物理化学学报 >> 2022, Vol. 38 >> Issue (11): 2201021.doi: 10.3866/PKU.WHXB202201021
所属专题: 新锐科学家专刊
何科林1, 沈荣晨1, 郝磊1, 李佑稷2, 张鹏3, 江吉周4, 李鑫1,*()
收稿日期:
2022-01-13
录用日期:
2022-03-17
发布日期:
2022-03-24
通讯作者:
李鑫
E-mail:xinli@scau.edu.cn; xinliscau@126.com
基金资助:
Kelin He1, Rongchen Shen1, Lei Hao1, Youji Li2, Peng Zhang3, Jizhou Jiang4, Xin Li1,*()
Received:
2022-01-13
Accepted:
2022-03-17
Published:
2022-03-24
Contact:
Xin Li
E-mail:xinli@scau.edu.cn; xinliscau@126.com
About author:
Xin Li, Email: xinli@scau.edu.cn; xinliscau@126.comSupported by:
摘要:
工业化无疑促进了经济的发展,提高了生活水平,但也导致了一些问题,包括能源危机、环境污染、全球变暖等, 其中这些所产生问题主要是由燃烧煤炭、石油和天然气等化石燃料引起的。光催化技术具有利用太阳能将二氧化碳转化为碳氢化合物燃料、从水中制氢、降解污染物等优点,从而在解决能源危机的同时避免环境污染,因此被认为是解决这些问题的最有潜力的技术之一。在各种光催化剂中,碳化硅(SiC)由于其优良的电学性能和光电化学性质,在光催化、光电催化、电催化等领域具有广阔的应用前景。本文首先系统地阐述了各种SiC的合成方法,具体包括模板生长法、溶胶凝胶法、有机前驱物热解法、溶剂热合成法、电弧放电法,碳热还原法和静电纺丝等方法。然后详细地总结了提升SiC光催化活性的各种改性策略,如元素掺杂、构建Z型(S型)体系、负载助催化剂、可见光敏化、构建半导体异质结、负载炭材料、构建纳米结构等。最后重点论述了半导体的光催化机理以及SiC复合物在光催化产氢、污染物降解和CO2还原等领域的应用研究进展,并提出了前景展望。
何科林, 沈荣晨, 郝磊, 李佑稷, 张鹏, 江吉周, 李鑫. 纳米SiC基光催化剂研究进展[J]. 物理化学学报, 2022, 38(11), 2201021. doi: 10.3866/PKU.WHXB202201021
Kelin He, Rongchen Shen, Lei Hao, Youji Li, Peng Zhang, Jizhou Jiang, Xin Li. Advances in Nanostructured Silicon Carbide Photocatalysts[J]. Acta Phys. -Chim. Sin. 2022, 38(11), 2201021. doi: 10.3866/PKU.WHXB202201021
表1
不同碳化硅材料的性能参数"
Properties of materials | 3C-SiC | 4H-SiC | 6H-SiC |
Lattice constant (?) | a = 3.081 b = 15.12 | a = 3.073 b = 10.053 | 4.3596 |
Density (g?cm?3) | 3.21 | 3.21 | 3.21 |
Electron mobility (cm2?V?1?s?1) | 800 | 1000 | 400 |
Saturated electron elegant rate (107 cm?S?1) | 2.2 | 2.0 | 2.0 |
Hole mobility up (cm2?V?1?s?1) | 40 | 115 | 105 |
Forbidden band width Eg (eV) | 2.36 | 3.23 | 3.02 |
Breakdown field (106 V?cm?1) | 4 | 2.2 | 4 |
Dielectric constant | 9.72 | 9.7 | 9.66 |
Thermal conductivity (W?cm?1 K?1) | 5 | 4.9 | 5 |
Thermal expansion coefficient (10?6 K?1) | 4.7 | – | 4.8 |
Melting point (℃) | 2830 | 2830 | 2830 |
Refractive index | 2.7 | 2.712 | 2.7 |
表2
不同模板材料对比"
Material | Templates | Precursors | Temperature | Reference |
dimensional SiC@C | SiO2 | carbon and SiO2 | 1400 ℃ | 2022 |
Cu3Si/SiC rods | hydrochar rods | Cu-Si alloy | 1300 ℃ | 2021 |
porous silicon carbide | graphite | SiC powders | 1400 ℃ | 2021 |
SiC nanowires @ SiC Foam | carbon foam | SiC powders | 800 ℃ | 2021 |
core-shell CNT/SiC nanotubes | CNT nanotubes | Si and SiO2 | 1400 ℃ | 2020 |
silicon carbide nanowires | polystyrene microspheres | SiC powders | 120 ℃ | 2019 |
Hollow SiC fibers | PS@PCS core-shell fibers | SiO2 | 1400 ℃ | 2019 |
porous silicon carbide | ice | SiC powders | 1500 ℃ | 2016 |
porous silicon carbide | porous silicon | silicon | 1200 ℃ | 2013 |
porous silicon carbide | carbon pellets | SiC powder | 1450 ℃ | 2009 |
porous silicon carbide | hollow microspheres | polysiloxane | 2000 ℃ | 2007 |
amorphous silicon carbide | anodic aluminum oxide | poly crystalline SiC | 300 ℃ | 2020 |
mesoporous silicon carbide | KIT-6 and SBA-15 | silica | 700 ℃ | 2006 |
silicon carbide nanorods | multi-walled carbon nanotubes | Si particles | 1200 ℃ | 2011 |
silicon carbide nanowires | 1, 10-phenanthroline | SiCl4 | 650 ℃ | 2010 |
cellular silicon carbide | porous biocarbon | SiO | 1600 ℃ | 2001 |
silicon carbide whiskers | graphite | silicon powder | 1400 ℃ | 2013 |
SiC nanowires | wooden | silica | 1400 ℃ | 2014 |
SiC nanostructure arrays | nanomesh | SiC | 1400 ℃ | 2007 |
silicon carbide fibers | electrospun fibers | tetraethylorthosilicate | 1300 ℃ | 2009 |
表3
掺杂元素"
Typical doping element | Precursor of doping element | Method | References |
iron | FeSO4 | microwave irradiation | 2017 |
iron | iron powders | chemical vapor deposition | 2018 |
aluminum | Al2O3 | chemical vapor deposition | 2008 |
manganese | manganese powders | chemical vapor deposition | 2007 |
boron | boron powder | chemical vapor deposition | 2000 |
boron | boric oxide powder | chemical vapor deposition | 2015 |
表4
各材料催化性能对比"
Material | Sacrificial agent | Preparation method | Activity (μmol?g?1?h?1) | Ref. (year) |
Ni/SiC/g-C3N4 | TEOA | solvothermal | 6183 | 2022 |
CdOx/CdS/SiC | Organic waste | in situ chemical reaction | 654.2 | 2021 |
SiC/Zn0.5Cd0.5S | Na2S and Na2SO3 | ion exchange | 894 | 2020 |
SiC/CdS | Na2S and Na2SO3 | in situ fabrication | 952 | 2019 |
g-C3N4-SiC-Pt | triethanolamine | in situ calcination | 595.3 | 2019 |
Pt/SiC | Na2S and Na2SO3 | photodeposition | 53.4 | 2018 |
Au/SiC | Na2S and Na2SO3 | impregnation reduction | 53.6 | 2018 |
SnO2@SiC | Na2S and Na2SO3 | carbothermal reduction | 471.8 | 2018 |
CdS/b-SiC/TiO2 | Na2S and Na2SO3 | in situ calcination | 137 | 2018 |
CdS/SiC nanofibers | Na2S and Na2SO3 | hydrothermal | 124.65 | 2018 |
Pd-Au/SiC | Na2S and Na2SO3 | in situ fabrication | 108.4 | 2018 |
Au/SiC | Na2S | in situ fabrication | 1495.8 | 2018 |
g-C3N4/SiC | triethanolamine | in situ calcination | 182 | 2017 |
SiC/CdS | Na2S and Na2SO3 | impregnation method | 259 | 2017 |
Pt/SiC/IrO2 | Na2S and Na2SO3 | impregnation method | 2337 | 2017 |
carbon/SiC nanofibers | methanol | carbothermal reduction | 180.2 | 2016 |
SnO2/SiC nanowire | none | sol-gel carbothermal | 274 | 2016 |
carbon/SiC nanowires | Na2S and Na2SO3 | in situ chemical reaction | 108 | 2015 |
SiC/graphene | Na2S and Na2SO3 | vapor-solid reaction | 1328.4 | 2015 |
B-doped SiC nanowires | Na2S and Na2SO3 | vapor-solid reaction | 108.4 | 2015 |
BiVO4/SiC | FeCl3 | impregnation method | 659 | 2015 |
SiC/CdS | Na2S | impregnation method | 363 | 2015 |
S-TiO2/β-SiC | methanol | sol-gel | 1254 | 2015 |
core-shell graphene/SiC | Na2S and Na2SO3 | carbothermal reduction | 472.4 | 2015 |
表5
各材料对有机物降解的对比"
Material | Preparation method | Degradation object | Degradation rate | References |
BiOBr/SiC | hydrothermal | Rhodamine B | 97% within 15 min | 2021 |
MoS2/SiC | hydrothermal | 4-nitrophenol | 90% within 1 h | 2020 |
SnO2/SiC | mechanical alloying | methyl orange | 99% within 45 min | 2020 |
Ti3C2 MXene QDs/SiC | ultrasonic method | Nitric oxide | 74.6% within 7 min | 2020 |
Fe2O3/SiC | hydrothermal | Rhodamine B | 80% within 90 min | 2020 |
Ti-modified LaFeO3/SiC | sol-gel | 4-chlorophenol | 100% within 120 min | 2020 |
SiC whiskers | chemical vapor deposition | Rhodamine B | 52% within 6 h | 2020 |
g-C3N4/SiC/C-Dots | ultrasonic method | Rhodamine B | 100% within 150 min | 2020 |
TiO2/β?SiC | thermal annealing | PMMA and PS | 50% within 7 h | 2020 |
TiO2/SiC foam | dip coating | Rhodamine B | 90% within 120 min | 2020 |
SiC-TiO2/SnO2 | ultrasonic vibration | Rhodamine B | 51% within 150 min | 2020 |
SiC-BiVO4 | in situ fabrication | Rhodamine B | 98% within 180 min | 2019 |
SiC?AgCl/Ag | in situ fabrication | Azo Dye | 90% within 165 min | 2019 |
TiO2/SiC foams | dip-coating | Paraquat | 91% within 3h | 2019 |
TiO2/SiC foams | dip-coating | Pyrimethanil | 88% within 4h | 2019 |
Fe-doping SiC | in situ fabrication | methylene blue | 22% within 300 min | 2019 |
SiC/C3N4 | cooling crystallization | Rhodamine B | 82% within 60 min | 2018 |
SiC/BiVO4 | hydrothermal | Rhodamine B | 100% within 3 h | 2018 |
SiC/g-C3N4 | calcination | Rhodamine B | 70% within 150 min | 2018 |
Ag@SiC | in situ fabrication | Orange G | 65% within 240 min | 2018 |
Ag2CO3/SiC | precipitation | Rhodamine B | 100% within 120 min | 2017 |
Si/SiC@C@TiO2 | magnesiothermic | Rhodamine B | 90% within 35 min | 2016 |
SiC/ZnS nanospheres | hydrothermal | Rhodamine B | 92% within 60 min | 2015 |
TiO2@SiC foams | multi-step shape memory | Diuron pesticide | 90% within 150 min | 2020 |
B-doping SiC | wet impregnation method | methylene blue | 21.3% within 300 min | 2020 |
SiC alveolar foams | sol-gel | methylethylketone | 80% within 150 min | 2015 |
Cu-doping SiC | impregnation | phenol | 90% within 7 min | 2020 |
Ag3PO4/Ag/SiC | precipitation method | methyl orange | 95% within 15 min | 2015 |
Ti3C2 QDs/SiC | self-assembly method | NO pollutant | 74.6% within 30 min | 2020 |
表6
各材料对二氧化碳还原的对比"
Material | Reduction products | Activity (μmol?g?1?h?1) | Conditions | Ref. (year) |
Au/SiC nanowires | CO/CH4 | 8.8/0.2 | 240 W Xe-lamp/H2O | 2019 |
3D-SiC@2D-MoS2 | CH4 | 14.41 | 300 W Xe-lamp/H2O | 2018 |
SiC/Graphene Oxide | CO/CH4 | 2.22/6.72 | 300 W Xe-lamp/H2O | 2018 |
Pt/SiC hollow sphere | CH4 | 16.8 | 300 W Xe-lamp/H2O | 2017 |
SiC | CH4 | 12.03 | 300 W Xe-lamp/NaOH | 2015 |
Cubic silicon carbide | CH4 | 4.9 | 300 W Xe-lamp/H2O | 2021 |
Cu2O-Pt/SiC/IrOx | HCOOH | 896.7 | 300 W Xe-lamp/FeCl2 | 2020 |
表7
碳化硅基复合材料在光电催化和电催化应用的对比"
Material | Application | Activity | Ref. (year) |
graphene/SiC | solar-to-fuel conversion | 15 μmol?min?1 (CH4) | 2020 |
ZrO2/SiC | pyrolysis of methane | pyrolysis of 55% | 2019 |
ZSM-5/SiC | pyrolysis of biomass and soapstock | pyrolysis of 95.99% | 2019 |
SiC Foam-MCM41 | pyrolysis of woody oil | pyrolysis of 92.43% | 2020 |
Fe2O3/SiC-Pretrt | pyrolysis of sulfuric acid | pyrolysis of 85% | 2020 |
Pt/CDC-SiC | pyrolysis of C-C bond | conversion rate of 85% | 2020 |
SiO2@SiC | desulfurization of model fuels | 99.9% within 160 min | 2020 |
N-doping SiC@C | desulfurization of sour gases | H2S conversion of 99.9% | 2020 |
Foam SiC/ZSM-5 | methanol to propylene | propylene yield of 45.4% | 2019 |
VPO/SiC | oxidation of methanol to formaldehyde | formaldehyde conversion of 89.8% | 2020 |
NiMgAl/SiC | CO2 methanation | CO2 conversion of 74.5% | 2019 |
Pt/SiC | CO2 methanation | CO2 conversion of 88.3% | 2020 |
Ru-SiO2/SiC | CO2 methanation | CO2 conversion of 17% | 2020 |
Cu/C/SiC | dehydrogenation of ethanol | ethanol conversion of 81.4% | 2019 |
SiC foam | dehydrogenation of 1-butene | 1-butene conversion of 87% | 2019 |
ND@NMC-0.02 P/SiC | dehydrogenation of ethylbenzene | ethylbenzene conversion of 32.6% | 2020 |
Ni/Al2O3-SiC foam | hydrogenation of benzaldehyde | 99.3% within 6 h | 2019 |
Ir/SiC | hydrogenation of levulinic acid | 100% within 1.5 h | 2020 |
PdIr/SiC | hydrogenation of cinnamaldehyde | 99.2% within 1.5 h | 2020 |
Ni/SiC | hydrogenation of cellobiose | hexitol yield of 70% | 2020 |
Pd7P3/SiC | hydrogenation of phnol | cyclohexanol yield of 94% | 2020 |
Ru/SiC | hydrogen production from ammonia | 99.3% within 1 h | 2020 |
NiO/SiC | solar water splitting | 1.01 mA?cm-2 at 0.55 V | 2019 |
nickel/SiC nanowires | solar water splitting | 32.4 mA?cm-2 at 1.4 V | 2017 |
SiC/MoS2 | hydrogen evolution reaction | 198 mV at 10 mA cm-2 | 2020 |
Mo3+2xSi3C0.6/SiC-C | hydrogen evolution reaction | 138 mV at 10 mA cm-2 | 2019 |
Porous MoO3@SiC | oxidative desulfurization | 99.9% within 40 min | 2019 |
1 |
Friedlingstein P. ; Jones M. W. ; O'Sullivan M. ; Andrew R. M. ; Bakker D. C. E. ; Hauck J. ; Le Quéré C. ; Peters G. P. ; Peters W. ; Pongratz J. ; et al Earth Syst. Sci. Data Discuss. 2021, 2021, 1.
doi: 10.5194/essd-2021-386 |
2 |
Fujishima A. ; Honda K. Nature 1972, 238, 37.
doi: 10.1038/238037a0 |
3 |
Li X. ; Yu J. ; Jaroniec M. Chem. Soc. Rev. 2016, 45, 2603.
doi: 10.1039/c5cs00838g |
4 |
Li X. ; Yu J. ; Wageh S. ; Al-Ghamdi A. A. ; Xie J. Small 2016, 12, 6640.
doi: 10.1002/smll.201600382 |
5 |
Wang H. ; Zhao R. ; Hu H. ; Fan X. ; Zhang D. ; Wang D. ACS Appl. Mater. Interfaces 2020, 12, 40176.
doi: 10.1021/acsami.0c01013 |
6 |
Hou Z.-H. ; Chen J.-P. ; Xie L.-J. ; Wei X.-X. ; Guo S.-Q. ; Chen C -M. Appl. Surf. Sci. 2021, 543, 148779.
doi: 10.1016/j.apsusc.2020.148779 |
7 |
Zhou X. ; Gao Q. ; Li X. ; Liu Y. ; Zhang S. ; Fang Y. ; Li J. J. Mater. Chem. A 2015, 3, 10999.
doi: 10.1039/c5ta02516h |
8 |
Marien C. B. D. ; Le Pivert M. ; Azais A. ; M'Bra I. C. ; Drogui P. ; Dirany A. ; Robert D. J. Hazard. Mater. 2019, 370, 164.
doi: 10.1016/j.jhazmat.2018.06.009 |
9 |
Oliveros A. ; Guiseppi-Elie A. ; Saddow S. E. Biomed. Microdev. 2013, 15, 353.
doi: 10.1007/s10544-013-9742-3 |
10 |
Jian J. ; Sun J. Solar RRL 2020, 4, 2000111.
doi: 10.1002/solr.202000111 |
11 |
Zhuang D. ; Edgar J. H. Mat. Sci. Eng. R-Rep. 2005, 48, 1.
doi: 10.1016/j.mser.2004.11.002 |
12 |
Wellmann P. J. Semicond. Sci. Technol. 2018, 33, 103001.
doi: 10.1088/1361-6641/aad831 |
13 |
She X. ; Huang A. Q. ; Lucia O. ; Ozpineci B. IEEE Trans. Ind. Electron. 2017, 64, 8193.
doi: 10.1109/tie.2017.2652401 |
14 |
Shcherban N. D. J. Ind. Eng. Chem. 2017, 50, 15.
doi: 10.1016/j.jiec.2017.02.002 |
15 |
Dhar S. ; Seitz O. ; Halls M. D. ; Choi S. ; Chabal Y. J. ; Feldman L. C. J. Am. Chem. Soc. 2009, 131, 16808.
doi: 10.1021/ja9053465 |
16 |
Pei L. Z. ; Tang Y. H. ; Chen Y. W. ; Guo C. ; Li X. X. ; Yuan Y. ; Zhang Y. J. Appl. Phys. 2006, 99, 114306.
doi: 10.1063/1.2202111 |
17 |
Zhou J. ; Wei B. ; Yao Z. ; Lin H. ; Tan R. ; Chen W. ; Guo X. J. Alloy. Compd. 2020, 819, 153021.
doi: 10.1016/j.jallcom.2019.153021 |
18 |
Liu Z. ; Shen W. ; Bu W. ; Chen H. ; Hua Z. ; Zhang L. ; Li L. ; Shi J. ; Tan S. Micropor. Mesopor. Mater. 2005, 82, 137.
doi: 10.1016/j.micromeso.2005.02.022 |
19 |
Dai H. ; Wong E. W. ; Lu Y. Z. ; Fan S. ; Lieber C. M. Nature 1995, 375, 769.
doi: 10.1038/375769a0 |
20 |
Tang C. C. ; Fan S. S. ; Dang H. Y. ; Zhao J. H. ; Zhang C. ; Li P. ; Gu Q. J. Cryst. Growth 2000, 210, 595.
doi: 10.1016/s0022-0248(99)00737-x |
21 |
Pan Z. W. ; Lai H. L. ; Au F. C. K. ; Duan X. F. ; Zhou W. Y. ; Shi W. S. ; Wang N. ; Lee C. S. ; Wong N. B. ; Lee S. T. ; et al Adv. Mater. 2000, 12, 1186.
doi: 10.1002/1521-4095(200008)12:16<1186::Aid-Adma1186>3.0.Co;2-F |
22 |
Sun X. H. ; Li C. P. ; Wong W. K. ; Wong N. B. ; Lee C. S. ; Lee S. T. ; Teo B. K. J. Am. Chem. Soc. 2002, 124, 14464.
doi: 10.1021/ja0273997 |
23 |
Shen G. ; Chen D. ; Tang K. ; Qian Y. ; Zhang S. Chem. Phys. Lett. 2003, 375, 177.
doi: 10.1016/s0009-2614(03)00877-7 |
24 |
Zhang Y. ; Shi E. W. ; Chen Z. Z. ; Li X. B. ; Xiao B. J. Mater. Chem. 2006, 16, 4141.
doi: 10.1039/b610168b |
25 |
Zhou J. ; Liu J. ; Yang R. ; Lao C. ; Gao P. ; Tummala R. ; Xu N. S. ; Wang Z. L. Small 2006, 2, 1344.
doi: 10.1002/smll.200600098 |
26 |
Wang J. ; Wang L. ; Diao J. ; Xie X. ; Lin G. ; Jia Q. ; Liu H. ; Sui G. J. Mater. Sci. Technol. 2022, 103, 209.
doi: 10.1016/j.jmst.2021.06.044 |
27 |
Wang X. ; Hao W. ; Zhang P. ; Szego A. E. ; Svensson G. ; Hedin N. J. Colloid Interface Sci. 2021, 602, 480.
doi: 10.1016/j.jcis.2021.06.016 |
28 |
Remyamol T. ; Gopi R. ; Ajith M. R. ; Pant B. J. Eur. Ceram. Soc. 2021, 41, 1828.
doi: 10.1016/j.jeurceramsoc.2020.10.060 |
29 |
Su K. ; Wang Y. ; Hu K. ; Fang X. ; Yao J. ; Li Q. ; Yang J. ACS Appl. Mater. Interfaces 2021, 13, 22017.
doi: 10.1021/acsami.1c03543 |
30 |
Yoo S. C. ; Kang B. ; Van Trinh P. ; Phuong D. D. ; Hong S. H. Sci. Rep. 2020, 10, 12896.
doi: 10.1038/s41598-020-69341-z |
31 |
Xiao C. ; Chen L. ; Tang Y. ; Zhang X. ; Zheng K. ; Tian X. Compos. Part A-Appl. Sci. Manuf. 2019, 116, 98.
doi: 10.1016/j.compositesa.2018.10.023 |
32 |
Tian Q. ; Wu N. ; Wang B. ; Wang Y. Mater. Lett. 2019, 239, 109.
doi: 10.1016/j.matlet.2018.12.077 |
33 |
Zhang H. ; Shen P. ; Shaga A. ; Guo R. ; Jiang Q. Mater. Lett. 2016, 183, 299.
doi: 10.1016/j.matlet.2016.07.126 |
34 |
Naderi N. ; Hashim M. R. J. Alloy. Compd. 2013, 552, 356.
doi: 10.1016/j.jallcom.2012.11.085 |
35 |
Gu L. ; Ma D. ; Yao S. ; Liu X. ; Han X. ; Shen W. ; Bao X. Chemistry 2009, 15, 13449.
doi: 10.1002/chem.200901982 |
36 |
Eom J.-H. ; Kim Y.-W. ; Song I.-H. ; Kim H. -D. J. Eur. Ceram. Soc. 2008, 28, 1029.
doi: 10.1016/j.jeurceramsoc.2007.09.009 |
37 |
Vogli E. ; Mukerji J. ; Hoffman C. ; Kladny R. ; Sieber H. ; Greil P. J. Am. Ceram. Soc. 2001, 84, 1236.
doi: 10.1111/j.1151-2916.2001.tb00822.x |
38 |
Cheng Y. ; Zhang J. ; Zhang Y. ; Chen X. ; Wang Y. ; Ma H. ; Cao X. Eur. J. Inorg. Chem. 2009, 2009, 4248.
doi: 10.1002/ejic.200900418 |
39 |
Chen W. ; Wee A. T. S. J. Phys. D Appl. Phys. 2007, 40, 6287.
doi: 10.1088/0022-3727/40/20/s13 |
40 |
Xi G. ; He Y. ; Wang C. Chemistry 2010, 16, 5184.
doi: 10.1002/chem.200902490 |
41 |
Xie W. ; Möbus G. ; Zhang S. J. Mater. Chem. 2011, 21, 18325.
doi: 10.1039/c1jm13186a |
42 |
Shi Y. F. ; Meng Y. ; Chen D. H. ; Cheng S. J. ; Chen P. ; Yang H. F. ; Wan Y. ; Zhao D. Y. Adv. Funct. Mater. 2006, 16, 561.
doi: 10.1002/adfm.200500643 |
43 |
Li Y. ; Wang Q. ; Fan H. ; Sang S. ; Li Y. ; Zhao L. Ceram. Int. 2014, 40, 1481.
doi: 10.1016/j.ceramint.2013.07.032 |
44 |
Ding J. ; Zhu H. ; Li G. ; Deng C. ; Li J. Appl. Surf. Sci. 2014, 320, 620.
doi: 10.1016/j.apsusc.2014.09.149 |
45 |
Xu D. ; Zhen C. ; Zhao H. Ceram. Int. 2020, 46, 19629.
doi: 10.1016/j.ceramint.2020.04.166 |
46 |
Meng G. W. ; Zhang L. D. ; Mo C. M. ; Zhang S. Y. ; Qin Y. ; Feng S. P. ; Li H. J. J. Mater. Res. 2011, 13, 2533.
doi: 10.1557/jmr.1998.0353 |
47 |
Shi Y. ; Zhang F. ; Hu Y. S. ; Sun X. ; Zhang Y. ; Lee H. I. ; Chen L. ; Stucky G. D. J. Am. Chem. Soc. 2010, 132, 5552.
doi: 10.1021/ja1001136 |
48 |
Cai K. F. ; Lei Q. ; Zhang A. X. J. Nanosci. Nanotechnol. 2007, 7, 580.
doi: 10.1166/jnn.2007.143 |
49 |
Mitchell B. S. ; Zhang H. Y. ; Maljkovic N. ; Ade M. ; Kurtenbach D. ; Muller E. J. Am. Ceram. Soc. 1999, 82, 2249.
doi: 10.1111/j.1151-2916.1999.tb02070.x |
50 |
Hu J. Q. ; Lu Q. Y. ; Tang K. B. ; Deng B. ; Jiang R. R. ; Qian Y. T. ; Yu W. C. ; Zhou G. E. ; Liu X. M. ; Wu J. X. J. Phys. Chem. B 2000, 104, 5251.
doi: 10.1021/jp000124y |
51 |
Lu Q. ; Hu J. ; Tang K. ; Qian Y. ; Zhou G. ; Liu X. ; Zhu J. Appl. Phys. Lett. 1999, 75, 507.
doi: 10.1063/1.124431 |
52 |
Ju Z. ; Xing Z. ; Guo C. ; Yang L. ; Xu L. ; Qian Y. Eur. J. Inorg. Chem. 2008, 2008, 3883.
doi: 10.1002/ejic.200800198 |
53 |
Zou G. ; Dong C. ; Xiong K. ; Li H. ; Jiang C. ; Qian Y. Appl. Phys. Lett. 2006, 88, 071913.
doi: 10.1063/1.2174123 |
54 |
Wang C. H. ; Chang Y. H. ; Yen M. Y. ; Peng C. W. ; Lee C. Y. ; Chiu H. T. Adv. Mater. 2005, 17, 419.
doi: 10.1002/adma.200400939 |
55 |
Seeger T. ; Kohler-Redlich P. ; Ruhle M. Adv. Mater. 2000, 12, 279.
doi: 10.1002/(Sici)1521-4095(200002)12:4<279::Aid-Adma279>3.0.Co;2-1 |
56 |
Li Y. B. ; Xie S. S. ; Zou X. P. ; Tang D. S. ; Liu Z. Q. ; Zhou W. Y. ; Wang G. J. Cryst. Growth 2001, 223, 125.
doi: 10.1016/s0022-0248(01)00597-8 |
57 |
Chiu S. C. ; Huang C. W. ; Li Y. Y. J. Phys. Chem. C 2007, 111, 10294.
doi: 10.1021/jp0687192 |
58 |
Kumar P. V. ; Gupta G. S. Steel. Res. Int. 2002, 73, 31.
doi: 10.1002/srin.200200170 |
59 | Shin D. G. ; Riu D. H. ; Kim H. E. J. Ceram. Process. Res. 2008, 9, 209. |
60 |
Li X. ; Yu J. ; Low J. ; Fang Y. ; Xiao J. ; Chen X. J. Mater. Chem. A 2015, 3, 2485.
doi: 10.1039/c4ta04461d |
61 |
Jiao Z.-F. ; Tian Y.-M. ; Zhang B. ; Hao C.-H. ; Qiao Y. ; Wang Y.-X. ; Qin Y. ; Radius U. ; Braunschweig H. ; Marder T. ; et al J. Catal. 2020, 389, 517.
doi: 10.1016/j.jcat.2020.06.025 |
62 |
Wang L. ; Li Y. ; Wu C. ; Li X. ; Shao G. ; Zhang P. Chin. J. Catal. 2022, 43, 507.
doi: 10.1016/s1872-2067(21)63898-6 |
63 |
Do T.-N. ; Idrees M. ; Amin B. ; Hieu N. N. ; Phuc H. V. ; Hieu N. V. ; Hoa L. T. ; Nguyen C. V. RSC Adv. 2020, 10, 32027.
doi: 10.1039/d0ra05579d |
64 |
Bai J. ; Shen R. ; Chen W. ; Xie J. ; Zhang P. ; Jiang Z. ; Li X. Chem. Eng. J. 2022, 429, 132587.
doi: 10.1016/j.cej.2021.132587 |
65 |
Ahuja P. ; Ujjain S. K. ; Kanojia R. ; Attri P. J. Compos. Sci. 2021, 5, 82.
doi: 10.3390/jcs5030082 |
66 |
Shaposhnikov V. L. ; Sobolev N. A. J. Phys.: Condens. Matter 2004, 16, 1761.
doi: 10.1088/0953-8984/16/10/008 |
67 |
Demichelis F. ; Pirri C. F. ; Tresso E. J. Appl. Phys. 1992, 72, 1327.
doi: 10.1063/1.351742 |
68 |
Yang T. ; Chang X. ; Chen J. ; Chou K. C. ; Hou X. Nanoscale 2015, 7, 8955.
doi: 10.1039/c5nr01742d |
69 |
Li Z. ; Zhou W. ; Su X. ; Luo F. ; Zhu D. ; Liu P. J. Am. Ceram. Soc. 2008, 91, 2607.
doi: 10.1111/j.1551-2916.2008.02526.x |
70 |
Clegg W. J. J. Am. Ceram. Soc. 2000, 83, 1039.
doi: 10.1111/j.1151-2916.2000.tb01327.x |
71 |
Quintanilla A. ; Casas J. A. ; Miranzo P. ; Osendi M. I. ; Belmonte M. Appl. Catal. B-Environ. 2018, 235, 246.
doi: 10.1016/j.apcatb.2018.04.066 |
72 |
Ma S. B. ; Sun Y. P. ; Zhao B. C. ; Tong P. ; Zhu X. B. ; Song W. H. Phys. B-Condens. Matter 2007, 394, 122.
doi: 10.1016/j.physb.2007.02.028 |
73 |
Li H. ; Chen J. ; Hou H. ; Pan H. ; Ma X. ; Yang J. ; Wang L. ; Crittenden J. C. Water Res. 2017, 126, 274.
doi: 10.1016/j.watres.2017.09.001 |
74 |
Wageh S. ; Al-Ghamdi A. A. ; Jafer R. ; Li X. ; Zhangc P. Chin. J. Catal. 2021, 42, 667.
doi: 10.1016/s1872-2067(20)63705-6 |
75 |
Peng Y. ; Guo X. ; Yang J. ; Xie T. ; Wang J. ; Wang Y. ; Liu S. J. Dispers. Sci. Technol. 2020, 1
doi: 10.1080/01932691.2020.1844734 |
76 |
Xu Q. L. ; Zhang L. Y. ; Yu J. G. ; Wageh S. ; Al-Ghamdi A. A. ; Jaroniec M. Mater. Today 2018, 21, 1042.
doi: 10.1016/j.mattod.2018.04.008 |
77 |
Di T. M. ; Xu Q. L. ; Ho W. K. ; Tang H. ; Xiang Q. J. ; Yu J. G. ChemCatChem 2019, 11, 1394.
doi: 10.1002/cctc.201802024 |
78 |
Jiang T. ; Wang K. ; Guo T. ; Wu X. ; Zhang G. Chin. J. Catal. 2020, 41, 161.
doi: 10.1016/s1872-2067(19)63391-7 |
79 |
Liu C. ; Feng Y. ; Han Z. ; Sun Y. ; Wang X. ; Zhang Q. ; Zou Z. Chin. J. Catal. 2021, 42, 164.
doi: 10.1016/s1872-2067(20)63608-7 |
80 | Liu D. ; Chen S. T. ; Li R. J. ; Peng T. Y. Acta Phys. -Chim. Sin. 2021, 37, 2010017. |
刘东; 陈圣韬; 李仁杰; 彭天右. 物理化学学报, 2021, 37, 2010017.
doi: 10.3866/PKU.WHXB202010017 |
|
81 |
Zhang L. Y. ; Zhang J. J. ; Yu H. G. ; Yu J. G. Adv. Mater. 2022, 34, 2107668.
doi: 10.1002/adma.202107668 |
82 |
Xu Q. ; Zhang L. ; Cheng B. ; Fan J. ; Yu J. Chem 2020, 6, 1543.
doi: 10.1016/j.chempr.2020.06.010 |
83 |
Fu J. W. ; Xu Q. L. ; Low J. X. ; Jiang C. J. ; Yu J. G. Appl. Catal. B-Environ. 2019, 243, 556.
doi: 10.1016/j.apcatb.2018.11.011 |
84 |
Li S. ; Wang C. ; Cai M. ; Yang F. ; Liu Y. ; Chen J. ; Zhang P. ; Li X. ; Chen X. Chem. Eng. J. 2022, 428, 131158.
doi: 10.1016/j.cej.2021.131158 |
85 |
Shen R. ; Lu X. ; Zheng Q. ; Chen Q. ; Ng Y. H. ; Zhang P. ; Li X. Solar RRL 2021, 5, 2100177.
doi: 10.1002/solr.202100177 |
86 | Fei X. G. ; Tan H. Y. ; Cheng B. ; Zhu B. C. ; Zhang L. Y. Acta Phys. -Chim. Sin. 2021, 37, 2010027. |
费新刚; 谭海燕; 程蓓; 朱必成; 张留洋. 物理化学学报, 2021, 37, 2010027.
doi: 10.3866/PKU.WHXB202010027 |
|
87 | Wageh S. ; Al-Ghamdi A. A. ; Liu L. J. Acta Phys. -Chim. Sin. 2021, 37, 2010024. |
WagehS.; Al-GhamdiA. A.; 刘丽君. 物理化学学报, 2021, 37, 2010024.
doi: 10.3866/PKU.WHXB202010024 |
|
88 |
He F. ; Meng A. ; Cheng B. ; Ho W. ; Yu J. Chin. J. Catal. 2020, 41, 9.
doi: 10.1016/s1872-2067(19)63382-6 |
89 |
Liu L. ; Hu T. ; Dai K. ; Zhang J. ; Liang C. Chin. J. Catal. 2021, 42, 46.
doi: 10.1016/s1872-2067(20)63560-4 |
90 | Liu Y. ; Hao X. Q. ; Hu H. Q. ; Jin Z. L. Acta Phys. -Chim. Sin. 2021, 37, 2008030. |
刘阳; 郝旭强; 胡海强; 靳治良. 物理化学学报, 2021, 37, 2008030.
doi: 10.3866/PKU.WHXB202008030 |
|
91 |
Xie Q. ; He W. ; Liu S. ; Li C. ; Zhang J. ; Wong P. K. Chin. J. Catal. 2020, 41, 140.
doi: 10.1016/s1872-2067(19)63481-9 |
92 |
Wang D. ; Guo Z. ; Peng Y. ; Yuan W. Catal. Commun. 2015, 61, 53.
doi: 10.1016/j.catcom.2014.12.008 |
93 |
Bai J. ; Chen W. ; Shen R. ; Jiang Z. ; Zhang P. ; Liu W. ; Li X. J. Mater. Sci. Technol. 2022, 112, 85.
doi: 10.1016/j.jmst.2021.11.003 |
94 |
G M. ; A S. ; G.A S. J. ; S K. J. Mol. Catal. A-Chem. 2016, 411, 167.
doi: 10.1016/j.molcata.2015.10.020 |
95 |
Liao X. ; Chen J. ; Wang M. ; Liu Z. ; Ding L. ; Li Y. J. Alloy. Compd. 2016, 658, 642.
doi: 10.1016/j.jallcom.2015.10.269 |
96 |
Chen Z. ; Bing F. ; Liu Q. ; Zhang Z. ; Fang X. J. Mater. Chem. A 2015, 3, 4652.
doi: 10.1039/c4ta06530a |
97 |
Wang D. ; Guo Z. ; Peng Y. ; Yuan W. Chem. Eng. J. 2015, 281, 102.
doi: 10.1016/j.cej.2015.06.103 |
98 |
Liu M.-P. ; Su T. ; Sun L. ; Du H. -B. RSC Adv. 2016, 6, 4063.
doi: 10.1039/c5ra24643a |
99 |
Peng Y. ; Guo Z. ; Yang J. ; Wang D. ; Yuan W. J. Mater. Chem. A 2014, 2, 6296.
doi: 10.1039/c4ta00468j |
100 |
Shen R. ; Ding Y. ; Li S. ; Zhang P. ; Xiang Q. ; Ng Y. H. ; Li X. Chin. J. Catal. 2021, 42, 25.
doi: 10.1016/s1872-2067(20)63600-2 |
101 |
Shen R. ; He K. ; Zhang A. ; Li N. ; Ng Y. H. ; Zhang P. ; Hu J. ; Li X. Appl. Catal. B-Environ. 2021, 291, 120104.
doi: 10.1016/j.apcatb.2021.120104 |
102 |
Ren D. ; Liang Z. ; Ng Y. H. ; Zhang P. ; Xiang Q. ; Li X. Chem. Eng. J. 2020, 390, 124496.
doi: 10.1016/j.cej.2020.124496 |
103 |
Liang Z. ; Shen R. ; Ng Y. H. ; Zhang P. ; Xiang Q. ; Li X. J. Mater. Sci. Technol. 2020, 56, 89.
doi: 10.1016/j.jmst.2020.04.032 |
104 |
Yang J. ; Wang D. ; Han H. ; Li C. Acc. Chem. Res. 2013, 46, 1900.
doi: 10.1021/ar300227e |
105 |
Dai H. ; Chen Y. ; Lin Y. ; Xu G. ; Yang C. ; Tong Y. ; Guo L. ; Chen G. Electrochim. Acta 2012, 85, 644.
doi: 10.1016/j.electacta.2012.08.109 |
106 |
Wang M. ; Chen J. ; Liao X. ; Liu Z. ; Zhang J. ; Gao L. ; Li Y. Int. J. Hydrog. Energy 2014, 39, 14581.
doi: 10.1016/j.ijhydene.2014.07.068 |
107 |
Cai C. ; Zhu X. B. ; Zheng G. Q. ; Yuan Y. N. ; Huang X. Q. ; Cao F. H. ; Yang J. F. ; Zhang Z. Surf. Coat. Technol. 2011, 205, 3448.
doi: 10.1016/j.surfcoat.2010.12.002 |
108 |
Vershinin N. N. ; Bakaev V. A. ; Berestenko V. I. ; Efimov O. N. ; Kurkin E. N. ; Kabachkov E. N. High Energy Chem. 2017, 51, 46.
doi: 10.1134/s0018143916060199 |
109 |
Wang B. ; Wang Y. ; Lei Y. ; Wu N. ; Gou Y. ; Han C. ; Xie S. ; Fang D. Nano Res. 2016, 9, 886.
doi: 10.1007/s12274-015-0971-z |
110 |
Guo X. ; Tong X. ; Wang Y. ; Chen C. ; Jin G. ; Guo X. -Y. J. Mater. Chem. A 2013, 1, 4657.
doi: 10.1039/c3ta10600d |
111 |
Hao C. H. ; Guo X. N. ; Pan Y. T. ; Chen S. ; Jiao Z. F. ; Yang H. ; Guo X. Y. J. Am. Chem. Soc. 2016, 138, 9361.
doi: 10.1021/jacs.6b04175 |
112 |
Lai Y. C. ; Tsai Y. C. Chem. Commun. 2012, 48, 6696.
doi: 10.1039/c2cc32399k |
113 |
Yun S. ; Wang L. ; Zhao C. ; Wang Y. ; Ma T. Phys. Chem. Chem. Phys. 2013, 15, 4286.
doi: 10.1039/c3cp44048f |
114 |
Tsai Y.-L. ; Li C.-T. ; Huang T.-Y. ; Lee C.-T. ; Lin C.-Y. ; Chu C.-W. ; Vittal R. ; Ho K. -C. ChemElectroChem 2014, 1, 1031.
doi: 10.1002/celc.201300242 |
115 |
Pessoa R. S. ; Fraga M. A. ; Santos L. V. ; Massi M. ; Maciel H. S. Mater. Sci. Semicon. Process. 2015, 29, 56.
doi: 10.1016/j.mssp.2014.05.053 |
116 |
Zhou X. ; Gao Q. ; Yang S. ; Fang Y. Chin. J. Catal. 2020, 41, 62.
doi: 10.1016/s1872-2067(19)63421-2 |
117 |
Zhang J. ; Liu L. Z. ; Yang L. ; Gan Z. X. ; Wu X. L. ; Chu P. K. Appl. Phys. Lett. 2014, 104, 231902.
doi: 10.1063/1.4882164 |
118 |
Hu J. ; Zhong Z. ; Zhang F. ; Xing W. ; Jin W. ; Xu N. Ind. Eng. Chem. Res. 2016, 55, 6661.
doi: 10.1021/acs.iecr.6b00988 |
119 |
Liao X. ; Liu Z. ; Ding L. ; Chen J. ; Tang W. RSC Adv. 2015, 5, 99143.
doi: 10.1039/c5ra19193a |
120 |
Chen Y. X. ; Xu X. ; Liu P. Y. ; Xie W. G. ; Chen K. ; Shui L. L. ; Shang C. Q. ; Chen Z. H. ; Ma X. G. ; Zhou G. F. ; Shi T. T. ; Wang X. J. Phys. Chem. C 2020, 124, 1362.
doi: 10.1021/acs.jpcc.9b08740 |
121 |
Alivov Y. I. ; Xiao B. ; Fan Q. ; Morkoç H. ; Johnstone D. Appl. Phys. Lett. 2006, 89, 152115.
doi: 10.1063/1.2360924 |
122 |
Digdaya I. A. ; Rodriguez P. P. ; Ma M. ; Adhyaksa G. W. P. ; Garnett E. C. ; Smets A. H. M. ; Smith W. A. J. Mater. Chem. A 2016, 4, 6842.
doi: 10.1039/c5ta09435f |
123 |
Mishra G. ; Parida K. M. ; Singh S. K. ACS Sustain. Chem. Eng. 2015, 3, 245.
doi: 10.1021/sc500570k |
124 |
Gondal M. A. ; Ilyas A. M. ; Baig U. Appl. Surf. Sci. 2016, 378, 8.
doi: 10.1016/j.apsusc.2016.03.135 |
125 |
Lu W. ; Wang D. ; Guo L. ; Jia Y. ; Ye M. ; Huang J. ; Li Z. ; Peng Y. ; Yuan W. ; Chen X. Adv. Mater. Process. 2015, 27, 7986.
doi: 10.1002/adma.201503606 |
126 |
Zhou X. ; Li X. ; Gao Q. ; Yuan J. ; Wen J. ; Fang Y. ; Liu W. ; Zhang S. ; Liu Y. Catal. Sci. Technol. 2015, 5, 2798.
doi: 10.1039/c4cy01757a |
127 |
Zhu K. ; Guo L. ; Lin J. ; Hao W. ; Shang J. ; Jia Y. ; Chen L. ; Jin S. ; Wang W. ; Chen X. Appl. Phys. Lett. 2012, 100, 023113.
doi: 10.1063/1.3676042 |
128 |
Lin S. ; Zhao X. S. ; Li Y. F. ; Huang K. ; Jia R. X. ; Liang C. ; Xu X. ; Zhou Y. F. ; Wang H. ; Fan D. Y. ; et al Mater. Lett. 2014, 132, 380.
doi: 10.1016/j.matlet.2014.06.116 |
129 |
Yang J. ; Zeng X. ; Chen L. ; Yuan W. Appl. Phys. Lett. 2013, 102, 083101.
doi: 10.1063/1.4792695 |
130 |
Huang D. ; Yin L. ; Niu J. Environ. Sci. Technol. 2016, 50, 5857.
doi: 10.1021/acs.est.6b00652 |
131 |
Hou H. ; Dong C. ; Wang L. ; Gao F. ; Wei G. ; Zheng J. ; Cheng X. ; Tang B. ; Yang W. CrystEngComm 2013, 15, 2002.
doi: 10.1039/c3ce26862d |
132 |
Liu H. ; She G. ; Mu L. ; Shi W. Mater. Res. Bull. 2012, 47, 917.
doi: 10.1016/j.materresbull.2011.12.046 |
133 |
Zhang J. ; Chen J. ; Xin L. ; Wang M. Mat. Sci. Eng. B 2014, 179, 6.
doi: 10.1016/j.mseb.2013.09.016 |
134 |
Hao J.-Y. ; Wang Y.-Y. ; Tong X.-L. ; Jin G.-Q. ; Guo X. -Y. Catal. Today 2013, 212, 220.
doi: 10.1016/j.cattod.2012.09.023 |
135 |
Dragomir M. ; Valant M. ; Fanetti M. ; Mozharivskyj Y. RSC Adv. 2016, 6, 21795.
doi: 10.1039/c6ra00789a |
136 |
Shen R. ; Ren D. ; Ding Y. ; Guan Y. ; Ng Y. H. ; Zhang P. ; Li X. Sci. China Mater. 2020, 63, 2153.
doi: 10.1007/s40843-020-1456-x |
137 | Pan J. B. ; Shen S. ; Zhou W. ; Tang J. ; Ding H. Z. ; Wang J. B. ; Chen L. ; Au C. T. ; Yin S. F. Acta Phys. -Chim. Sin. 2020, 36, 1905068. |
潘金波; 申升; 周威; 唐杰; 丁洪志; 王进博; 陈浪; 区泽堂; 尹双凤. 物理化学学报, 2020, 36, 1905068.
doi: 10.3866/PKU.WHXB201905068 |
|
138 | Zhang R. L. ; Wang C. ; Chen H. ; Zhao H. ; Liu J. ; Li Y. ; Su B. L. Acta Phys. -Chim. Sin. 2020, 36, 1803014. |
张若兰; 王超; 陈浩; 赵恒; 刘婧; 李昱; 苏宝连. 物理化学学报, 2020, 36, 1803014.
doi: 10.3866/PKU.WHXB201803014 |
|
139 | Jin Z. L. ; Li Y. B. ; Hao X. Q. Acta Phys. -Chim. Sin. 2021, 37, 1912033. |
靳治良; 李彦兵; 郝旭强. 物理化学学报, 2021, 37, 1912033.
doi: 10.3866/PKU.WHXB201912033 |
|
140 |
Li S. S. ; Sun J. R. ; Guan J. Q. Chin. J. Catal. 2021, 42, 511.
doi: 10.1016/s1872-2067(20)63693-2 |
141 |
Xiao N. ; Li S. S. ; Li X. L. ; Ge L. ; Gao Y. Q. ; Li N. Chin. J. Catal. 2020, 41, 642.
doi: 10.1016/s1872-2067(19)63469-8 |
142 |
Liu S. ; Zhang C. ; Sun Y. ; Chen Q. ; He L. ; Zhang K. ; Zhang J. ; Liu B. ; Chen L. -F. Coord. Chem. Rev. 2020, 413, 213266.
doi: 10.1016/j.ccr.2020.213266 |
143 |
Jia R. ; Gui Q. ; Sui L. ; Huang Y. ; Lu H. ; Dong H. ; Ma S. ; Gan Z. ; Dong L. ; Yu L. J. Mater. Chem. A 2021, 9, 14768.
doi: 10.1039/d1ta03830c |
144 |
Ren D. ; Shen R. ; Jiang Z. ; Lu X. ; Li X. Chin. J. Catal. 2020, 41, 31.
doi: 10.1016/s1872-2067(19)63467-4 |
145 |
Bai J. X. ; Shen R. C. ; Jiang Z. M. ; Zhang P. ; Li Y. J. ; Li X. Chin. J. Catal. 2022, 43, 359.
doi: 10.1016/s1872-2067(21)63883-4 |
146 | Jiang Z. ; Chen Q. ; Zheng Q. ; Shen R. ; Zhang P. ; Li X. Acta Phys. -Chim. Sin. 2021, 37, 2010059. |
姜志民; 陈晴; 郑巧清; 沈荣晨; 张鹏; 李鑫. 物理化学学报, 2021, 37, 2010059.
doi: 10.3866/PKU.WHXB202010059 |
|
147 |
Peng Y. ; Guo Z. ; Wang D. ; Pan N. ; Yuan W. Appl. Phys. Lett. 2015, 107, 012102.
doi: 10.1063/1.4923399 |
148 |
Wang Y. ; Guo X. ; Dong L. ; Jin G. ; Wang Y. ; Guo X. -Y. Int. J. Hydrog. Energ. 2013, 38, 12733.
doi: 10.1016/j.ijhydene.2013.07.062 |
149 |
Zhang Y. ; Xu Y. ; Li T. ; Wang Y. Particuology 2012, 10, 46.
doi: 10.1016/j.partic.2011.08.001 |
150 |
Sun L. ; Wang B. ; Wang Y. Int. J. Appl. Ceram. Technol. 2018, 15, 111.
doi: 10.1111/ijac.12792 |
151 |
Liu Y. ; Gao F. ; Wang L. ; Yang W. ; He X. ; Hou H. J. Mater. Sci. Mater. Electron. 2018, 30, 1487.
doi: 10.1007/s10854-018-0419-9 |
152 |
Zhou X. ; Liu Y. ; Li X. ; Gao Q. ; Liu X. ; Fang Y. Chem. Commun. 2014, 50, 1070.
doi: 10.1039/c3cc47790h |
153 |
Hao J.-Y. ; Wang Y.-Y. ; Tong X.-L. ; Jin G.-Q. ; Guo X. -Y. Int. J. Hydrog. Energ. 2012, 37, 15038.
doi: 10.1016/j.ijhydene.2012.08.021 |
154 | Cao D. ; An H. ; Yan X. ; Zhao Y. ; Yang G. ; Mei H. Acta Phys. -Chim. Sin. 2020, 36, 1901051. |
曹丹; 安华; 严孝清; 赵宇鑫; 杨贵东; 梅辉. 物理化学学报, 2020, 36, 1901051.
doi: 10.3866/PKU.WHXB201901051 |
|
155 |
Du Z. ; Sun P. ; Wu K. ; Zheng X. ; Zhang X. ; Huang J. ; Sun D. ; Zheng Y. ; Li Q. Energy Technol. 2019, 7, 1900017.
doi: 10.1002/ente.201900017 |
156 |
Wang D. ; Liu N. ; Guo Z. ; Wang W. ; Guo L. ; Yuan W. ; Chen X. Phys. Chem. Chem. Phys. 2018, 20, 4787.
doi: 10.1039/c7cp08363g |
157 |
Mishra G. ; Parida K. M. ; Singh S. K. RSC Adv. 2014, 4, 12918.
doi: 10.1039/c3ra46578k |
158 |
Xiao M. ; Hao M. ; Lyu M. ; Moore E. G. ; Zhang C. ; Luo B. ; Hou J. ; Lipton-Duffin J. ; Wang L. Adv. Funct. Mater. 2019, 29, 1905683.
doi: 10.1002/adfm.201905683 |
159 |
Hao C. H. ; Guo X. N. ; Sankar M. ; Yang H. ; Ma B. ; Zhang Y. F. ; Tong X. L. ; Jin G. Q. ; Guo X. Y. ACS Appl. Mater. Inter. 2018, 10, 23029.
doi: 10.1021/acsami.8b04044 |
160 |
Wang D. ; Peng Y. ; Wang Q. ; Pan N. ; Guo Z. ; Yuan W. Appl. Phys. Lett. 2016, 108, 161601.
doi: 10.1063/1.4947196 |
161 |
Guo T. ; Jiang L. ; Wang K. ; Li Y. ; Huang H. ; Wu X. ; Zhang G. Appl. Catal. B-Environ. 2021, 286, 119883.
doi: 10.1016/j.apcatb.2021.119883 |
162 |
Nagakawa H. ; Ochiai T. ; Nagata M. Int. J. Hydrog. Energ. 2018, 43, 2207.
doi: 10.1016/j.ijhydene.2017.12.006 |
163 |
Peng Y. ; Han G. ; Wang D. ; Wang K. ; Guo Z. ; Yang J. ; Yuan W. Int. J. Hydrog. Energ. 2017, 42, 14409.
doi: 10.1016/j.ijhydene.2017.04.204 |
164 |
Bai S.-W. ; Mei H. ; Jin Z.-P. ; Xiao S.-S. ; Cheng L. -F. Appl. Surf. Sci. 2020, 500, 144009.
doi: 10.1016/j.apsusc.2019.144009 |
165 |
Wang D. ; Huang L. ; Guo Z. ; Han X. ; Liu C. ; Wang W. ; Yuan W. Appl. Surf. Sci. 2018, 456, 871.
doi: 10.1016/j.apsusc.2018.06.099 |
166 |
Wang B. ; Zhang J. ; Huang F. Appl. Surf. Sci. 2017, 391, 449.
doi: 10.1016/j.apsusc.2016.07.056 |
167 |
Wang D. ; Wang W. ; Wang Q. ; Guo Z. ; Yuan W. Mater. Lett. 2017, 201, 114.
doi: 10.1016/j.matlet.2017.04.140 |
168 |
Dang H. ; Li B. ; Li C. ; Zang Y. ; Xu P. ; Zhao X. ; Fan H. ; Qiu Y. Electrochim. Acta 2018, 267, 24.
doi: 10.1016/j.electacta.2018.02.070 |
169 |
Pan J. ; Zhang Y. ; Guan Y. ; Yan Y. ; Tang H. ; Liu X. ; Wang M. ; Wei X. Appl. Surf. Sci. 2022, 579, 152171.
doi: 10.1016/j.apsusc.2021.152171 |
170 |
Nagakawa H. ; Nagata M. ACS Appl. Mater. Interfaces 2021, 13, 47511.
doi: 10.1021/acsami.1c11888 |
171 |
Wang H. J. ; Li X. ; Zhao X. X. ; Li C. Y. ; Song X. H. ; Zhang P. ; Huo P. W. ; Li X. Chin. J. Catal. 2022, 43, 178.
doi: 10.1016/s1872-2067(21)63910-4 |
172 |
Zou T. ; Xie C. ; Liu Y. ; Zhang S. ; Zou Z. ; Zhang S. J. Alloy. Compd. 2013, 552, 504.
doi: 10.1016/j.jallcom.2012.11.061 |
173 |
Kim T. H. ; Gómez-Solís C. ; Moctezuma E. ; Lee S. W. Res. Chem. Intermed. 2013, 40, 1595.
doi: 10.1007/s11164-013-1064-9 |
174 |
Kouame N. A. ; Robert D. ; Keller V. ; Keller N. ; Pham C. ; Nguyen P. Environ. Sci. Pollut. R 2012, 19, 3727.
doi: 10.1007/s11356-011-0719-6 |
175 |
Hao D. ; Yang Z. ; Jiang C. ; Zhang J. J. Mater. Sci. Technol. 2013, 29, 1074.
doi: 10.1016/j.jmst.2013.08.021 |
176 |
Zhang T. ; Dai Z. ; Liang B. ; Mu Y. J. Inorg. Organomet. Polym. Mater. 2020, 303
doi: 10.1007/s10904-020-01702-7 |
177 |
Yang J. ; Peng Y. ; Yang B. ; Li P. Mater. Res. Exp. 2018, 5, 085511.
doi: 10.1088/2053-1591/aad3df |
178 |
Sun J. ; Xia G. ; Yang W. ; Hu Y. ; Shen W. Water. Sci. Technol. 2020, 82, 704.
doi: 10.2166/wst.2020.370 |
179 |
Weng J.-H. ; Lee P.-C. ; Chen Y.-S. ; Lin C. B. J. Inorg. Organomet. Polym. Mater. 2019, 30, 1760.
doi: 10.1007/s10904-019-01377-9 |
180 |
Koysuren O. J. Appl. Polym. Sci. 2019, 137, 48524.
doi: 10.1002/app.48524 |
181 |
Rico-Santacruz M. ; García-Muñoz P. ; Marchal C. ; Batail N. ; Pham C. ; Robert D. ; Keller N. RSC Adv. 2020, 10, 3817.
doi: 10.1039/c9ra09553e |
182 |
Allé P. H. ; Garcia-Muñoz P. ; Adouby K. ; Keller N. ; Robert D. Environ. Chem. Lett. 2020, 19, 1803.
doi: 10.1007/s10311-020-01099-2 |
183 |
Allé P. H. ; Fanou G. D. ; Robert D. ; Adouby K. ; Drogui P. Appl. Water Sci. 2020, 10, 1.
doi: 10.1007/s13201-020-01282-4 |
184 |
Wang D. ; Huang L. ; Guo Z. ; Jin S. ; Liu C. ; Wang W. ; Yuan W. ACS Appl. Nano Mater. 2018, 1, 4594.
doi: 10.1021/acsanm.8b00907 |
185 |
Garcia-Munoz P. ; Fresno F. ; Lefevre C. ; Robert D. ; Keller N. ACS Appl. Mater. Inter. 2020, 57025
doi: 10.1021/acsami.0c16647 |
186 |
Zhang Y. ; Kuwahara Y. ; Mori K. ; Yamashita H. Langmuir 2020, 36, 1174.
doi: 10.1021/acs.langmuir.9b03760 |
187 |
Koysuren N. Polym.-Plast. Technol. Mater. 2021, 60, 1620.
doi: 10.1080/25740881.2021.1924199 |
188 |
Zhang J. ; Wu X. L. ; Liu L. Z. ; Yang L. ; Gan Z. X. ; Chu P. K. AIP Adv. 2015, 5, 037120.
doi: 10.1063/1.4915125 |
189 |
Bora L. V. ; Mewada R. K. J. Environ. Chem. Eng. 2017, 5, 5556.
doi: 10.1016/j.jece.2017.10.037 |
190 |
Chang F. ; Zheng J. ; Wang X. ; Xu Q. ; Deng B. ; Hu X. ; Liu X. Mater. Sci. Semicon. Process. 2018, 75, 183.
doi: 10.1016/j.mssp.2017.11.043 |
191 |
Asadzadeh-Khaneghah S. ; Habibi-Yangjeh A. ; Shahedi Asl M. ; Ahmadi Z. ; Ghosh S. J. Photochem. Photobiol. A 2020, 392, 112431.
doi: 10.1016/j.jphotochem.2020.112431 |
192 |
M'Bra I. C. ; García-Muñoz P. ; Drogui P. ; Keller N. ; Trokourey A. ; Robert D. J. Photochem. Photobiol. A 2019, 368, 1.
doi: 10.1016/j.jphotochem.2018.09.007 |
193 |
Adhikari S. ; Eswar N. K. ; Sangita S. ; Sarkar D. ; Madras G. J. Photochem. Photobiol. A 2018, 357, 118.
doi: 10.1016/j.jphotochem.2018.02.017 |
194 |
Masson R. ; Keller V. ; Keller N. Appl. Catal. B-Environ. 2015, 170-171, 301.
doi: 10.1016/j.apcatb.2015.01.030 |
195 |
Chen J.-P. ; Song G. ; Liu Z. ; Kong Q.-Q. ; Zhang S.-C. ; Chen C. -M. J. Alloy. Compd. 2020, 833, 155072.
doi: 10.1016/j.jallcom.2020.155072 |
196 |
Zhang X. ; Yuan J. ; Zhu J. ; Fan L. ; Chen H. ; He H. ; Wang Q. Ceram. Int. 2019, 45, 12449.
doi: 10.1016/j.ceramint.2019.03.178 |
197 |
Yang J. ; Peng Y. ; Yang B. J. Dispers. Sci. Technol. 2019, 40, 408.
doi: 10.1080/01932691.2018.1470533 |
198 | Li Y. F. ; Zhang M. ; Zhou L. ; Yang S. J. ; Wu Z. S. ; Ma Y. H. Acta Phys. -Chim. Sin. 2021, 37, 2009030. |
李云锋; 张敏; 周亮; 杨思佳; 武占省; 马玉花. 物理化学学报, 2021, 37, 2009030.
doi: 10.3866/PKU.WHXB202009030 |
|
199 |
Li X. ; Yu J. ; Jaroniec M. ; Chen X. Chem. Rev. 2019, 119, 3962.
doi: 10.1021/acs.chemrev.8b00400 |
200 |
Li X. ; Wen J. ; Low J. ; Fang Y. ; Yu J. Sci. China Mater. 2014, 57, 70.
doi: 10.1007/s40843-014-0003-1 |
201 |
Li H. ; Lei Y. ; Huang Y. ; Fang Y. ; Xu Y. ; Zhu L. ; Li X. J. Nat. Gas. Chem. 2011, 20, 145.
doi: 10.1016/s1003-9953(10)60166-1 |
202 |
Gondal M. A. ; Ali M. A. ; Chang X. F. ; Shen K. ; Xu Q. Y. ; Yamani Z. H. J. Environ. Sci. Health A Toxic Hazard. Subst. Environ. Eng. 2012, 47, 1571.
doi: 10.1080/10934529.2012.680419 |
203 |
Zhi G. ; Guo X. ; Wang Y. ; Jin G. ; Guo X. Catal. Commun. 2011, 16, 56.
doi: 10.1016/j.catcom.2011.08.037 |
204 |
Wang Y. ; Zhang Z. ; Zhang L. ; Luo Z. ; Shen J. ; Lin H. ; Long J. ; Wu J. C. S. ; Fu X. ; Wang X. ; Li C. J. Am. Chem. Soc. 2018, 140, 14595.
doi: 10.1021/jacs.8b09344 |
205 |
Wang Y. ; Shang X. ; Shen J. ; Zhang Z. ; Wang D. ; Lin J. ; Wu J. C. S. ; Fu X. ; Wang X. ; Li C. Nat. Commun. 2020, 11, 1.
doi: 10.1038/s41467-020-16742-3 |
206 |
Nazarkovsky M. ; Alekseev S. ; Huczko A. ; Zaitsev V. ; Dupont J. ; Kai J. ; Xing Y. ; Scofield A. L. ; Chacón G. ; Carreira R. S. Res. Chem. Intermed. 2019, 45, 4081.
doi: 10.1007/s11164-019-03892-3 |
207 |
Yang T. C. ; Chang F. C. ; Peng C. Y. ; Wang H. P. ; Wei Y. L. Environ. Technol. 2015, 36, 2987.
doi: 10.1080/09593330.2014.960474 |
208 |
Han C. ; Lei Y. ; Wang B. ; Wang Y. ChemSusChem 2018, 11, 4237.
doi: 10.1002/cssc.201802088 |
209 |
Li H. ; Sun J. ACS Appl. Mater. Interfaces 2021, 13, 5073.
doi: 10.1021/acsami.0c19945 |
210 |
Wang Y. ; Zhang L. ; Zhang X. ; Zhang Z. ; Tong Y. ; Li F. ; Wu J. C. S. ; Wang X. Appl. Catal. B-Environ. 2017, 206, 158.
doi: 10.1016/j.apcatb.2017.01.028 |
211 |
van Dorp D. H. ; Hijnen N. ; Di Vece M. ; Kelly J. J. Angew. Chem. Int. Ed. 2009, 48, 6085.
doi: 10.1002/anie.200900796 |
212 |
Li H. ; Shi Y. ; Shang H. ; Wang W. ; Lu J. ; Zakharov A. A. ; Hultman L. ; Uhrberg R. I. G. ; Syvajarvi M. ; Yakimova R. ; Zhang L. ; Sun J. ACS Nano 2020, 14, 4905.
doi: 10.1021/acsnano.0c00986 |
213 |
Li P. ; Wang Y. ; Wang Y. ; Jin G. ; Guo X. Y. ; Tong X. Chin. J. Chem. 2020, 38, 367.
doi: 10.1002/cjoc.201900299 |
214 |
Li K. ; Jiao Y. ; Yang Z. ; Zhang J. J. Mater. Sci. Technol. 2019, 35, 159.
doi: 10.1016/j.jmst.2018.09.018 |
215 |
Wang J. ; Wang Y. ; Tong X. ; Wang Y. ; Jin G. ; Guo X. Catal. Commun. 2020, 139, 105971.
doi: 10.1016/j.catcom.2020.105971 |
216 |
Guo Z. ; Lim S. H. ; Chu W. ; Liu Y. ; Borgna A. ACS Sustain. Chem. Eng. 2020, 8, 10747.
doi: 10.1021/acssuschemeng.0c02257 |
217 |
Qin Y. ; Li R. ; Mi W. ; Shi W. ; Lu B. ; Tong X. Diam. Relat. Mater. 2021, 111, 108163.
doi: 10.1016/j.diamond.2020.108163 |
218 |
Wang W. ; Wang M. ; Li X. ; Cai L. ; Shi S. Q. ; Duan C. ; Ni Y. ACS Sustain. Chem. Eng. 2019, 8, 38.
doi: 10.1021/acssuschemeng.9b06606 |
219 |
Sigaeva S. S. ; Shlyapin D. A. ; Temerev V. L. ; Tsyrul'nikov P. G. Russ. J. Appl. Chem. 2019, 92, 1258.
doi: 10.1134/s1070427219090118 |
220 |
Jiang L. ; Wang Y. ; Dai L. ; Yu Z. ; Yang Q. ; Yang S. ; Jiang D. ; Ma Z. ; Wu Q. ; Zhang B. ; et al Bioresour. Technol. 2019, 279, 202.
doi: 10.1016/j.biortech.2019.01.119 |
221 |
Yu Z. ; Jiang L. ; Wang Y. ; Li Y. ; Ke L. ; Yang Q. ; Peng Y. ; Xu J. ; Dai L. ; Wu Q. ; et al J. Clean. Prod. 2020, 255, 120179.
doi: 10.1016/j.jclepro.2020.120179 |
222 |
Pathak S. ; Saini S. ; Kondamudi K. ; Upadhyayula S. ; Bhattacharya S. Appl. Catal. B-Environ. 2021, 284, 119613.
doi: 10.1016/j.apcatb.2020.119613 |
223 |
Feng Y. ; Yu Z. ; Schuch J. ; Tao S. ; Wiehl L. ; Fasel C. ; Jaegermann W. ; Riedel R. J. Am. Ceram. Soc. 2019, 103, 508.
doi: 10.1111/jace.16731 |
224 |
Wang Y. ; Xu Y. ; Liu Q. ; Sun J. ; Ji S. ; Wang Z. J. J. Chem. Technol. Biotechnol. 2019, 94, 3780.
doi: 10.1002/jctb.6078 |
225 |
Duong-Viet C. ; Nhut J.-M. ; Truong-Huu T. ; Tuci G. ; Nguyen-Dinh L. ; Liu Y. ; Pham C. ; Giambastiani G. ; Pham-Huu C. Catal. Sci. Technol. 2020, 10, 5487.
doi: 10.1039/d0cy00945h |
226 |
Li M. Y. ; Lu W. D. ; He L. ; Schüth F. ; Lu A. H. ChemCatChem 2018, 11, 481.
doi: 10.1002/cctc.201801742 |
227 |
Jian J. ; Shi Y. ; Ekeroth S. ; Keraudy J. ; Syväjärvi M. ; Yakimova R. ; Helmersson U. ; Sun J. J. Mater. Chem. A 2019, 7, 4721.
doi: 10.1039/c9ta00020h |
228 |
Seifikar Gomi L. ; Afsharpour M. Appl. Organomet. Chem. 2019, 33, e4830.
doi: 10.1002/aoc.4830 |
229 |
Mishra G. ; Behera G. C. ; Singh S. K. ; Parida K. ACS Omega 2020, 5, 22808.
doi: 10.1021/acsomega.0c01921 |
230 |
Peng K. ; Zhou J. ; Gao H. ; Wang J. ; Wang H. ; Su L. ; Wan P. ACS Appl. Mater. Interfaces 2020, 12, 19519.
doi: 10.1021/acsami.0c02046 |
231 |
Liao Z. ; Xu T. ; Jiang Y. ; Jiang B. ; Wang J. ; Yang Y. ; Jiao Y. ; Yang Z. ; Zhang J. Ind. Eng. Chem. Res. 2018, 58, 27.
doi: 10.1021/acs.iecr.8b02114 |
232 |
Jiang M. ; Liu Z. ; Ding L. ; Chen J. Catal. Commun. 2017, 96, 46.
doi: 10.1016/j.catcom.2017.04.003 |
233 |
Pinzón M. ; Romero A. ; de Lucas Consuegra A. ; de la Osa A. R. ; Sánchez P. J. Ind. Eng. Chem. 2021, 94, 326.
doi: 10.1016/j.jiec.2020.11.003 |
234 |
Seifikar Gomi L. ; Afsharpour M. ; Lianos P. J. Ind. Eng. Chem. 2020, 89, 448.
doi: 10.1016/j.jiec.2020.06.019 |
235 |
Petersen E. M. ; Rao R. G. ; Vance B. C. ; Tessonnier J. -P. Appl. Catal. B-Environ. 2021, 286, 119904.
doi: 10.1016/j.apcatb.2021.119904 |
236 |
Feng L. ; Liu Y. ; Jiang Q. ; Liu W. ; Wu K.-H. ; Ba H. ; Pham-Huu C. ; Yang W. ; Su D. S. Catal. Today 2020, 357, 231.
doi: 10.1016/j.cattod.2019.02.046 |
237 |
Jiang R. ; Jiao Y. ; Xie Y. ; Yang Z. ; Zhang J. Chem. Eng. Process. 2019, 137, 108.
doi: 10.1016/j.cep.2019.02.010 |
238 |
Han C. ; Wang B. ; Wu N. ; Shen S. ; Wang Y. Appl. Surf. Sci. 2020, 515, 145952.
doi: 10.1016/j.apsusc.2020.145952 |
[1] | 曹玥晗, 郭瑞, 马敏智, 黄泽皑, 周莹. 活性位点电子密度变化对光催化CO2活化和选择转化的影响[J]. 物理化学学报, 2024, 40(1): 2303029 - . |
[2] | 张珹博, 陶晓萍, 蒋文超, 郭俊雪, 张鹏飞, 李灿, 李仁贵. 微波辅助合成促进铬酸铋晶体的光生电荷分离[J]. 物理化学学报, 2024, 40(1): 2303034 - . |
[3] | 赖可溱, 李丰彦, 李宁, 高旸钦, 戈磊. 金属-有机骨架衍生的Ni-CNT/ZnIn2S4异质结用于光催化产氢及其电荷转移途径的确定[J]. 物理化学学报, 2024, 40(1): 2304018 - . |
[4] | 宋千伟, 何观朝, 费慧龙. 基于单原子催化剂的光热催化转化:原理和应用[J]. 物理化学学报, 2023, 39(9): 2212038 -0 . |
[5] | 王中辽, 汪静, 张金锋, 代凯. 光激发电荷在光催化氧化还原反应中的全利用[J]. 物理化学学报, 2023, 39(6): 2209037 - . |
[6] | 王吉超, 乔秀, 史维娜, 贺景, 陈军, 张万庆. 多面体状Cu2O修饰片状BiOI的S型异质结构筑及光催化水蒸气中CO2转化性能研究[J]. 物理化学学报, 2023, 39(6): 2210003 - . |
[7] | 昝忠奇, 李喜宝, 高晓明, 黄军同, 罗一丹, 韩露. 0D/2D碳氮量子点(CNQDs)/BiOBr复合的S型异质结高效光催化降解和产H2O2[J]. 物理化学学报, 2023, 39(6): 2209016 - . |
[8] | 孙涛, 李晨曦, 鲍钰鹏, 樊君, 刘恩周. S-型MnCo2S4/g-C3N4异质结光催化产氢性能研究[J]. 物理化学学报, 2023, 39(6): 2212009 - . |
[9] | 吴新鹤, 陈郭强, 王娟, 李金懋, 王国宏. S-Scheme异质结光催化产氢研究进展[J]. 物理化学学报, 2023, 39(6): 2212016 -0 . |
[10] | 张怡宁, 高明, 陈松涛, 王会琴, 霍鹏伟. Ag/CN/ZnIn2S4 S型异质结等离子体光催化剂的制备及其增强光还原CO2研究[J]. 物理化学学报, 2023, 39(6): 2211051 - . |
[11] | 罗铖, 龙庆, 程蓓, 朱必成, 王临曦. Pt-C3N4/BiOCl S型异质结应用于光催化CO2还原的理论计算研究[J]. 物理化学学报, 2023, 39(6): 2212026 - . |
[12] | 张珂瑜, 李云锋, 袁仕丹, 张洛红, 王倩. S型异质结H2O2光催化剂的研究进展[J]. 物理化学学报, 2023, 39(6): 2212010 - . |
[13] | 周文杰, 景启航, 李家馨, 陈颖芝, 郝国栋, 王鲁宁. 有机光催化剂用于太阳能水分解:分子水平和聚集体水平改性[J]. 物理化学学报, 2023, 39(5): 2211010 -0 . |
[14] | 卢尔君, 陶俊乾, 阳灿, 侯乙东, 张金水, 王心晨, 付贤智. 碳包覆Pd/TiO2光催化产氢协同胺类选择性氧化合成亚胺[J]. 物理化学学报, 2023, 39(4): 2211029 -0 . |
[15] | 雷永刚, 赵天宇, 黄锦鸿, 张颖贞, 臧雪瑞, 李晓, 蔡伟龙, 黄剑莹, 胡军, 赖跃坤. 金属碳化钨与液相染料光敏剂协同促进光催化制氢[J]. 物理化学学报, 2023, 39(4): 2206006 -0 . |
|