物理化学学报 >> 2009, Vol. 25 >> Issue (02): 247-252.doi: 10.3866/PKU.WHXB20090209

研究论文 上一篇    下一篇

V2.1TiNi0.4Zr0.06Cu0.03M0.10 (M=Cr, Co, Fe, Nb, Ta)储氢合金的微结构及电化学性能

贾彦敏; 刘飞烨; 肖学章; 杭州明; 雷永泉; 陈立新   

  1. 浙江大学材料科学与工程学系, 杭州 310027
  • 收稿日期:2008-09-05 修回日期:2008-10-15 发布日期:2009-01-16
  • 通讯作者: 陈立新 E-mail:lxchen@zju.edu.cn

Microstructure and Electrochemical Properties of V2.1TiNi0.4Zr0.06Cu0.03M0.10 (M=Cr, Co, Fe, Nb, Ta) Hydrogen Storage Alloys

JIA Yan-Min; LIU Fei-Ye; XIAO Xue-Zhang; HANG Zhou-Ming; LEI Yong-Quan; CHEN Li-Xin   

  1. Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
  • Received:2008-09-05 Revised:2008-10-15 Published:2009-01-16
  • Contact: CHEN Li-Xin E-mail:lxchen@zju.edu.cn

摘要: 采用磁悬浮感应熔炼方法制备了V2.1TiNi0.4Zr0.06Cu0.03M0.10(M=Cr, Co, Fe, Nb, Ta)储氢电极合金, 通过X射线衍射(XRD)、扫描电子显微镜(SEM)、电子衍射能谱(EDS)分析和电化学测试等手段系统研究了添加元素M对合金微结构与电化学性能的影响. 结果表明, 所有合金均由BCC结构的V基固溶体主相和C14型Laves第二相组成, 且第二相沿主相晶界形成三维网状分布; Cr、Nb 和Ta元素主要分布在合金主相中, 而Co和Fe元素主要分布在第二相中. 电化学性能测试表明, 在V2.1TiNi0.4Zr0.06Cu0.03合金中掺加Cr、Co、Fe、Nb或Ta元素后, 虽然会降低最大放电容量, 但能有效抑制合金中V和Ti的腐蚀溶出, 提高电极充放电循环稳定性; 同时还能明显改善合金的高倍率放电性能. 相比之下, V2.1TiNi0.4Zr0.06Cu0.03Cr0.10合金具有最佳的综合电化学性能.

关键词: 储氢合金, 微结构, 电化学性能, V基固溶体, 多元合金化

Abstract: V2.1TiNi0.4Zr0.06Cu0.03M0.10 (M=Cr, Co, Fe, Nb, Ta) hydrogen storage alloys were prepared by induction melting with magnetic levitation. The effects of an additive elementMon the microstructure and electrochemical properties of these alloys were investigated by means of X-ray diffractiuon (XRD), scanning electron midroscopy( SEM), electron diffraction spectroscopy (EDS) analyses and electrochemical measurements. The results show that all these alloys consist of a V-based solid solution main phase with bcc structure and a C14-type Laves secondary phase in the form of a three-dimensional network. Cr, Nb or Ta predominantly exist in the main phase and Co or Fe is mainly distributed in the secondary phase. Adding Cr, Co, Fe, Nb or Ta into the V2.1TiNi0.4Zr0.06Cu0.03 alloy can effectively restrict the dissolution of vanadium and titanium as well as improve the corrosion resistance and cycling stability of the alloy electrode. The maximum discharge capacity of the alloy, however, decreases to some extent. Doping with Cr, Co, Nb or Ta increases the high-rate dischargeability of the alloy. Among the alloy samples studied, the V2.1TiNi0.4Zr0.06Cu0.03Cr0.10 alloy possessed the best overall electrochemical properties.

Key words: Hydrogen storage alloy, Microstructure, Electrochemical property, V-based solid solution, Multi-component alloying