物理化学学报 >> 2012, Vol. 28 >> Issue (01): 195-200.doi: 10.3866/PKU.WHXB201228195

催化和表面科学 上一篇    下一篇

TEPA在SBA-15(P)上的嫁接形态及其对CO2吸附性能的影响

杨永红1,2, 李芬芬1,3, 杨成1, 张文郁3, 吴晋沪1   

  1. 1. 中国科学院青岛生物能源与过程研究所, 生物燃料重点实验室, 山东青岛 266101;
    2. 中国科学院研究生院, 北京 100049;
    3. 山东轻工业学院, 济南 250353
  • 收稿日期:2011-08-08 修回日期:2011-10-10 发布日期:2011-12-29
  • 通讯作者: 杨成 E-mail:yangcheng@qibebt.ac.cn
  • 基金资助:

    山东省自然科学基金(2009ZRB01250)和青岛市科技发展计划(1263194353127)资助项目

Grafting Morphologies of TEPA on SBA-15(P) and Its Effect on CO2 Adsorption Performance

YANG Yong-Hong1,2, LI Fen-Fen1,3, YANG Cheng1, ZHANG Wen-Yu3, WU Jin-Hu1   

  1. 1. Key Laboratory of Biofuels, Qindao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong Province, P. R. China;
    2. Graduate University of Chinese Academy of Sciences, Beijing 100049, P. R. China;
    3. Shandong Polytechnic University, Jinan 250353, P. R. China
  • Received:2011-08-08 Revised:2011-10-10 Published:2011-12-29
  • Contact: YANG Cheng E-mail:yangcheng@qibebt.ac.cn
  • Supported by:

    The project was supported by the Natural Science Foundation of Shandong Province, China (2009ZRB01250) and Technology Development Program of Qingdao Government, China (1263194353127).

摘要: 通过控制浸渍方法和其过程将四乙烯五胺(TEPA)负载到SBA-15原粉上制备氨基功能化的CO2吸附材料TEPA/SBA-15(P). 利用X射线衍射(XRD)、氮吸附、元素分析和傅里叶变换红外(FTIR)光谱等手段对各种吸附材料进行表征分析, 并对其CO2吸附能力进行评价. 结果表明: TEPA乙醇溶液的动态浸渍过程可以使有机胺高度均匀地负载到SBA-15(P)的孔道内, 并形成有利于CO2吸脱附的键合形式. 提出了TEPA在SBA-15(P)上的键合作用机制, 一方面TEPA的端基氨(-NH2)与载体中的表面羟基(-OH)和醚键(C-O-C)形成氢键,提高了TEPA的分散度; 另一方面, TEPA乙醇溶液的动态浸渍过程有效地避免了TEPA分子间或分子内氢键的形成, 从而使有机胺TEPA氨基官能团具有较高的吸附容量.

关键词: SBA-15(P), TEPA, CO2, 动态浸渍, 键合作用, 吸附容量

Abstract: Various amine-functionalized CO2 adsorbents were prepared by incorporating tetraethylenepenthamine (TEPA) onto SBA-15(P) by controlling the impregnation method and its process. The materials were characterized using X-ray diffraction (XRD), N2-adsorption, elemental analysis, and Fourier transform infrared (FTIR) techniques. Their adsorptive capacities were determined by CO2-temperature programmed desorption (TPD). The results indicate that the dynamic impregnation process using a TEPA ethanol solution was successful in loading TEPA into the channels of SBA-15(P). Moreover, bonding formation between the highly dispersed TEPA and SBA-15(P) was facilitated to CO2 adsorption/desorption. Therefore, a binding mechanism is proposed. The -NH2 group of TEPA forms hydrogen bonds with -OH and C-O-C groups on SBA-15(P), which results in the better dispersion of TEPA. However, the dynamic impregnation process for the TEPA ethanol solution can effectively avoid the formation of hydrogen bonds between the intra- and inter-molecules resulting in the high adsorptive capacity of the amino groups in TEPA.

Key words: SBA-15(P), TEPA, CO2, Dynamic impregnation, Bond formation, Adsorptive capacity