物理化学学报 >> 2021, Vol. 37 >> Issue (7): 2009033.doi: 10.3866/PKU.WHXB202009033
所属专题: 电催化
收稿日期:
2020-09-09
录用日期:
2020-11-05
发布日期:
2020-11-16
通讯作者:
孙振宇
E-mail:sunzy@mail.buct.edu.cn
作者简介:
Zhenyu Sun was born in April 1977. He is currently a full professor in the College of Chemical Engineering at Beijing University of Chemical Technology (China). He completed his Ph.D. at Institute of Chemistry, Chinese Academy of Sciences in 2006. He did postdoctoral research in Trinity College Dublin (Ireland) from 2006 to 2008, at Ruhr University, Bochum (Germany) from 2011 to 2014, and University of Oxford from 2014 to 2015. He has obtained a Humboldt Research Fellowship for Experienced Researchers (Germany). His current research focuses on energy conversion reactions using two-dimensional materials
基金资助:
Received:
2020-09-09
Accepted:
2020-11-05
Published:
2020-11-16
Contact:
Zhenyu Sun
E-mail:sunzy@mail.buct.edu.cn
About author:
Zhenyu Sun, Email: sunzy@mail.buct.edu.cn. Tel.: +86-13301308339Supported by:
摘要:
电催化方法还原二氧化碳制备高附加值化学品,在降低二氧化碳浓度、平衡碳循环和储存可再生途径产生的电能等方面展现较大潜力。通过设计高效电催化剂来降低二氧化碳电催化还原过程所需的过电位并提高产物的选择性和电流密度,对电催化还原二氧化碳的发展和应用具有重要意义。本文总结了金属氧化物基材料作为电催化剂在二氧化碳电还原中的最新研究进展,深入探讨了金属氧化物在催化反应中的作用、稳定性及结构性能关系,并对金属氧化物基材料在二氧化碳电还原中未来的设计和研究方向做出思考。
郝磊端, 孙振宇. 基于金属氧化物材料的二氧化碳电催化还原[J]. 物理化学学报, 2021, 37(7): 2009033.
Leiduan Hao, Zhenyu Sun. Metal Oxide-Based Materials for Electrochemical CO2 Reduction[J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009033.
Fig 4
a) SEM image, b) Transmission electron microscopy (TEM) image and selected-area electron diffraction (SAED) analysis (inset), c) High-resolution transmission electron microscopy (HRTEM) image and d) Scanning TEM-EDS elemental mapping of the multihollow Cu2O. e) Schematic illustration of the confinement effect. Adapted from Ref. 47. Copyright © 2020, American Chemical Society. "
Fig 8
a) Cu 2p and b) O 1s XPS spectra. c) CO2 adsorption isotherms. d) Electrochemical impedance spectroscopy (EIS) curves of the initial and cathodized La2CuO4 catalysts in the flow cell at a potential of −0.4 V vs. RHE in 1.0 mol∙L−1 KOH. Adapted from Ref. 67. Copyright © 2020, American Chemical Society. "
Fig 13
a, b) HRTEM images and SAED pattern (inset in b) of the WIT SnO2 nanofibers. c, d) Scanning TEM images and line scan results (inset in d) of the WIT SnO2 nanofibers. e) Magnified TEM image of the WIT SnO2 nanofibers. FE for f) C1 products, g) HCOOH, h) CO and i) H2 over the WIT SnO2 electrode and the NP SnO2 electrode. Adapted from Ref. 87. Copyright © 2018, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. "
Fig 15
a) CO2 adsorption isotherms. b) Tafel plots of formate for the Co3O4 atomic layers with different thicknesses. c) Schematic illustration of CO2 electroreduction to formate over the Co3O4 atomic-layers. Adapted from Ref. 95. Copyright © 2016, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. "
Table 1
Summary of representative metal oxide-based materials for ECR."
Electrocatalyst | Electrolyte | Major product and maximum FE | Current density b | Stability | Ref. |
O2 plasma treated Cu | 0.1 mol∙L−1 KHCO3 | C2H4, 60.0% at −0.9 V versus RHE | N.A. | 1 h | |
Cyclic voltammetry (CV)-treated Cu | 0.1 mol∙L−1 KHCO3 | C2H4, 40.0% at −1.0 V versus RHE | N.A. | N.A. | |
Multihollow Cu2O | 2 mol∙L−1 KOH | C2+ (C2H4, ethanol, propanol, acetic acid), 75.2% at −0.61 V versus RHE | C2+: 267 mA·cm−2 at −0.61 V versus RHE | > 3 h | |
Cu-Cu2O/Cu | 0.1 mol∙L−1 KCl | C2 (ethanol, acetic acid), 80.7% at −0.4 V versus RHE | C2: 11.5 mA·cm−2 at −0.4 V versus RHE | 24 h | |
Cu2O@CuMOF | 0.1 mol∙L−1 KHCO3 | CH4, 63.2% at −1.71 V versus RHE | CH4: 8.4 mA·cm−2 at −1.71 V versus RHE | 1 h | |
Cu2O-MWCNTs | 0.5 mol∙L−1 NaHCO3 | CH3OH, 38.0% at −0.8 V versus Ag/AgCl | 7.5 mA·cm−2 at −0.8 V versus Ag/AgCl | > 20 min | |
Cu3NiOC | 0.5 mol∙L−1 KHCO3 | HCOO−, 95.9% at −0.57 V versus RHE | HCOO−: 10.9 mA·cm−2 at −0.57 V versus RHE | 25 h | |
Cu/La2CuO4 | 1 mol∙L−1 KOH | CH4, 56.3% at −1.4 V versus RHE | CH4: 117 mA·cm−2 at −1.4 V versus RHE | > 20 min | |
SnOx | 0.1 mol∙L−1 KHCO3 | HCOO−, 64.0% at −1.2 V versus Ag/AgCl | 3 mA·cm−2 at −1.2 V versus Ag/AgCl | 2 h | |
SnOx/Sn | 0.1 mol∙L−1 KHCO3 | HCOO−, 89.0% at −1.7 V versus Ag/AgCl | 6 mA·cm−2 at −1.7 V versus Ag/AgCl | 10 times of reuse | |
Cu/SnO2 | 0.5 mol∙L−1 KHCO3 | CO, 93.0% at −0.7 V versus RHE | 4.6 mA·cm−2 at −0.7 V versus RHE | N.A. | |
Cu/SnOx | 0.1 mol∙L−1 KHCO3 | CO, 89.0% at −0.99 V versus RHE | CO: 11.3 mA·cm−2 at −0.99 V versus RHE | N.A. | |
PbSnO3/C | 0.1 mol∙L−1 nBu4NPF6 in PC a | C2O42−, 85.1% at −1.9 V versus Ag/Ag+ | C2O42−: 2.0 mA·cm−2 at −1.9 V versus Ag/Ag+ | N.A. | |
Zn2SnO4/SnO2 | 0.1 mol∙L−1 KHCO3 | HCOO−, 77.0% at −1.08 V versus RHE | HCOO−: 5.77 mA·cm−2 at −1.18 V versus RHE | 24 h | |
1D wire in tube SnO2 | 0.1 mol∙L−1 KHCO3 | HCOO−, 63.0% at −0.99 V versus RHE | N.A. | 14 h | |
SnO2 quantum wires | 0.1 mol∙L−1 KHCO3 | HCOO−, 87.3% at −1.156 V versus RHE | HCOO−: 13.7 mA·cm−2 at −1.156 V versus RHE | 7 | |
3D SnO2 nanosheets on carbon cloth | 0.5 mol∙L−1 NaHCO3 | HCOO−, 87.0% at −1.6 V versus Ag/AgCl | 50 mA·cm−2 at −1.6 V versus Ag/AgCl | 24 h | |
Co3O4 layer of 1.72 nm thickness | 0.1 mol∙L−1 KHCO3 | HCOO−, 64.3% at −0.88 V versus SCE | 0.68 mA·cm−2 at −0.88 V versus SCE | 20 h | |
Bi2O3 | 0.5 mol∙L−1 KHCO3 | HCOO−, 91.0% at −0.9 V versus RHE | HCOO−: 8 mA·cm−2 at −0.9 V versus RHE | 24 h | |
Bi2O3@C | 0.5 mol∙L−1 KHCO3 | HCOO−, 92.0% at −0.9 V versus RHE | HCOO−: 7.5 mA·cm−2 at −0.9 V versus RHE | 10 h | |
In2O3@C | 0.5 mol∙L−1 KHCO3 | HCOO−, 87.6% at −0.9 V versus RHE | 14.8 mA·cm−2 at −0.9 V versus RHE | 12 h | |
ZnO nanosheets | 0.1 mol∙L−1 KHCO3 | CO, 83.0% at −1.1 V versus RHE | CO: 16.1 mA·cm−2 at −1.1 V versus RHE | 8 h | |
ZrO2/N-doped carbon | 0.5 mol∙L−1 KHCO3 | CO, 64.0% at −0.4 V versus RHE | 2.6 mA·cm−2 at −0.4 V versus RHE | 5 h | |
Ga2O3 | 3.0 mol∙L−1 KCl | HCOOH, 80.0% at −2 V versus Ag/AgCl | 0.3 mA·cm−2 at −2 V versus Ag/AgCl | 50 cycles | |
RuO2-coated diamond | pH = 3.9 aqueous solution | HCOOH, 40.0% at −0.6 V versus SCE | N.A. | N.A. |
1 |
He M. ; Sun Y. ; Han B. Angew. Chem., Int. Ed. 2013, 52, 9620.
doi: 10.1002/anie.201209384 |
2 |
Shih C. F. ; Zhang T. ; Li J. ; Bai C. Joule 2018, 2, 1925.
doi: 10.1016/j.joule.2018.08.016 |
3 |
Bushuyev O. S. ; De Luna P. ; Dinh C. T. ; Tao L. ; Saur G. ; van de Lagemaat J. ; Kelley S. O. ; Sargent E. H. Joule 2018, 2, 825.
doi: 10.1016/j.joule.2017.09.003 |
4 |
Zheng Y. ; Vasileff A. ; Zhou X. ; Jiao Y. ; Jaroniec M. ; Qiao S. -Z. J. Am. Chem. Soc. 2019, 141, 7646.
doi: 10.1021/jacs.9b02124 |
5 | Ning H. ; Wang W. H. ; Mao Q. H. ; Zheng S. R. ; Yang Z. X. ; Zhao Q. S. ; Wu M. B. Acta Phys. -Chim. Sin. 2018, 34, 938. |
宁汇; 王文行; 毛勤虎; 郑诗瑞; 杨中学; 赵青山; 吴明铂. 物理化学学报, 2018, 34, 938.
doi: 10.3866/PKU.WHXB201801263 |
|
6 | Gao Y. N. ; Liu S. Z. ; Zhao Z. Q. ; Tao H. C. ; Sun Z. Y. Acta Phys. -Chim. Sin. 2018, 34, 858. |
高云楠; 刘世桢; 赵振清; 陶亨聪; 孙振宇. 物理化学学报, 2018, 34, 858.
doi: 10.3866/PKU.WHXB201802061 |
|
7 |
Fan Q. ; Zhang M. ; Jia M. ; Liu S. ; Qiu J. ; Sun Z. Mater. Today Energy 2018, 10, 280.
doi: 10.1016/j.mtener.2018.10.003 |
8 |
Xie H. ; Wang T. ; Liang J. ; Li Q. ; Sun S. Nano Today 2018, 21, 41.
doi: 10.1016/j.nantod.2018.05.001 |
9 |
Zhu W. ; Michalsky R. ; Metin Ö. ; Lv H. ; Guo S. ; Wright C. J. ; Sun X. ; Peterson A. A. ; Sun S. J. Am. Chem. Soc. 2013, 135, 16833.
doi: 10.1021/ja409445p |
10 |
Yang M. ; Zhang J. ; Cao Y. ; Wu M. ; Qian K. ; Zhang Z. ; Liu H. ; Wang J. ; Chen W. ; Huang W. ChemCatChem 2018, 10, 5128.
doi: 10.1002/cctc.201801423 |
11 |
Chen Z. ; Yao S. ; Liu L. J. Mater. Chem. A 2017, 5, 24651.
doi: 10.1039/C7TA07495F |
12 |
Zhang T. ; Qiu Y. ; Yao P. ; Li X. ; Zhang H. ACS Sustainable Chem. Eng. 2019, 7, 15190.
doi: 10.1021/acssuschemeng.9b01985 |
13 | Meng Y. C. ; Kuang S. Y. ; Liu H. ; Fan Q. ; Ma X. B. ; Zhang S. Acta Phys. -Chim. Sin. 2021, 37, 2006034. |
孟怡辰; 况思宇; 刘海; 范群; 马新宾; 张生. 物理化学学报, 2021, 37, 2006034.
doi: 10.3866/PKU.WHXB202006034 |
|
14 |
Jia M. ; Fan Q. ; Liu S. ; Qiu J. ; Sun Z. Curr. Opin. Green Sustainable Chem. 2019, 16, 1.
doi: 10.1016/j.cogsc.2018.11.002 |
15 |
Angamuthu R. ; Byers P. ; Lutz M. ; Spek A. L. ; Bouwman E. Science 2010, 327, 313.
doi: 10.1126/science.1177981 |
16 |
Weng Z. ; Wu Y. ; Wang M. ; Jiang J. ; Yang K. ; Huo S. ; Wang X. -F. ; Ma Q. ; Brudvig G. W. ; Batista V. S. ; et al Nat. Commun. 2018, 9, 415.
doi: 10.1038/s41467-018-02819-7 |
17 |
Ma T. ; Fan Q. ; Tao H. ; Han Z. ; Jia M. ; Gao Y. ; Ma W. ; Sun Z. Nanotechnology 2017, 28, 472001.
doi: 10.1088/1361-6528/aa8f6f |
18 |
Ma T. ; Fan Q. ; Li X. ; Qiu J. ; Wu T. ; Sun Z. J. CO2 Util. 2019, 30, 168.
doi: 10.1016/j.jcou.2019.02.001 |
19 |
Sun Z. ; Ma T. ; Tao H. ; Fan Q. ; Han B. Chem 2017, 3, 560.
doi: 10.1016/j.chempr.2017.09.009 |
20 |
Bandi A. J. Electrochem. Soc. 1990, 137, 2157.
doi: 10.1149/1.2086903 |
21 |
Tayyebi E. ; Hussain J. ; Abghoui Y. ; Skúlason E. J. Phys. Chem. C 2018, 122, 10078.
doi: 10.1021/acs.jpcc.8b02224 |
22 |
Mistry H. ; Varela A. S. ; Bonifacio C. S. ; Zegkinoglou I. ; Sinev I. ; Choi Y. -W. ; Kisslinger K. ; Stach E. A. ; Yang J. C. ; Strasser P. ; et al Nat. Commun. 2016, 7, 12123.
doi: 10.1038/ncomms12123 |
23 |
Zhang R. ; Lv W. ; Lei L. Appl. Surf. Sci. 2015, 356, 24.
doi: 10.1016/j.apsusc.2015.08.006 |
24 |
Permyakova A. A. ; Herranz J. ; El Kazzi M. ; Diercks J. S. ; Povia M. ; Mangani L. R. ; Horisberger M. ; Pătru A. ; Schmidt T. J. ChemPhysChem 2019, 20, 3120.
doi: 10.1002/cphc.201900468 |
25 |
Chu S. ; Yan X. ; Choi C. ; Hong S. ; Robertson A. ; Masa J. ; Han B. ; Jung Y. ; Sun Z. Green Chem. 2020, 22, 6540.
doi: 10.1039/D0GC02279A |
26 |
Kortlever R. ; Shen J. ; Schouten K. J. P. ; Calle-Vallejo F. ; Koper M. T. M. J. Phys. Chem. Lett. 2015, 6, 4073.
doi: 10.1021/acs.jpclett.5b01559 |
27 |
Kumar B. ; Atla V. ; Brian J. P. ; Kumari S. ; Nguyen T. Q. ; Sunkara M. ; Spurgeon J. M. Angew. Chem. Int. Ed. 2017, 56, 3645.
doi: 10.1002/anie.201612194 |
28 |
Peterson A. A. ; Abild-Pedersen F. ; Studt F. ; Rossmeisl J. ; Nørskov J. K. Energy Environ. Sci. 2010, 3, 1311.
doi: 10.1039/C0EE00071J |
29 |
Cheng T. ; Xiao H. ; Goddard W. A. J. Am. Chem. Soc. 2016, 138, 13802.
doi: 10.1021/jacs.6b08534 |
30 |
Schouten K. J. P. ; Qin Z. ; Pérez Gallent E. ; Koper M. T. M. J. Am. Chem. Soc. 2012, 134, 9864.
doi: 10.1021/ja302668n |
31 |
Gao D. ; Arán-Ais R. M. ; Jeon H. S. ; Roldan Cuenya B. Nat. Catal. 2019, 2, 198.
doi: 10.1038/s41929-019-0235-5 |
32 | Yang Y. ; Zhang Y. ; Hu J. S. ; Wan L. J. Acta Phys. -Chim. Sin. 2020, 36, 1906085. |
杨艳; 张云; 胡劲松; 万立骏. 物理化学学报, 2020, 36, 1906085.
doi: 10.3866/PKU.WHXB201906085 |
|
33 |
Mistry H. ; Reske R. ; Zeng Z. ; Zhao Z. -J. ; Greeley J. ; Strasser P. ; Cuenya B. R. J. Am. Chem. Soc. 2014, 136, 16473.
doi: 10.1021/ja508879j |
34 |
Yang K. D. ; Ko W. R. ; Lee J. H. ; Kim S. J. ; Lee H. ; Lee M. H. ; Nam K. T. Angew. Chem. Int. Ed. 2017, 56, 796.
doi: 10.1002/anie.201610432 |
35 |
Zhang Y. -J. ; Sethuraman V. ; Michalsky R. ; Peterson A. A. ACS Catal. 2014, 4, 3742.
doi: 10.1021/cs5012298 |
36 |
Ma M. ; Djanashvili K. ; Smith W. A. Angew. Chem. Int. Ed. 2016, 55, 6680.
doi: 10.1002/anie.201601282 |
37 |
Xiang H. ; Rasul S. ; Hou B. ; Portoles J. ; Cumpson P. ; Yu E. H. ACS Appl. Mater. Interfaces 2020, 12, 601.
doi: 10.1021/acsami.9b16862 |
38 |
Wang H. ; Matios E. ; Wang C. ; Luo J. ; Lu X. ; Hu X. ; Li W. Nano Lett. 2019, 19, 3925.
doi: 10.1021/acs.nanolett.9b01197 |
39 |
Li C. W. ; Kanan M. W. J. Am. Chem. Soc. 2012, 134, 7231.
doi: 10.1021/ja3010978 |
40 |
Eilert A. ; Cavalca F. ; Roberts F. S. ; Osterwalder J. ; Liu C. ; Favaro M. ; Crumlin E. J. ; Ogasawara H. ; Friebel D. ; Pettersson L. ; et al J. Phys. Chem. Lett. 2017, 8, 285.
doi: 10.1021/acs.jpclett.6b02273 |
41 |
Favaro M. ; Xiao H. ; Cheng T. ; Goddard W. A. ; Yano J. ; Crumlin E. J. Proc. Natl. Acad. Sci. 2017, 114, 6706.
doi: 10.1073/pnas.1701405114 |
42 |
Fields M. ; Hong X. ; Nørskov J. K. ; Chan K. J. Phys. Chem. C 2018, 122, 16209.
doi: 10.1021/acs.jpcc.8b04983 |
43 |
Garza A. J. ; Bell A. T. ; Head-Gordon M. J. Phys. Chem. Lett. 2018, 9, 601.
doi: 10.1021/acs.jpclett.7b03180 |
44 |
Xiao H. ; Goddard W. A. ; Cheng T. ; Liu Y. Proc. Natl. Acad. Sci. 2017, 114, 6685.
doi: 10.1073/pnas.1702405114 |
45 |
Chou T. -C. ; Chang C. -C. ; Yu H. -L. ; Yu W. -Y. ; Dong C. -L. ; Velasco-Vélez J. -J. ; Chuang C. -H. ; Chen L. -C. ; Lee J. -F. ; Chen J. -M. ; et al J. Am. Chem. Soc. 2020, 142, 2857.
doi: 10.1021/jacs.9b11126 |
46 |
Velasco-Vélez J. -J. ; Jones T. ; Gao D. ; Carbonio E. ; Arrigo R. ; Hsu C. -J. ; Huang Y. -C. ; Dong C. -L. ; Chen J. -M. ; Lee J. -F. ; et al ACS Sustainable Chem. Eng. 2019, 7, 1485.
doi: 10.1021/acssuschemeng.8b05106 |
47 |
Yang P. -P. ; Zhang X. -L. ; Gao F. -Y. ; Zheng Y. -R. ; Niu Z. -Z. ; Yu X. ; Liu R. ; Wu Z. -Z. ; Qin S. ; Chi L. -P. ; et al J. Am. Chem. Soc. 2020, 142, 6400.
doi: 10.1021/jacs.0c01699 |
48 |
Zhu Q. ; Sun X. ; Yang D. ; Ma J. ; Kang X. ; Zheng L. ; Zhang J. ; Wu Z. ; Han B. Nat. Commun. 2019, 10, 3851.
doi: 10.1038/s41467-019-11599-7 |
49 |
Zhang W. ; Huang C. ; Xiao Q. ; Yu L. ; Shuai L. ; An P. ; Zhang J. ; Qiu M. ; Ren Z. ; Yu Y. J. Am. Chem. Soc. 2020, 142, 11417.
doi: 10.1021/jacs.0c01562 |
50 |
Tan X. ; Yu C. ; Zhao C. ; Huang H. ; Yao X. ; Han X. ; Guo W. ; Cui S. ; Huang H. ; Qiu J. ACS Appl. Mater. Interfaces 2019, 11, 9904.
doi: 10.1021/acsami.8b19111 |
51 |
Irfan Malik M. ; Malaibari Z. O. ; Atieh M. ; Abussaud B. Chem. Eng. Sci. 2016, 152, 468.
doi: 10.1016/j.ces.2016.06.035 |
52 |
Gao D. ; Zhang Y. ; Zhou Z. ; Cai F. ; Zhao X. ; Huang W. ; Li Y. ; Zhu J. ; Liu P. ; Yang F. ; et al J. Am. Chem. Soc. 2017, 139, 5652.
doi: 10.1021/jacs.7b00102 |
53 |
Lee C. W. ; Shin S. -J. ; Jung H. ; Nguyen D. L. T. ; Lee S. Y. ; Lee W. H. ; Won D. H. ; Kim M. G. ; Oh H. -S. ; Jang T. ; et al ACS Energy Letters 2019, 4, 2241.
doi: 10.1021/acsenergylett.9b01721 |
54 | Chu S. L. ; Li X. ; Robertson A. W. ; Sun Z. Y. Acta Phys. -Chim. Sin. 2021, 37, 2009023. |
楚森林; 李欣; Alex W. Robertson; 孙振宇. 物理化学学报, 2021, 37, 2009023.
doi: 10.3866/PKU.WHXB202009023 |
|
55 |
Lee S. ; Park G. ; Lee J. ACS Catal. 2017, 7, 8594.
doi: 10.1021/acscatal.7b02822 |
56 |
He J. ; Dettelbach K. E. ; Salvatore D. A. ; Li T. ; Berlinguette C. P. Angew. Chem. Int. Ed. 2017, 56, 6068.
doi: 10.1002/anie.201612038 |
57 |
Li Y. ; Chu S. ; Shen H. ; Xia Q. ; Robertson A. W. ; Masa J. ; Siddiqui U. ; Sun Z. ACS Sustainable Chem. Eng. 2020, 8, 4948.
doi: 10.1021/acssuschemeng.0c00800 |
58 |
Ren D. ; Ang B. S. -H. ; Yeo B. S. ACS Catal. 2016, 6, 8239.
doi: 10.1021/acscatal.6b02162 |
59 |
Chen K. ; Zhang X. ; Williams T. ; Bourgeois L. ; MacFarlane D. R. Electrochim. Acta 2017, 239, 84.
doi: 10.1016/j.electacta.2017.04.019 |
60 |
An X. ; Li S. ; Yoshida A. ; Yu T. ; Wang Z. ; Hao X. ; Abudula A. ; Guan G. ACS Appl. Mater. Interfaces 2019, 11, 42114.
doi: 10.1021/acsami.9b13270 |
61 |
Larrazábal G. O. ; Martín A. J. ; Mitchell S. ; Hauert R. ; Pérez-Ramírez J. ACS Catal. 2016, 6, 6265.
doi: 10.1021/acscatal.6b02067 |
62 |
Yang H. -P. ; Yue Y. -N. ; Qin S. ; Wang H. ; Lu J. -X. Green Chem. 2016, 18, 3216.
doi: 10.1039/C6GC00091F |
63 |
Rasul S. ; Anjum D. H. ; Jedidi A. ; Minenkov Y. ; Cavallo L. ; Takanabe K. Angew. Chem. Int. Ed. 2015, 54, 2146.
doi: 10.1002/anie.201410233 |
64 |
Yang D. ; Zhu Q. ; Sun X. ; Chen C. ; Lu L. ; Guo W. ; Liu Z. ; Han B. Green Chem. 2018, 20, 3705.
doi: 10.1039/C8GC01552J |
65 |
Peña M. A. ; Fierro J. L. G. Chem. Rev. 2001, 101, 1981.
doi: 10.1021/cr980129f |
66 |
Lu J. ; Zhu C. ; Pan C. ; Lin W. ; Lemmon J. P. ; Chen F. ; Li C. ; Xie K. Sci. Adv. 2018, 4, eaar5100.
doi: 10.1126/sciadv.aar5100 |
67 |
Chen S. ; Su Y. ; Deng P. ; Qi R. ; Zhu J. ; Chen J. ; Wang Z. ; Zhou L. ; Guo X. ; Xia B. Y. ACS Catal. 2020, 10, 4640.
doi: 10.1021/acscatal.0c00847 |
68 |
Nur Hossain M. ; Chen S. ; Chen A. Appl. Catal. B 2019, 259, 118096.
doi: 10.1016/j.apcatb.2019.118096 |
69 |
Pang Y. ; Burdyny T. ; Dinh C. -T. ; Kibria M. G. ; Fan J. Z. ; Liu M. ; Sargent E. H. ; Sinton D. Green Chem. 2017, 19, 4023.
doi: 10.1039/C7GC01677H |
70 |
Wu M. ; Zhu C. ; Wang K. ; Li G. ; Dong X. ; Song Y. ; Xue J. ; Chen W. ; Wei W. ; Sun Y. ACS Appl. Mater. Interfaces 2020, 12, 11562.
doi: 10.1021/acsami.9b21153 |
71 |
Kim J. ; Choi W. ; Park J. W. ; Kim C. ; Kim M. ; Song H. J. Am. Chem. Soc. 2019, 141, 6986.
doi: 10.1021/jacs.9b00911 |
72 |
Jitaru M. ; Lowy D. A. ; Toma M. ; Toma B. C. ; Oniciu L. J. Appl. Electrochem. 1997, 27, 875.
doi: 10.1023/A:1018441316386 |
73 |
Chen Y. ; Kanan M. W. J. Am. Chem. Soc. 2012, 134, 1986.
doi: 10.1021/ja2108799 |
74 |
Wu J. ; Risalvato F. G. ; Ma S. ; Zhou X. -D. J. Mater. Chem. A 2014, 2, 1647.
doi: 10.1039/C3TA13544F |
75 |
An X. ; Li S. ; Yoshida A. ; Wang Z. ; Hao X. ; Abudula A. ; Guan G. ACS Sustainable Chem. Eng. 2019, 7, 9360.
doi: 10.1021/acssuschemeng.9b00515 |
76 |
Zhang Q. ; Zhang Y. ; Mao J. ; Liu J. ; Zhou Y. ; Guay D. ; Qiao J. ChemSusChem 2019, 12, 1443.
doi: 10.1002/cssc.201802725 |
77 |
Cui C. ; Han J. ; Zhu X. ; Liu X. ; Wang H. ; Mei D. ; Ge Q. J. Catal. 2016, 343, 257.
doi: 10.1016/j.jcat.2015.12.001 |
78 |
Deng W. ; Zhang L. ; Li L. ; Chen S. ; Hu C. ; Zhao Z. -J. ; Wang T. ; Gong J. J. Am. Chem. Soc. 2019, 141, 2911.
doi: 10.1021/jacs.8b13786 |
79 |
Zhang W. ; Qin Q. ; Dai L. ; Qin R. ; Zhao X. ; Chen X. ; Ou D. ; Chen J. ; Chuong T. T. ; Wu B. ; Zheng N. Angew. Chem. Int. Ed. 2018, 57, 9475.
doi: 10.1002/anie.201804142 |
80 |
Lee S. ; Ju H. ; Machunda R. ; Uhm S. ; Lee J. K. ; Lee H. J. ; Lee J. J. Mater. Chem. A 2015, 3, 3029.
doi: 10.1039/C4TA03893B |
81 |
Gao D. ; Zhou H. ; Wang J. ; Miao S. ; Yang F. ; Wang G. ; Wang J. ; Bao X. J. Am. Chem. Soc. 2015, 137, 4288.
doi: 10.1021/jacs.5b00046 |
82 |
Zhu W. ; Zhang Y. -J. ; Zhang H. ; Lv H. ; Li Q. ; Michalsky R. ; Peterson A. A. ; Sun S. J. Am. Chem. Soc. 2014, 136, 16132.
doi: 10.1021/ja5095099 |
83 |
Li Q. ; Fu J. ; Zhu W. ; Chen Z. ; Shen B. ; Wu L. ; Xi Z. ; Wang T. ; Lu G. ; Zhu J. -J. ; Sun S. J. Am. Chem. Soc. 2017, 139, 4290.
doi: 10.1021/jacs.7b00261 |
84 |
Huo S. ; Weng Z. ; Wu Z. ; Zhong Y. ; Wu Y. ; Fang J. ; Wang H. ACS Appl. Mater. Interfaces 2017, 9, 28519.
doi: 10.1021/acsami.7b07707 |
85 |
Cheng Y. ; Hou P. ; Pan H. ; Shi H. ; Kang P. Appl. Catal. B 2020, 272, 118954.
doi: 10.1016/j.apcatb.2020.118954 |
86 |
Wang K. ; Liu D. ; Deng P. ; Liu L. ; Lu S. ; Sun Z. ; Ma Y. ; Wang Y. ; Li M. ; Xia B. Y. ; et al Nano Energy 2019, 64, 103954.
doi: 10.1016/j.nanoen.2019.103954 |
87 |
Fan L. ; Xia Z. ; Xu M. ; Lu Y. ; Li Z. Adv. Funct. Mater. 2018, 28, 1706289.
doi: 10.1002/adfm.201706289 |
88 |
Liu S. ; Xiao J. ; Lu X. F. ; Wang J. ; Wang X. ; Lou X. W. Angew. Chem. Int. Ed. 2019, 58, 8499.
doi: 10.1002/anie.201903613 |
89 |
Li F. ; Chen L. ; Knowles G. P. ; MacFarlane D. R. ; Zhang J. Angew. Chem. Int. Ed. 2017, 56, 505.
doi: 10.1002/anie.201608279 |
90 |
Xie X. ; Li Y. ; Liu Z. -Q. ; Haruta M. ; Shen W. Nature 2009, 458, 746.
doi: 10.1038/nature07877 |
91 |
Roy S. C. ; Varghese O. K. ; Paulose M. ; Grimes C. A. ACS Nano 2010, 4, 1259.
doi: 10.1021/nn9015423 |
92 |
Sun Y. ; Gao S. ; Lei F. ; Liu J. ; Liang L. ; Xie Y. Chem. Sci. 2014, 5, 3976.
doi: 10.1039/C4SC00565A |
93 |
Huang X. ; Cao T. ; Liu M. ; Zhao G. J. Phys. Chem. C 2013, 117, 26432.
doi: 10.1021/jp408630s |
94 |
Gao S. ; Lin Y. ; Jiao X. ; Sun Y. ; Luo Q. ; Zhang W. ; Li D. ; Yang J. ; Xie Y. Nature 2016, 529, 68.
doi: 10.1038/nature16455 |
95 |
Gao S. ; Jiao X. ; Sun Z. ; Zhang W. ; Sun Y. ; Wang C. ; Hu Q. ; Zu X. ; Yang F. ; Yang S. ; et al Angew. Chem. Int. Ed. 2016, 55, 698.
doi: 10.1002/anie.201509800 |
96 |
Yang H. ; Han N. ; Deng J. ; Wu J. ; Wang Y. ; Hu Y. ; Ding P. ; Li Y. ; Li Y. ; Lu J. Adv. Energy Mater. 2018, 8, 1801536.
doi: 10.1002/aenm.201801536 |
97 |
Han N. ; Wang Y. ; Yang H. ; Deng J. ; Wu J. ; Li Y. ; Li Y. Nat. Commun. 2018, 9, 1.
doi: 10.1038/s41467-018-03712-z |
98 |
Lee C. W. ; Hong J. S. ; Yang K. D. ; Jin K. ; Lee J. H. ; Ahn H. -Y. ; Seo H. ; Sung N. -E. ; Nam K. T. ACS Catal. 2018, 8, 931.
doi: 10.1021/acscatal.7b03242 |
99 |
Koh J. H. ; Won D. H. ; Eom T. ; Kim N. -K. ; Jung K. D. ; Kim H. ; Hwang Y. J. ; Min B. K. ACS Catal. 2017, 7, 5071.
doi: 10.1021/acscatal.7b00707 |
100 |
Kim S. ; Dong W. J. ; Gim S. ; Sohn W. ; Park J. Y. ; Yoo C. J. ; Jang H. W. ; Lee J. -L. Nano Energy 2017, 39, 44.
doi: 10.1016/j.nanoen.2017.05.065 |
101 |
Gong Q. ; Ding P. ; Xu M. ; Zhu X. ; Wang M. ; Deng J. ; Ma Q. ; Han N. ; Zhu Y. ; Lu J. ; et al Nat. Commun. 2019, 10, 2807.
doi: 10.1038/s41467-019-10819-4 |
102 |
Deng P. ; Wang H. ; Qi R. ; Zhu J. ; Chen S. ; Yang F. ; Zhou L. ; Qi K. ; Liu H. ; Xia B. Y. ACS Catal. 2020, 10, 743.
doi: 10.1021/acscatal.9b04043 |
103 |
Deng P. ; Yang F. ; Wang Z. ; Chen S. ; Zhou Y. ; Zaman S. ; Xia B. Y. Angew. Chem., Int. Ed. 2020, 59, 10807.
doi: 10.1002/anie.202000657 |
104 |
Chen Z. ; Mou K. ; Wang X. ; Liu L. Angew. Chem. Int. Ed. 2018, 57, 12790.
doi: 10.1002/anie.201807643 |
105 |
Li T. ; Wei H. ; Liu T. ; Zheng G. ; Liu S. ; Luo J. -L. ACS Appl. Mater. Interfaces 2019, 11, 22346.
doi: 10.1021/acsami.9b04580 |
106 |
Rabiee A. ; Nematollahi D. Mater. Chem. Phys. 2017, 193, 109.
doi: 10.1016/j.matchemphys.2017.02.016 |
107 |
Xia Z. ; Freeman M. ; Zhang D. ; Yang B. ; Lei L. ; Li Z. ; Hou Y. ChemElectroChem 2018, 5, 253.
doi: 10.1002/celc.201700935 |
108 |
Sun X. ; Lu L. ; Zhu Q. ; Wu C. ; Yang D. ; Chen C. ; Han B. Angew. Chem. Int. Ed. 2018, 57, 2427.
doi: 10.1002/anie.201712221 |
109 |
Chu S. ; Hong S. ; Masa J. ; Li X. ; Sun Z. Chem. Commun. 2019, 55, 12380.
doi: 10.1039/C9CC05435A |
110 |
White J. L. ; Bocarsly A. B. J. Electrochem. Soc. 2016, 163, H410.
doi: 10.1149/2.0681606jes |
111 |
Mou K. ; Chen Z. ; Yao S. ; Liu L. Electrochim. Acta 2018, 289, 65.
doi: 10.1016/j.electacta.2018.09.026 |
112 |
Won D. H. ; Shin H. ; Koh J. ; Chung J. ; Lee H. S. ; Kim H. ; Woo S. I. Angew. Chem. Int. Ed. 2016, 55, 9297.
doi: 10.1002/anie.201602888 |
113 |
Rosen J. ; Hutchings G. S. ; Lu Q. ; Forest R. V. ; Moore A. ; Jiao F. ACS Catal. 2015, 5, 4586.
doi: 10.1021/acscatal.5b00922 |
114 |
Quan F. ; Zhong D. ; Song H. ; Jia F. ; Zhang L. J. Mater. Chem. A 2015, 3, 16409.
doi: 10.1039/C5TA04102C |
115 |
Nguyen D. L. T. ; Jee M. S. ; Won D. H. ; Jung H. ; Oh H. -S. ; Min B. K. ; Hwang Y. J. ACS Sustainable Chem. Eng. 2017, 5, 11377.
doi: 10.1021/acssuschemeng.7b02460 |
116 |
Jeon H. S. ; Sinev I. ; Scholten F. ; Divins N. J. ; Zegkinoglou I. ; Pielsticker L. ; Cuenya B. R. J. Am. Chem. Soc. 2018, 140, 9383.
doi: 10.1021/jacs.8b05258 |
117 |
Geng Z. ; Kong X. ; Chen W. ; Su H. ; Liu Y. ; Cai F. ; Wang G. ; Zeng J. Angew. Chem. Int. Ed. 2018, 57, 6054.
doi: 10.1002/anie.201711255 |
118 |
Bachiller-Baeza B. ; Rodriguez-Ramos I. ; Guerrero-Ruiz A. Langmuir 1998, 14, 3556.
doi: 10.1021/la970856q |
119 |
Miao Z. ; Hu P. ; Nie C. ; Xie H. ; Fu W. ; Li Q. J. Energy Chem. 2019, 38, 114.
doi: 10.1016/j.jechem.2019.01.010 |
120 |
Sekimoto T. ; Deguchi M. ; Yotsuhashi S. ; Yamada Y. ; Masui T. ; Kuramata A. ; Yamakoshi S. Electrochem. Commun. 2014, 43, 95.
doi: 10.1016/j.elecom.2014.03.023 |
121 |
Tsuneoka H. ; Teramura K. ; Shishido T. ; Tanaka T. J. Phys. Chem. C 2010, 114, 8892.
doi: 10.1021/jp910835k |
122 |
Yuliati L. ; Itoh H. ; Yoshida H. Chem. Phys. Lett. 2008, 452, 178.
doi: 10.1016/j.cplett.2007.12.051 |
123 |
Spataru N. ; Tokuhiro K. ; Terashima C. ; Rao T. N. ; Fujishima A. J. Appl. Electrochem. 2003, 33, 1205.
doi: 10.1023/B:JACH.0000003866.85015.b6 |
124 |
Karamad M. ; Hansen H. A. ; Rossmeisl J. ; Nørskov J. K. ACS Catal. 2015, 5, 4075.
doi: 10.1021/cs501542n |
125 |
Lum Y. ; Ager J. W. Angew. Chem. Int. Ed. 2018, 57, 551.
doi: 10.1002/anie.201710590 |
[1] | 高凤雨, 刘恒恒, 姚小龙, Sani Zaharaddeen, 唐晓龙, 罗宁, 易红宏, 赵顺征, 于庆君, 周远松. 球形表面富锰MnxCo3−xO4−ƞ尖晶石型催化剂选择性催化还原NOx研究[J]. 物理化学学报, 2023, 39(9): 2212003 -0 . |
[2] | 于彦会, 饶鹏, 封苏阳, 陈民, 邓培林, 李静, 苗政培, 康振烨, 沈义俊, 田新龙. 钴原子团簇用于高效氧还原反应[J]. 物理化学学报, 2023, 39(8): 2210039 -0 . |
[3] | 兰畅, 楚宇逸, 王烁, 刘长鹏, 葛君杰, 邢巍. 质子交换膜燃料电池阴极非贵金属M-Nx/C型氧还原催化剂研究进展[J]. 物理化学学报, 2023, 39(8): 2210036 -0 . |
[4] | 袁干印, 奚政, 王楚, 孙晓环, 韩杰, 郭荣. 超分子手性聚苯胺-金复合纳米酶的构建及其对映选择性催化[J]. 物理化学学报, 2023, 39(7): 2212061 -0 . |
[5] | 胡洋, 刘斌, 徐路遥, 董自强, 仵亚婷, 刘杰, 钟澄, 胡文彬. 基于微流控技术平台的Pt基三元电催化剂高通量合成和筛选[J]. 物理化学学报, 2023, 39(3): 2209004 -0 . |
[6] | 崔柏桦, 施毅, 李根, 陈亚楠, 陈伟, 邓意达, 胡文彬. 海水电解面临的挑战与机遇:含氯电化学中先进材料研究进展[J]. 物理化学学报, 2022, 38(6): 2106010 - . |
[7] | 孙轲, 赵永青, 殷杰, 靳晶, 刘翰文, 席聘贤. 有机配体表面改性NiCo2O4纳米线用于水全分解[J]. 物理化学学报, 2022, 38(6): 2107005 - . |
[8] | 刘弘禹, 孟钢, 邓赞红, 李蒙, 常鋆青, 代甜甜, 方晓东. VOCs分子的半导体型传感器识别检测研究进展[J]. 物理化学学报, 2022, 38(5): 2008018 - . |
[9] | 林飞宇, 杨英, 朱从潭, 陈甜, 马书鹏, 罗媛, 朱刘, 郭学益. 湿空气下制备稳定的CsPbI2Br钙钛矿太阳电池[J]. 物理化学学报, 2022, 38(4): 2005007 - . |
[10] | 陈志洋, 唐雅婷, 吕泽, 孟霄汉, 梁前伟, 冯建国. 香茅油纳米乳剂的构建、表征、抗菌性能和细胞毒性[J]. 物理化学学报, 2022, 38(12): 2205053 - . |
[11] | 李少鹏, 杜靖, 张彬, 刘艳贞, 梅清清, 孟庆磊, 董明华, 杜鹃, 赵志娟, 郑黎荣, 韩布兴, 赵美廷, 刘会贞. 利用空间位阻和氢溢流协同作用促进5-羟甲基糠醛选择性加氢制备5-甲基糠醛[J]. 物理化学学报, 2022, 38(10): 2206019 - . |
[12] | 刘苗苗, 杨茅茂, 舒欣欣, 张进涛. 燃料电池碳基氧还原催化剂的设计与应用[J]. 物理化学学报, 2021, 37(9): 2007072 - . |
[13] | 包玉菲, 冯立纲. PdNi/石墨烯气凝胶电催化甲酸氧化[J]. 物理化学学报, 2021, 37(9): 2008031 - . |
[14] | 黄磊, Zaman Shahid, 王志同, 牛慧婷, 游波, 夏宝玉. 铂基空心纳米框架的合成及其在直接醇燃料电池中的应用[J]. 物理化学学报, 2021, 37(9): 2009035 - . |
[15] | 田立亮, 张玮琦, 解政, 彭凯, 马强, 徐谦, Pasupathi Sivakumar, 苏华能. 催化层掺杂共价有机框架材料提升高温聚电解质膜燃料电池性能[J]. 物理化学学报, 2021, 37(9): 2009049 - . |
|