Acta Physico-Chimica Sinica ›› 2019, Vol. 35 ›› Issue (4): 385-393.doi: 10.3866/PKU.WHXB201805291
• ARTICLE • Previous Articles Next Articles
Miao TAN,Lei ZHANG,Wanzhen LIANG*()
Received:
2018-04-09
Accepted:
2018-05-25
Published:
2018-09-13
Contact:
Wanzhen LIANG
E-mail:liangwz@xmu.edu.cn
Supported by:
Miao TAN,Lei ZHANG,Wanzhen LIANG. Theoretical Study on Intrinsic Structures and Properties of vdW Heterostructures of Transition Metal Dichalcogenides (WX2) and Effect of Strains[J]. Acta Physico-Chimica Sinica 2019, 35(4), 385-393. doi: 10.3866/PKU.WHXB201805291
Table 1
Calculated bandgaps of monolayer, bilayer, and bulk of WS2, WSe2 and WTe2 by the first-principles approach with different exchange-correlation (xc) functionals and with/without SOC effect involved"
Monolayer | Bilayer | Bulk | ||||||||
PBE | PBE + SOC | HSE06 | HSE06 + SOC | Theor. | HSE06 + SOC | HSE06 + SOC | Expt. | |||
WS2 | 1.94 | 1.62 | 2.39 | 2.09 | 2.1 32 | 1.84 | 1.45 | 1.4 | ||
WSe2 | 1.59 | 1.28 | 2.08 | 1.69 | 1.7 39 | 1.57 | 1.33 | 1.2 | ||
WTe2 | / | / | / | 1.12 | 1.1 39 | 1.02 | 0.84 | / |
Table 2
Optimized interlayer distances lattice constants (in unit of nm), mismatch and of three monolayers, and WS2/WSe2, WSe2/WTe2 and WSe2/WTe2 heterostructures, respectively"
d/nm | a/nm | b/nm | c/nm | Mismatch | |
WS2 | \ | 0.32 | 0.32 | 2 | \ |
WSe2 | \ | 0.33 | 0.33 | 2 | \ |
WTe2 | \ | 0.35 | 0.35 | 2 | \ |
WS2/WSe2 | 0.31 | 0.32 | 0.32 | 3 | 5% |
WS2/WTe2 | 0.31 | 0.33 | 0.33 | 3 | 2% |
WSe2/WTe2 | 0.32 | 0.34 | 0.34 | 3 | 3% |
1 |
Yin Z. ; Li H. ; Li H. ; Jiang L. ; Shi Y. ; Sun Y. ; Lu G. ; Zhang Q. ; Chen X. ; Zhang H. ACS Nano 2012, 6, 74.
doi: 10.1021/nn2024557 |
2 |
Lu Q. ; Yu Y. ; Ma Q. ; Chen B. ; Zhang H. Adv. Mater. 2016, 28, 1917.
doi: 10.1002/adma.201503270 |
3 |
Arul N. S. ; Han J. I. Mater. Lett. 2016, 181, 345.
doi: 10.1016/j.matlet.2016.06.065 |
4 |
Sun Z. ; Martinez A. ; Wang F. Nat. Photonics 2016, 10, 227.
doi: 10.1038/nphoton.2016.15 |
5 |
Xia F. ; Wang H. ; Xiao D. ; Dubey M. Nat. Photonics 2014, 8, 899.
doi: 10.1038/nphoton.2014.271 |
6 |
Gupta A. ; Sakthivel T. ; Seal S. Prog. Mater. Sci. 2015, 73, 44.
doi: 10.1016/j.pmatsci.2015.02.002 |
7 |
Wang Q. H. ; Kalantar-Zadeh K. ; Kis A. ; Coleman J. N. ; Strano M. S. Nat Nanotechnol. 2012, 7, 699.
doi: 10.1038/nnano.2012.193 |
8 |
Bhimanapati G. R. ; Lin Z. ; Meunier V. ; Jung Y. ; Cha J. ; Das S. ; Xiao D. ; Son Y. ; Strano M. S. ; Cooper V. ; et al ACS Nano 2015, 9, 11509.
doi: 10.1021/acsnano.5b05556 |
9 |
Huo N. ; Kang J. ; Wei Z. ; Li S. S. ; Li J. ; Wei S. H. Adv. Funct. Mater. 2014, 24, 7025.
doi: 10.1002/adfm.201401504 |
10 |
Choudhary N. ; Park J. ; Hwang J. Y. ; Chung H. S. ; Dumas K. H. ; Khondaker S. I. ; Choi W. ; Jung Y. Sci. Rep. 2016, 6, 25456.
doi: 10.1038/srep25456 |
11 |
Yu W. J. ; Liu Y. ; Zhou H. ; Yin A. ; Li Z. ; Huang Y. ; Duan X. Nat. Nanotechnol. 2013, 8, 952.
doi: 10.1038/nnano.2013.219 |
12 |
Ceballos F. ; Bellus M. Z. ; Chiu H. Y. ; Zhao H. ACS Nano 2014, 8, 12717.
doi: 10.1021/nn505736z |
13 |
Huang C. ; Wu S. ; Sanchez A. M. ; Peters J. J. P. ; Beanland R. ; Ross J. S. ; Rivera P. ; Yao W. ; Cobden D. H. ; Xu X. Nat. Mater. 2014, 13, 1096.
doi: 10.1038/nmat4064 |
14 |
Zhang K. ; Zhang T. ; Cheng G. ; Li T. ; Wang S. ; Wei W. ; Zhou X. ; Yu W. ; Sun Y. ; Wang P. ; et al ACS Nano 2016, 10, 3852.
doi: 10.1021/acsnano.6b00980 |
15 |
Zhang W. ; Wang Q. ; Chen Y. ; Wang Z. ; Andrew T. S. W. 2D Mater. 2016, 3, 022001.
doi: 10.1088/2053-1583/3/2/022001 |
16 |
Britnell L. ; Ribeiro R. M. ; Eckmann A. ; Jalil R. ; Belle B. D. ; Mishchenko A. ; Kim Y. J. ; Gorbachev R. V. ; Georgiou T. ; Morozov S. V. ; et al Science 2013, 340, 1311.
doi: 10.1126/science.1235547 |
17 |
Chen Y. ; Wang X. ; Wu G. ; Wang Z. ; Fang H. ; Lin T. ; Sun S. ; Shen H. ; Hu W. ; Wang J. ; et al Small 2018, 14, 1703293.
doi: 10.1002/smll.201703293 |
18 |
Mak K. F. ; Shan J. Nat. Photonics 2016, 10, 216.
doi: 10.1038/nphoton.2015.282 |
19 |
Chen Y. ; Xi J. ; Dumcenco D. O. ; Liu Z. ; Suenaga K. ; Wang D. ; Shuai Z. ; Huang Y. S. ; Xie L. ACS Nano 2013, 7, 4610.
doi: 10.1021/nn401420h |
20 |
Johari P. ; Shenoy V. B. ACS Nano 2012, 6, 5449.
doi: 10.1021/nn301320r |
21 |
Kang J. ; Li J. ; Li S. S. ; Xia J. B. ; Wang L. W. Nano Lett. 2013, 13, 5485.
doi: 10.1021/nl4030648 |
22 |
Rathi S. ; Lee I. ; Lim D. ; Wang J. ; Ochiai Y. ; Aoki N. ; Watanabe K. ; Taniguchi T. ; Lee G. H. ; Yu Y. J. ; et al Nano Lett. 2015, 15, 5017.
doi: 10.1021/acs.nanolett.5b01030 |
23 |
Gong Y. ; Lin J. ; Wang X. ; Shi G. ; Lei S. ; Lin Z. ; Zou X. ; Ye G. ; Vajtai R. ; Yakobson B. I. ; et al Nat. Mater. 2014, 13, 1135.
doi: 10.1038/nmat4091 |
24 |
Zeng Q. ; Wang H. ; Fu W. ; Gong Y. ; Zhou W. ; Ajayan P. M. ; Lou J. ; Liu Z. Small 2014, 11, 1868.
doi: 10.1002/smll.201402380 |
25 |
Kou L. ; Frauenheim T. ; Chen C. J. Phys. Chem. Lett. 2013, 4, 1730.
doi: 10.1021/jz400668d |
26 |
Zhang C. ; Chuu C. P. ; Ren X. ; Li M. Y. ; Li L. J. ; Jin C. ; Chou M. Y. ; Shih C. K. Sci. Adv. 2017, 3, 1.
doi: 10.1126/sciadv.1601459 |
27 |
Lu N. ; Guo H. ; Li L. ; Dai J. ; Wang L. ; Mei W. N. ; Wu X. ; Zeng X. C. Nanoscale 2014, 6, 2879.
doi: 10.1039/C3NR06072A |
28 |
Zhang C. ; Li M. Y. ; Tersoff J. ; Han Y. ; Su Y. ; Li L. J. ; Muller D. A. ; Shih C. K. Nat. Nano 2018, 13, 152.
doi: 10.1038/s41565-017-0022-x |
29 |
Seifert G. ; Terrones H. ; Terrones M. ; Jungnickel G. ; Frauenheim T. Solid State Commun. 2000, 114, 245.
doi: 10.1016/S0038-1098(00)00047-8 |
30 |
Elías A. L. ; Perea-López N. ; Castro-Beltrán A. ; Berkdemir A. ; Lv R. ; Feng S. L. ; Aaron D. ; Hayashi T ; Kim Y. A. ; Endo M. ; et al ACS Nano 2013, 7, 5235.
doi: 10.1021/nn400971k |
31 |
Liu L. ; Kumar S. B. ; Ouyang Y. ; Guo J. IEEE Trans. Elec. Dev. 2011, 58, 3042.
doi: 10.1109/TED.2011.2159221 |
32 |
Zhu Z. Y. ; Cheng Y. C. ; Schwingenschlögl U. Phys. Rev. B 2011, 84, 15.
doi: 10.1103/PhysRevB.84.153402 |
33 |
Xiao D. ; Liu G. B. ; Feng W. ; Xu X. ; Yao W. Phys. Rev. Lett. 2012, 108, 196802.
doi: 10.1103/PhysRevLett.108.196802 |
34 |
Ruppert C. ; Chernikov A. ; Hill H. M. ; Rigosi A. F. ; Heinz T. F. Nano Lett. 2017, 17, 644.
doi: 10.1021/acs.nanolett.6b03513 |
35 |
Horri A. ; Faez R. ; Pourfath M. ; Darvish G. J. Appl. Phys. 2017, 121, 214503.
doi: 10.1063/1.4984145 |
36 |
Jeong H. Y. ; Jin Y. ; Yun S. J. ; Zhao J. ; Baik J. ; Keum D. H. ; Lee H. S. ; Lee Y. H. Adv. Mater. 2017, 29, 1.
doi: 10.1063/1.49841451 |
37 |
Heyd J. ; Scuseria G. E. ; Ernzerhof M. J. Chem. Phys. 2003, 118, 8207.
doi: 10.1063/1.1564060 |
38 |
Perdew J. P. ; Burke K. ; Ernzerhof M. Phys. Rev. Lett. 1996, 77, 3865.
doi: 10.1103/PhysRevLett.77.3865 |
39 |
Jariwala D. ; Howell S. L. ; Chen K. S. ; Kang J. ; Sangwan V. K. ; Filippone S. A. ; Turrisi R. ; Marks T. J. ; Lauhon L. J. ; Hersam M. C. Nano Lett. 2016, 16, 497.
doi: 10.1021/acs.nanolett.5b04141 |
40 |
Ding Y. ; Wang Y. ; Ni J. ; Shi L. ; Shi S. ; Tang W. Phys. B: Condens. Matter 2011, 406, 2254.
doi: 10.1016/j.physb.2011.03.044 |
[1] | Zhen Li, Wen Liu, Chunxu Chen, Tingting Ma, Jinfeng Zhang, Zhenghua Wang. Transforming the Charge Transfer Mechanism in the In2O3/CdSe-DETA Nanocomposite from Type-I to S-Scheme to Improve Photocatalytic Activity and Stability During Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2208030-. |
[2] | Qilong Feng, Chongzhi Zhu, Guan Sheng, Tulai Sun, Yonghe Li, Yihan Zhu. Four-Dimensional Scanning Transmission Electron Microscopy: From Material Microstructures to Physicochemical Properties [J]. Acta Phys. -Chim. Sin., 2023, 39(3): 2210017-0. |
[3] | Han Li, Fang Li, Jiaguo Yu, Shaowen Cao. 2D/2D FeNi-LDH/g-C3N4 Hybrid Photocatalyst for Enhanced CO2 Photoreduction [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2010073-. |
[4] | Genwang WANG,Chaojian HOU,Haotian LONG,Lijun YANG,Yang WANG. Electronic and Optoelectronic Nanodevices Based on Two-Dimensional Semiconductor Materials [J]. Acta Physico-Chimica Sinica, 2019, 35(12): 1319-1340. |
[5] | Mingyue WANG,Shijing TAN,Xuefeng CUI,Bing WANG. Introducing Strain in Anatase TiO2(001) Films by Epitaxial Growth [J]. Acta Physico-Chimica Sinica, 2019, 35(12): 1412-1421. |
[6] | Paul W. AYERS,Mel LEVY. Levy Constrained Search in Fock Space: An Alternative Approach to Noninteger Electron Number [J]. Acta Phys. -Chim. Sin., 2018, 34(6): 625-630. |
[7] | Ágnes NAGY. Phase Space View of Ensembles of Excited States [J]. Acta Phys. -Chim. Sin., 2018, 34(5): 492-496. |
[8] | Andrés CEDILLO,Pietro CORTONA. Effect of Pressure on Cesium Iodide Band Gap [J]. Acta Phys. -Chim. Sin., 2018, 34(2): 208-212. |
[9] | Chunhe YANG,Aiwei TANG,Feng TENG,Kejian JIANG. Electrochemistry of Perovskite CH3NH3PbI3 Crystals [J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1197-1201. |
[10] | Yu-Yu LIU,Jie-Wei LI,Yi-Fan BO,Lei YANG,Xiao-Fei ZHANG,Ling-Hai XIE,Ming-Dong YI,Wei HUANG. Theoretical Studies on the Structures and Opto-Electronic Properties of Fluorene-Based Strained Semiconductors [J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1803-1810. |
[11] | Hai-Tao SUN,Cheng ZHONG,Zhen-Rong SUN. Recent Advances in the Optimally "Tuned" Range-Separated Density Functional Theory [J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2197-2208. |
[12] | Xue-Mei HU,Xiang-Dong GAO,Xiao-Min LI,Zheng-Ying GU,Ying SHI,Yong-Qing WU. Microstructure and Band Gap Modulation of SrSn1-xCoxO3 Epitaxial Thin Films via Pulsed Laser Deposition [J]. Acta Phys. -Chim. Sin., 2016, 32(4): 828-833. |
[13] | Ling-Ming KONG,Bao-Lin ZHU,Xian-Yong PANG,Gui-Chang WANG. First-Principles Study on TiO2-B with Oxygen Vacancies as a Negative Material of Rechargeable Lithium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2016, 32(3): 656-664. |
[14] | LI Rui-Wen, WANG Xiao-Lin, SHI Peng, JI He-Fei. Study on Strain Energy on the Hydride Growth Kinetics of U-Nb Alloys [J]. Acta Phys. -Chim. Sin., 2015, 31(Suppl): 39-44. |
[15] | Zhi-Gang. WANG,Xiang-Ming. ZENG,Yang. ZHANG,Rao. HUANG,Yu-Hua. WEN. First-Principles Study of Effect of Strain on the Band Structure of ZnO Monolayer [J]. Acta Phys. -Chim. Sin., 2015, 31(9): 1677-1682. |
|