,3, 苏陈良1,*()   

  1. 1 深圳大学微纳光电子学研究院,广东省二维材料信息功能器件与系统工程中心,教育部二维材料光电科技国际合作联合实验室,广东 深圳 518060
    2 南洋理工大学化学,化学工程与生物技术学院,新加坡 637459
    3 九州工业大学工学部,应用化学科,日本 北九州市 804-8550
  • 收稿日期:2023-01-01 录用日期:2023-02-21 发布日期:2023-03-06
  • 通讯作者: 张启涛,苏陈良 E-mail:qitao-zhang@szu.edu.cn;chmsuc@szu.edu.cn
  • 基金资助:
    国家自然科学基金(21972094);国家自然科学基金(21805191);国家自然科学基金(22102102);国家重点研发计划(2021YFA1600800);广东省教育厅基金(839-0000013131);广东基础和应用基础研究基金(2020A1515010982);深圳科技计划(JCYJ2019080808142001745);深圳科技计划(RCJC2020200714114434086);深圳稳定支持项目(20200812160737002);深圳稳定支持项目(20200812122947002);深圳孔雀计划(20180921273B);深圳孔雀计划(202108022524B);深圳孔雀计划(20210308299C)

Semiconducting Polymers for Photosynthesis of H2O2: Spatial Separation and Synergistic Utilization of Photoredox Centers

Yao Xie1, Qitao Zhang1,*(), Hongli Sun1, Zhenyuan Teng2,3, Chenliang Su1,*()   

  1. 1 International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoeletronics, Shenzhen University, Shenzhen 518060, Guangdong Province, China
    2 School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
    3 Department of Applied Chemistry, Faculty of Engineering, Kyushu Institute of Technology, Kitakyushu 804-8550, Japan
  • Received:2023-01-01 Accepted:2023-02-21 Published:2023-03-06
  • Contact: Qitao Zhang, Chenliang Su E-mail:qitao-zhang@szu.edu.cn;chmsuc@szu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(21972094);the National Natural Science Foundation of China(21805191);the National Natural Science Foundation of China(22102102);National Key Research and Development Program of China(2021YFA1600800);Educational Commission of Guangdong Province, China(839-0000013131);Guangdong Basic and Applied Basic Research Foundation, China(2020A1515010982);Shenzhen Science and Technology Program, China(JCYJ2019080808142001745);Shenzhen Science and Technology Program, China(RCJC2020200714114434086);Shenzhen Stable Support Project, China(20200812160737002);Shenzhen Stable Support Project, China(20200812122947002);Shenzhen Peacock Plan, China(20180921273B);Shenzhen Peacock Plan, China(202108022524B);Shenzhen Peacock Plan, China(20210308299C)

摘要:

以地表丰富的水和/或氧气为原料,以太阳能为能量来源的光催化合成过氧化氢是面向碳中和的一个颇具吸引力的路径。近年来,以能带、活性位点、组成等可调的聚合物半导体为光催化剂,开展光合成过氧化氢的研究进入了新的高峰期。当前,该研究主要面临两大关键挑战:1)由于材料性质固有的限制,光氧化还原中心通常难以分离,导致光生电荷复合严重,使得光催化合成过氧化氢的活性较差;2)氧化还原中心的利用率低,多数情况下,只有氧化端或还原端参与过氧化氢的合成,另一侧则与牺牲剂反应消耗。对此,本文聚焦光氧化还原中心的空间分离和协同利用来阐述聚合物半导体光催化合成过氧化氢的最新进展。光氧化还原中心空间分离的关键是在聚合物中设计电子给体和供体单元,例如在聚合物框架中引入原子级金属,构建金属-有机给吸电子体系,或构建全有机给吸电子体系。根据氧化还原中心的光催化行为,协同利用主要分为以下三种模型:1)氧还原耦合有机分子氧化;2)水氧化耦合有机分子还原,3)氧还原耦合水氧化。在此基础上,本文详细探讨了针对上述两个关键挑战的调控模式、特性、催化机制和反应途径。最后,我们阐述了光催化合成过氧化氢的潜在应用,并展望了光催化合成过氧化氢中理性设计氧化还原中心协同利用模式的机遇和挑战。

关键词: 过氧化氢合成, 氧化还原中心, 空间分离, 协同利用, 聚合物光催化剂

Abstract:

The photocatalytic synthesis of hydrogen peroxide using earth-abundant water and/or O2 as raw materials and solar energy as the sole energy input is an attractive route to achieving a carbon-neutral future. In particular, semiconducting polymer photocatalysts have piqued the interest of researchers working on the photocatalytic synthesis of H2O2 because their bandgap structures, reactivation sites, and components are easily tunable at the molecular level. However, there are two major challenges: 1) the photoredox centers are difficult to separate and recombine easily, resulting in low reactivity in the photocatalytic production of H2O2, and 2) the low utilization rate of the redox centers. In several cases, only one side of the redox center is used for the photocatalytic synthesis of H2O2, while the other side typically reacts with a sacrificial agent. In this review, we provide a timely survey of recent advances in the spatial separation and synergistic utilization of photoredox centers for photocatalytic H2O2 production. The key aspect for achieving spatial separation of the redox centers is to engineer electron donor-acceptor (D-A) units on a single photocatalyst, such as by incorporating atomically dispersed metals into the polymer frameworks to build metal-organic D-A units or constructing all-organic D-A units. Depending on the photocatalytic behavior of the redox centers, the synergistic utilization of photoredox centers can be classified into three major reaction models: 1) the oxygen reduction reaction (ORR) combined with the oxidative production of chemicals; 2) the water oxidation reaction (WOR) combined with the reductive production of chemicals; and 3) the ORR combined with the WOR. Based on this, the regulation modes, characteristics, catalytic mechanisms, and reaction pathways to overcome the two challenges of efficient H2O2 production are summarized and discussed. Finally, we demonstrate efficient photocatalytic H2O2 production and provide prospects and challenges for the photocatalytic production of H2O2 using photoredox centers.

Key words: H2O2 synthesis, Photo-redox center, Spatial separation, Synergistic utilization, Polymer photocatalyst