物理化学学报 >> 2013, Vol. 29 >> Issue (07): 1595-1602.doi: 10.3866/PKU.WHXB201305082

材料物理化学 上一篇    下一篇

微纳米多孔不锈钢表面高效吸附活性生物大分子

余占江1, 陈永强2, 杨晓达1   

  1. 1 北京大学药学院化学生物学系, 天然和仿生药物国家重点实验室, 北京 100191;
    2 乐普(北京)医疗器械股份有限公司, 北京100022
  • 收稿日期:2013-03-04 修回日期:2013-05-08 发布日期:2013-06-14
  • 通讯作者: 杨晓达 E-mail:xyang@bjmu.edu.cn
  • 基金资助:

    国家自然科学基金(30770581, 20971008)和高等学校博士学科点专项科研基金(20090001110068)资助项目

Effective Adsorption of Functional Biological Macromolecules on Stainless Steel Surface with Micro/Nanoporous Texture

YU Zhan-Jiang1, CHEN Yong-Qiang2, YANG Xiao-Da1   

  1. 1 State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China;
    2 Lepu Medical Technology (Beijing) Co., Ltd., Beijing 100022, P. R. China
  • Received:2013-03-04 Revised:2013-05-08 Published:2013-06-14
  • Contact: YANG Xiao-Da E-mail:xyang@bjmu.edu.cn
  • Supported by:

    The project was supported by the National Natural Science Foundation of China (30770581, 20971008) and Research Fund for the Doctoral Program of Higher Education, China (20090001110068).

摘要:

不锈钢(AISI 316L)是目前在医药器械中应用最为广泛的商业化材料. 下一代的不锈钢智能材料将特殊功能的生物活性分子(或纳米粒子)修饰在金属表面以模拟组织功能、提高生物/细胞相容性, 这是目前材料科学研究的热点领域之一. 本文研究了具有微纳米多孔表面结构的316L 不锈钢对抗体和生物酶分子的吸附作用,并与这些生物分子在光滑表面以及镀金表面的吸附进行了比较. 研究发现不锈钢可通过简单的电化学腐蚀方法在表面产生微纳米多孔结构. 微纳米孔不锈钢表面可稳定地吸附抗体或辣根过氧化物酶分子, 其吸附量与喷镀金表面相当或更好. 用表面活性剂(10%牛血清白蛋白(BSA)或0.2% Tween-20)洗涤不能除去吸附的蛋白.用5% Tween-20 预处理金属表面, 则可减少一半的抗体吸附量; 但表面活性剂预处理对辣根过氧化物酶的吸附没有影响. 吸附蛋白质后的金属表面湿润度大大增加; 蛋白质修饰的微纳米孔不锈钢表面表现出了很好的亲水性(水接触角小于50°), 指示了很好的生物相容性. 而金属表面的湿润度则主要取决于蛋白质物种, 并与蛋白质的吸附量正相关. 吸附于不锈钢微纳米孔表面的抗体仍保持了良好的生物活性; 用此种方式制备的抗CD34抗体修饰的不锈钢血管支架可以高密度并高选择性地吸附其目标细胞(如KG-1细胞). 本文工作为未来制备新型的无高聚物涂层的不锈钢智能医学生物材料提供了基础.

关键词: 微纳米结构, 不锈钢, 抗体, 辣根过氧化物酶, 表面吸附

Abstract:

Stainless steel (AISI 316L) is commonly used as a material in medical devices. Modification of the metal surface with bioactive molecules and/or nanoparticles to develop next-generation smart biomaterial, e.g., cardiovascular stents, has recently attracted great attention. The present work investigated adsorption of antibodies and enzymes on micro/nanoporous 316L stainless steel compared with that on smooth and gold-coated stainless steel surfaces. The experimental results showed that the micro/nanoporous stainless steel surface produced by electrochemical erosion can adsorb a large amount of proteins (antibodies or horse radish peroxidase (HRP)), with comparable or better results than the sputtered-gold surface. Washes with surfactants (e.g., 10% bull serum albumin (BSA) or 0.2% Tween 20 solution) did not remove the enzymes/antibodies. In contrast, pretreatment of the metal plates with 5% Tween 20 halved antibody adsorption but did not affect adsorption of HRP. The wettability of the porous metal surface coated with proteins depended on the protein species and amount of protein adsorbed. The protein-coated porous surface was hydrophilic (water contact angle<50°), which should make it biocompatible. The proteins on the micro/nanoporous stainless steel surface retained their high biological activity; in particular, micro/nanoporous stainless steel stents modified with an anti-CD34 antibody using the present method can effectively and selectively capture KG-1 cells. Our work provides a basis for developing novel polymer-free, smart, economic biomaterials with stainless steel for biomedical applications.

Key words: Micro/nano texture, Stainless steel, Antibody, Horse radish peroxidase, Surface adsorption