物理化学学报 >> 2017, Vol. 33 >> Issue (7): 1436-1445.doi: 10.3866/PKU.WHXB201704076

所属专题: 高被引科学家专刊

论文 上一篇    下一篇

氮掺杂还原氧化石墨烯与吡啶共聚g-C3N4复合光催化剂及其增强的产氢活性

程若霖1,2,金锡雄1,2,樊向前1,2,王敏1,2,田建建1,2,张玲霞1,2,*(),施剑林1,2,*()   

  1. 1 中国科学院上海硅酸盐研究所,高性能陶瓷和超微结构国家重点实验室,上海200050
    2 中国科学院大学,北京100049
  • 收稿日期:2016-12-27 发布日期:2017-05-31
  • 通讯作者: 张玲霞,施剑林 E-mail:zhlingxia@mail.sic.ac.cn;jlshi@mail.sic.ac.cn
  • 基金资助:
    国家重点基础研究发展规划项目(2013CB933200)

Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution

Ruo-Lin CHENG1,2,Xi-Xiong JIN1,2,Xiang-Qian FAN1,2,Min WANG1,2,Jian-Jian TIAN1,2,Ling-Xia ZHANG1,2,*(),Jian-Lin SHI1,2,*()   

  1. 1 State Key Laboratory of High Performance Ceramics and Superfine Microstruture, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
    2 University of Chinese Academy of Sciences, Beijing 100049, P. R. China
  • Received:2016-12-27 Published:2017-05-31
  • Contact: Ling-Xia ZHANG,Jian-Lin SHI E-mail:zhlingxia@mail.sic.ac.cn;jlshi@mail.sic.ac.cn
  • Supported by:
    the State Key Program for Basic Research of China(2013CB933200)

摘要:

采用一种新颖有效的席夫碱化学法合成吡啶共聚改性的g-C3N4,其可见光催化产氢性能较(由尿素为前驱物制备的)纯g-C3N4显著增强。在此基础上,又进一步通过一步煅烧的方法构建了吡啶改性g-C3N4和N掺杂还原氧化石墨烯(N-rGO)的复合物,其产氢活性得到了进一步地提高,氢气产量最高达到304 μmol·h-1,分别为纯g-C3N4和吡啶改性g-C3N4的11.7倍和3.1倍。除了其增强的可见光吸收能力,增大的表面积,我们认为:吡啶环作为分子内电子受体,N-rGO作为“电子转移活性位”,二者共同促进了光生载流子分离和转移,从而显著增强了该复合体系的光催化活性。

关键词: 光催化, 石墨相氮化碳, 共聚合, 分解水制氢, 纳米复合材料

Abstract:

Here, we fabricated a pyridine-copolymerized g-C3N4 by a novel and cost-effective approach based on Schiff-base chemistry. Thus produced g-C3N4 showed significantly enhanced and stable visible-light photocatalytic H2 evolution performance compared to pristine g-C3N4 obtained from urea. Subsequently, we constructed a composite of pyridine-modified g-C3N4 and N-doped reduced graphene oxide (N-rGO) by facile one-pot calcination to elevate the photocatalytic efficiency further. The peak H2 production rate achieved using this composite was 304 μmol·h-1, about 11.7 and 3.1 times as those obtained using pure g-C3N4 and pyridine-modified g-C3N4, respectively. In addition to enhanced visible light absorbance and enlarged surface area, the promoted separation, transfer, and surface reactivity of photogenerated charge carriers by the pyridine ring as intramolecular electron acceptor and N-rGO as "electron-transfer activation region" are considered responsible for the remarkably enhanced photocatalytic activity.

Key words: Photocatalysis, Graphitic carbon nitride, Copolymerization, Hydrogen evolution, Nanocomposite