物理化学学报 >> 2014, Vol. 30 >> Issue (6): 1049-1054.doi: 10.3866/PKU.WHXB201404092

理论与计算化学 上一篇    下一篇

氮掺杂六角石墨烯纳米结构的近红外等离激元研究

尹海峰1, 张红2, 岳莉1   

  1. 1 凯里学院物理与电子工程学院, 贵州凯里556011;
    2 四川大学物理科学与技术学院, 成都610065
  • 收稿日期:2014-01-15 修回日期:2014-04-08 发布日期:2014-05-26
  • 通讯作者: 尹海峰,张红 E-mail:yinhaifeng1212@126.com;hongzhang@scu.edu.cn
  • 基金资助:

    国家自然科学基金(11074176),贵州省科学技术基金(黔科合J 字LKK[2013]19 号),贵州省教育厅高校优秀科技创新人才支持计划(黔教合KY字[2013]152)及凯里学院规划项目(Z1308)资助项目

Near-Infrared Plasmon Study on N-Doped Hexagonal Graphene Nanostructures

YIN Hai-Feng1, ZHANG Hong2, YUE Li1   

  1. 1 College of Physics and Electronic Engineering, Kaili University, Kaili 556011, Guizhou Province, P. R. China;
    2 College of Physical Science and Technology, Sichuan University, Chengdu 610065, P. R. China
  • Received:2014-01-15 Revised:2014-04-08 Published:2014-05-26
  • Contact: YIN Hai-Feng, ZHANG Hong E-mail:yinhaifeng1212@126.com;hongzhang@scu.edu.cn
  • Supported by:

    The project was supported by the National Natural Science Foundation of China (11074176), Science and Technology Foundation of Guizhou Province, China (LKK[2013]19), Universities Outstanding Scientific and Technical Innovators Support Program of Department of Education of Guizhou Province, China (KY [2013]152), and Planning Project of Kaili University, China (Z1308).

摘要:

基于含时密度泛函理论研究了氮掺杂六角石墨烯纳米结构的近红外等离激元. 沿一定的激发方向,边长为1 nm的氮掺杂六角石墨烯纳米结构在整个近红外光谱区都有强度较大的等离激元共振. 参与这种近红外等离激元模式共振的电子在六角纳米结构的中心和边缘区域之间来回振荡. 近红外等离激元共振模式的形成依赖于氮掺杂的位置和纳米结构的尺度大小. 只有当氮掺杂在靠近边界区域时体系才会在近红外光谱区形成等离激元共振模式. 对于边长小于1 nm的六角石墨烯纳米结构,氮掺杂后体系不能在近红外光谱区形成等离激元共振模式.

关键词: 等离激元, 氮掺杂石墨烯, 纳米结构, 近红外光谱, 含时密度泛函理论

Abstract:

Near-infrared plasmons in N-doped hexagonal graphene nanostructures were investigated using time-dependent density functional theory. Along a certain direction, N-doped hexagonal graphene nanostructures with a side length of 1 nm have more intense plasmon resonances throughout the nearinfrared spectral region. The electrons that participate in these near-infrared plasmon resonances oscillate back and forth between the center and edge regions of the hexagonal nanostructures. The formation of a near-infrared plasmon resonance mode depends on the nitrogen-doping position and the scale size of the graphene nanostructure. It is only when the nitrogen-doped location is close to the edge of the nanostructures, near-infrared plasmon resonance mode of the graphene nanostructure will be formed. For N-doped hexagonal graphene nanostructures with a side length of less than 1 nm, there is no plasmon resonance in the nearinfrared spectral region.

Key words: Plasmon, N-doped graphene, Nanostructure, Near-infrared spectroscopy, Time-dependent density functional theory