物理化学学报 >> 2023, Vol. 39 >> Issue (10): 2305034.doi: 10.3866/PKU.WHXB202305034

所属专题: 北大纳米化学研究中心30周年专刊

论文 上一篇    下一篇

在4H晶相Au纳米带上外延生长非常规晶相4H-Pd基合金纳米结构用于高效甲醇电催化氧化

汪婕1,2, 刘贵高2,7, 韵勤柏3, 周希琛3, 刘效治6, 陈也8, 程洪飞2, 葛一瑶3, 黄京韬2, 胡兆宁2, 陈博3, 范战西3,4,5, 谷林9, 张华3,4,5,*()   

  1. 1 西华大学材料科学与工程学院, 流体与动力机械教育部重点实验室, 成都 610039
    2 南洋理工大学材料科学与工程学院可编程材料中心, 新加坡 639798, 新加坡
    3 香港城市大学化学系, 香港
    4 香港城市大学, 国家贵金属材料工程研究中心香港分中心, 香港
    5 香港城市大学深圳研究院, 广东 深圳 518057
    6 中国科学院物理研究所, 北京凝聚态物理国家实验室, 北京 100190
    7 南京理工大学化学化工学院, 国家特种超细粉体工程研究中心, 南京 210094
    8 香港中文大学化学系, 香港
    9 清华大学材料科学与工程系, 北京国家电子显微镜中心与先进材料实验室, 北京 100084
  • 收稿日期:2023-05-17 录用日期:2023-07-10 发布日期:2023-07-17
  • 通讯作者: 张华 E-mail:hua.zhang@cityu.edu.hk
  • 作者简介:第一联系人:

    These authors contributed equally to this work.

  • 基金资助:
    香港研究资助局(11301721);香港研究资助局(TRS(T23-713/22-R)-碳中和);创新科技署国家贵金属材料工程研究中心香港分中心(NPMM)以及香港城市大学(9380100);创新科技署国家贵金属材料工程研究中心香港分中心(NPMM)以及香港城市大学(7020054);创新科技署国家贵金属材料工程研究中心香港分中心(NPMM)以及香港城市大学(9678272);创新科技署国家贵金属材料工程研究中心香港分中心(NPMM)以及香港城市大学(7020013);创新科技署国家贵金属材料工程研究中心香港分中心(NPMM)以及香港城市大学(1886921)

Epitaxial Growth of Unconventional 4H-Pd Based Alloy Nanostructures on 4H-Au Nanoribbons towards Highly Efficient Electrocatalytic Methanol Oxidation

Jie Wang1,2, Guigao Liu2,7, Qinbai Yun3, Xichen Zhou3, Xiaozhi Liu6, Ye Chen8, Hongfei Cheng2, Yiyao Ge3, Jingtao Huang2, Zhaoning Hu2, Bo Chen3, Zhanxi Fan3,4,5, Lin Gu9, Hua Zhang3,4,5,*()   

  1. 1 Key Laboratory of Fluid and Power Machinery of Ministry of Education, School of Materials Science and Engineering, Xihua University, Chengdu 610039, China
    2 Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
    3 Department of Chemistry, City University of Hong Kong, Hong Kong, China
    4 Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
    5 Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, Guangdong Province, China
    6 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
    7 National Special Superfine Powder Engineering Research Center, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
    8 Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
    9 Beijing National Center for Electron Microscopy and Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
  • Received:2023-05-17 Accepted:2023-07-10 Published:2023-07-17
  • Contact: Hua Zhang E-mail:hua.zhang@cityu.edu.hk
  • Supported by:
    the Research Grants Council of Hong Kong(11301721);the Research Grants Council of Hong Kong(TRS(T23-713/22-R)-碳中和);ITC via the Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), and the City University of Hong Kong(9380100);ITC via the Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), and the City University of Hong Kong(7020054);ITC via the Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), and the City University of Hong Kong(9678272);ITC via the Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), and the City University of Hong Kong(7020013);ITC via the Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), and the City University of Hong Kong(1886921)

摘要:

Pd基合金纳米材料通常具有传统的面心立方(fcc)晶相。本文以密排六方4H相Au(4H-Au)纳米带为模板,外延生长非常规4H晶相的PdFe、PdIr和PdRu,形成4H-Au@PdM (M = Fe、Ir和Ru)核壳合金纳米带。合成的4H-Au@PdFe纳米带被用于碱性环境中甲醇电催化氧化反应(MOR)的催化剂,表现出优越的质量活性(3.69 A∙mgPd−1),分别为Pt/C和Pd黑催化剂质量活性的2.4和10.5倍,也跻身于最好的Pd基和Pt基MOR电催化剂之列。这一策略为合理设计和可控合成具有非常规晶相的多金属纳米结构提供了策略,从而为深入研究多金属纳米结构晶相依赖的性质和应用提供了可能。

关键词: 纳米材料相工程, 晶相, 4H相, Pd基合金, 甲醇氧化反应

Abstract:

Direct methanol fuel cells (DMFCs) hold great promise as clean energy conversion devices in the future. Noble metal nanocatalysts, renowned for their exceptional catalytic activity and stability, play a crucial role in DMFCs. Among these catalysts, Pt- and Pd-based nanocatalysts are widely recognized as the most effective catalysts for the electrochemical methanol oxidation reaction (MOR), which is the key half-cell reaction in DMFCs. However, due to the high cost of Pt- and Pd-based materials, there is a strong desire to further enhance their catalytic performance. One of the most promising approaches for it is to develop noble metal-based alloy nanocatalysts, which have shown great potential in improving electrocatalytic activity. Notably, advancements in phase engineering of nanomaterials (PEN) have revealed that noble metal-based nanomaterials with unconventional phases exhibit superior catalytic properties in various catalytic reactions compared to their counterparts with conventional phases. To obtain noble metal-based nanocatalysts with unconventional crystal phases, wet-chemical epitaxial growth has been employed as a facile and effective method, utilizing unconventional-phase noble metal nanocrystals as templates. Nevertheless, epitaxially growing bimetallic alloy nanostructures with unconventional crystal phases remains a challenge, impeding further exploration of their catalytic performance in electrochemical reactions such as MOR. In this study, we utilize 4H hexagonal phase Au (4H-Au) nanoribbons as templates for the epitaxial growth of unconventional 4H hexagonal PdFe, PdIr, and PdRu, resulting in the formation of 4H-Au@PdM (M = Fe, Ir, and Ru) core-shell nanoribbons. As a proof-of-concept application, we investigate the electrocatalytic activity of the synthesized 4H-Au@PdFe nanoribbons towards MOR, which exhibit a mass activity of 3.69 A·mgPd−1, i.e., 10.5 and 2.4 times that of Pd black and Pt/C, respectively, placing it among the best Pd- and Pt-based MOR electrocatalysts. Our strategy opens up an avenue for the rational construction of unconventional-phase multimetallic nanostructures to explore their phase-dependent properties in various applications.

Key words: Phase engineering of nanomaterials, Crystal phase, 4H phase, Pd-based alloy, Methanol oxidation reaction