Acta Phys. -Chim. Sin. ›› 2023, Vol. 39 ›› Issue (6): 2208030.doi: 10.3866/PKU.WHXB202208030
Special Issue: S-scheme photocatalyst
• ARTICLE • Previous Articles Next Articles
Zhen Li1, Wen Liu2, Chunxu Chen1, Tingting Ma2, Jinfeng Zhang3,*(), Zhenghua Wang2,*()
Received:
2022-08-22
Accepted:
2022-09-20
Published:
2022-09-29
Contact:
Jinfeng Zhang, Zhenghua Wang
E-mail:zhwang@ahnu.edu.cn;jfzhang@chnu.edu.cn
Zhen Li, Wen Liu, Chunxu Chen, Tingting Ma, Jinfeng Zhang, Zhenghua Wang. Transforming the Charge Transfer Mechanism in the In2O3/CdSe-DETA Nanocomposite from Type-I to S-Scheme to Improve Photocatalytic Activity and Stability During Hydrogen Production[J]. Acta Phys. -Chim. Sin. 2023, 39(6), 2208030. doi: 10.3866/PKU.WHXB202208030
1 |
Low, J.; Yu, J.; Jaroniec, M.; Wageh, S.; Al-Ghamdi, A. A. Adv. Mater. 2017, 29, 1601694.
doi: 10.1002/adma.201601694 |
2 |
Wen, J.; Xie, J.; Chen, X.; Li, X. Appl. Surf. Sci. 2017, 391, 72.
doi: 10.1016/j.apsusc.2016.07.030 |
3 |
Nosaka, Y.; Nosaka, A. Y. Chem. Rev. 2017, 117, 11302.
doi: 10.1021/acs.chemrev.7b00161 |
4 |
Fu, J.; Yu, J.; Jiang, C.; Cheng, B. Adv. Energy Mater. 2018, 8, 1701503.
doi: 10.1002/aenm.201701503 |
5 |
Ran, J.; Gao, G.; Li, F.-T.; Ma, T.-Y.; Du, A.; Qiao, S.-Z. Nat. Commun. 2017, 8, 13907.
doi: 10.1038/ncomms13907 |
6 |
Ong, C. B.; Ng, L. Y.; Mohammad, A. W. Renew. Sustain. Energy Rev. 2018, 81, 536.
doi: 10.1016/j.rser.2017.08.020 |
7 |
Fu, J.; Xu, Q.; Low, J.; Jiang, C.; Yu, J. Appl. Catal. B-Environ. 2019, 243, 556.
doi: 10.1016/j.apcatb.2018.11.011 |
8 |
Chen, S.; Takata, T.; Domen, K. Nat. Rev. Mater. 2017, 2, 17050.
doi: 10.1038/natrevmats.2017.50 |
9 |
Wang, Z.; Li, C.; Domen, K. Chem. Soc. Rev. 2019, 48, 2109.
doi: 10.1039/c8cs00542g |
10 |
Jiang, L.; Yuan, X.; Pan, Y.; Liang, J.; Zeng, G.; Wu, Z.; Wang, H. Appl. Catal. B-Environ. 2017, 217, 388.
doi: 10.1016/j.apcatb.2017.06.003 |
11 |
Dhakshinamoorthy, A.; Li, Z.; Garcia, H. Chem. Soc. Rev. 2018, 47, 8134.
doi: 10.1039/c8cs00256h |
12 |
Liu, X.; Iocozzia, J.; Wang, Y.; Cui, X.; Chen, Y.; Zhao, S.; Li, Z.; Lin, Z. Energy Environ. Sci. 2017, 10, 402.
doi: 10.1039/c6ee02265k |
13 |
Pirhashemi, M.; Habibi-Yangjeh, A.; Pouran, S. R. J. Ind. Eng. Chem. 2018, 62, 1.
doi: 10.1016/j.jiec.2018.01.012 |
14 |
Cheng, L.; Xiang, Q.; Liao, Y.; Zhang, H. Energy Environ. Sci. 2018, 11, 1362.
doi: 10.1039/c7ee03640j |
15 |
Byrne, C.; Subramanian, G.; Pillai, S. C. J. Environ. Chem. Eng. 2018, 6, 3531.
doi: 10.1016/j.jece.2017.07.080 |
16 |
Yu, K.; Jiang, P.; Yuan, H.; He, R.; Zhu, W.; Wang, L. Appl. Catal. B-Environ. 2021, 288, 119978.
doi: 10.1016/j.apcatb.2021.119978 |
17 |
Yuan, Y.; Sheng, K.; Zeng, S.; Han, X.; Sun, L.; Loncaric, I.; Zhan, W.; Sun, D. Inorg. Chem. 2020, 59, 5456.
doi: 10.1021/acs.inorgchem.0c00084 |
18 |
Qi, H.; Shi, C.; Jiang, X.; Teng, M.; Sun, Z.; Huang, Z.; Pan, D.; Liu, S.; Guo, Z. Nanoscale 2020, 12, 19112.
doi: 10.1039/d0nr02965c |
19 |
Wu, S.; Yu, H.; Chen, S.; Quan, X. ACS Catal. 2020, 10, 14380.
doi: 10.1021/acscatal.0c03359 |
20 |
Yu, H.; Jiang, L.; Wang, H.; Huang, B.; Yuan, X.; Huang, J.; Zhang, J.; Zeng, G. Small 2019, 15, 1901008.
doi: 10.1002/smll.201901008 |
21 |
Guan, W.; Li, Y.; Zhong, Q.; Liu, H.; Chen, J.; Hu, H.; Lv, K.; Gong, J.; Xu, Y.; Kang, Z.; et al Nano Lett. 2021, 21, 597.
doi: 10.1021/acs.nanolett.0c04073 |
22 |
Ma, D.; Shi, J.-W.; Sun, D.; Zou, Y.; Cheng, L.; He, C.; Wang, Z.; Niu, C. ACS Sustain. Chem. Eng. 2019, 7, 547.
doi: 10.1021/acssuschemeng.8b04086 |
23 |
Putri, L. K.; Ng, B.-J.; Ong, W.-J.; Lee, H. W.; Chang, W. S.; Mohamed, A. R.; Chai, S.-P. Appl. Catal. B-Environ. 2020, 265, 118592.
doi: 10.1016/j.apcatb.2020.118592 |
24 |
Lu, J.; Yan, J.; Yao, J.; Zheng, Z.; Mao, B.; Zhao, Y.; Li, J. Adv. Funct. Mater. 2021, 31, 2007987.
doi: 10.1002/adfm.202007987 |
25 |
Cao, A.; Wang, Z.; Li, H.; Norskov, J. K. ACS Catal. 2021, 11, 1780.
doi: 10.1021/acscatal.0c05046 |
26 |
Guan, X.; Sun, X.; Feng, H.; Zhang, J.; Wen, H.; Tian, W.; Zheng, D.; Yao, Y. Chem. Commun. 2020, 56, 13571.
doi: 10.1039/d0cc05585a |
27 |
Raziq, F.; Hayat, A.; Humayun, M.; Mane, S. K. B.; Faheem, M. B.; Ali, A.; Zhao, Y.; Han, S.; Cai, C.; Li, W.; et al Appl. Catal. B-Environ. 2020, 270, 118867.
doi: 10.1016/j.apcatb.2020.118867 |
28 |
Wang, H.; Rong, H.; Wang, D.; Li, X.; Zhang, E.; Wan, X.; Bai, B.; Xu, M.; Liu, J.; Liu, J.; et al Small 2020, 16, 2000426.
doi: 10.1002/smll.202000426 |
29 |
Wang, H.; Gao, Y.; Liu, J.; Li, X.; Ji, M.; Zhang, E.; Cheng, X.; Xu, M.; Liu, J.; Rong, H.; et al Adv. Energy Mater. 2019, 9, 1803889.
doi: 10.1002/aenm.201803889 |
30 |
Shen, C.; Sun, K.; Zhang, Z.; Rui, N.; Jia, X.; Mei, D.; Liu, C.-J. ACS Catal. 2021, 11, 4036.
doi: 10.1021/acscatal.0c05628 |
31 |
Mu, F.; Liu, C.; Xie, Y.; Zhou, S.; Dai, B.; Xia, D.; Huang, H.; Zhao, W.; Sun, C.; Kong, Y.; et al Chem. Eng. J. 2021, 415, 129010.
doi: 10.1016/j.cej.2021.129010 |
32 |
Li, Z.; Zhang, J.; Lv, J.; Lu, L.; Liang, C.; Dai, K. J. Alloy. Compd. 2018, 758, 162.
doi: 10.1016/j.jallcom.2018.05.115 |
33 |
Jiang, G.; Zheng, C.; Yan, T.; Jin, Z. Dalton Trans. 2021, 50, 5360.
doi: 10.1039/d1dt00799h |
34 |
Ma, X.; Li, D.; Su, P.; Jiang, Z.; Jin, Z. ChemCatChem 2021, 13, 2179.
doi: 10.1002/cctc.202002069 |
35 |
Zhang, L.; Jin, Z. Nanoscale 2021, 13, 1340.
doi: 10.1039/d0nr07821b |
36 |
Lian, Z.; Sakamoto, M.; Kobayashi, Y.; Tamai, N.; Ma, J.; Sakurai, T.; Seki, S.; Nakagawa, T.; Lai, M. -W.; Haruta, M.; et al ACS Nano 2019, 13, 8356.
doi: 10.1021/acsnano.9b03826 |
37 |
Lu, C.; Guo, F.; Yan, Q.; Zhang, Z.; Li, D.; Wang, L.; Zhou, Y. J. Alloy. Compd. 2019, 811, 151976.
doi: 10.1016/j.jallcom.2019.151976 |
38 |
Cai, H.; Wang, B.; Xiong, L.; Bi, J.; Yuan, L.; Yang, G.; Yang, S. Appl. Catal. B-Environ. 2019, 256, 117853.
doi: 10.1016/j.apcatb.2019.117853 |
39 |
Zhang, X.; Cheng, Z.; Deng, P.; Zhang, L.; Hou, Y. Int. J. Hydrog. Energy 2021, 46, 15389.
doi: 10.1016/j.ijhydene.2021.02.018 |
40 | Huang, Y.; Mei, F.; Zhang, J.; Dai, K.; Dawson, G. Acta Phys. -Chim. Sin. 2022, 38, 2108028. |
黄悦, 梅飞飞, 张金锋, 代凯, Dawson, G. 物理化学学报, 2022, 38, 2108028.
doi: 10.3866/PKU.WHXB202108028 |
|
41 |
Xie, Q.; He, W.; Liu, S.; Li, C.; Zhang, J.; Wong, P. K. Chin. J. Catal. 2020, 41, 140.
doi: 10.1016/s1872-2067(19)63481-9 |
42 |
Xiao, Y.; Ji, Z.; Zou, C.; Xu, Y.; Wang, R.; Wu, J.; Liu, G.; He, P.; Wang, Q.; Jia, T. Appl. Surf. Sci. 2021, 556, 149767.
doi: 10.1016/j.apsusc.2021.149767 |
43 |
Yang, Y.; Zhang, D.; Fan, J.; Liao, Y.; Xiang, Q. Sol. RRL 2021, 5, 2000351.
doi: 10.1002/solr.202000351 |
44 |
Ge, H.; Xu, F.; Cheng, B.; Yu, J.; Ho, W. ChemCatChem 2019, 11, 6301.
doi: 10.1002/cctc.201901486 |
45 |
Wu, S.; Yu, X.; Zhang, J.; Zhang, Y.; Zhu, Y.; Zhu, M. Chem. Eng. J. 2021, 411, 128555.
doi: 10.1016/j.cej.2021.128555 |
46 |
Xia, P.; Cao, S.; Zhu, B.; Liu, M.; Shi, M.; Yu, J.; Zhang, Y. Angew. Chem. Int. Ed. 2020, 59, 5218.
doi: 10.1002/anie.201916012 |
47 | Han, G.; Xu, F.; Cheng, B.; Li, Y.; Yu, J.; Zhang, L. Acta Phys. -Chim. Sin. 2022, 38, 2112037. |
韩高伟, 徐飞燕, 程蓓, 李佑稷, 余家国, 张留洋 物理化学学报, 2022, 38, 2112037.
doi: 10.3866/PKU.WHXB202112037 |
|
48 |
Masson, D. P.; Lockwood, D. J.; Graham, M. J. J. Appl. Phys. 1997, 82, 1632.
doi: 10.1063/1.366263 |
49 |
Zhao, B.; Liu, J.; Xu, C.; Feng, R.; Sui, P.; Luo, J.-X.; Wang, L.; Zhang, J.; Luo, J.-L.; Fu, X.-Z. Appl. Catal. B-Environ. 2021, 285, 119800.
doi: 10.1016/j.apcatb.2020.119800 |
50 |
Wang, Z.; Chen, Y.; Zhang, L.; Cheng, B.; Yu, J.; Fan, J. J. Mater. Sci. Technol. 2020, 56, 143.
doi: 10.1016/j.jmst.2020.02.062 |
51 |
Zheng, J.; Zhang, L. Appl. Catal. B-Environ. 2018, 237, 1.
doi: 10.1016/j.apcatb.2018.05.060 |
[1] | Ruyao Chen, Jiazeng Xia, Yigang Chen, Haifeng Shi. S-Scheme-Enhanced PMS Activation for Rapidly Degrading Tetracycline Using CuWO4−x/Bi12O17Cl2 Heterostructures [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2209012-. |
[2] | Ji-Chao Wang, Xiu Qiao, Weina Shi, Jing He, Jun Chen, Wanqing Zhang. S-Scheme Heterojunction of Cu2O Polytope-Modified BiOI Sheet for Efficient Visible-Light-Driven CO2 Conversion under Water Vapor [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2210003-. |
[3] | Zhongqi Zan, Xibao Li, Xiaoming Gao, Juntong Huang, Yidan Luo, Lu Han. 0D/2D Carbon Nitride Quantum Dots (CNQDs)/BiOBr S-Scheme Heterojunction for Robust Photocatalytic Degradation and H2O2 Production [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2209016-. |
[4] | Tao Sun, Chenxi Li, Yupeng Bao, Jun Fan, Enzhou Liu. S-Scheme MnCo2S4/g-C3N4 Heterojunction Photocatalyst for H2 Production [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2212009-. |
[5] | Xinhe Wu, Guoqiang Chen, Juan Wang, Jinmao Li, Guohong Wang. Review on S-Scheme Heterojunctions for Photocatalytic Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2212016-0. |
[6] | Yining Zhang, Ming Gao, Songtao Chen, Huiqin Wang, Pengwei Huo. Fabricating Ag/CN/ZnIn2S4 S-Scheme Heterojunctions with Plasmonic Effect for Enhanced Light-Driven Photocatalytic CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2211051-. |
[7] | Keyu Zhang, Yunfeng Li, Shidan Yuan, Luohong Zhang, Qian Wang. Review of S-Scheme Heterojunction Photocatalyst for H2O2 Production [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2212010-. |
[8] | Erjun Lu, Junqian Tao, Can Yang, Yidong Hou, Jinshui Zhang, Xinchen Wang, Xianzhi Fu. Carbon-Encapsulated Pd/TiO2 for Photocatalytic H2 Evolution Integrated with Photodehydrogenative Coupling of Amines to Imines [J]. Acta Phys. -Chim. Sin., 2023, 39(4): 2211029-0. |
[9] | Siran Xu, Qi Wu, Bang-An Lu, Tang Tang, Jia-Nan Zhang, Jin-Song Hu. Recent Advances and Future Prospects on Industrial Catalysts for Green Hydrogen Production in Alkaline Media [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2209001-0. |
[10] | Zheng-Min Wang, Qing-Ling Hong, Xiao-Hui Wang, Hao Huang, Yu Chen, Shu-Ni Li. RuP Nanoparticles Anchored on N-doped Graphene Aerogels for Hydrazine Oxidation-Boosted Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2303028-. |
[11] | Shuyi Zheng, Jia Wu, Ke Wang, Mengchen Hu, Huan Wen, Shibin Yin. Electronic Modulation of Ni-Mo-O Porous Nanorods by Co Doping for Selective Oxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2301032-. |
[12] | Lijun Zhang, Youlin Wu, Noritatsu Tsubaki, Zhiliang Jin. 2D/3D S-Scheme Heterojunction Interface of CeO2-Cu2O Promotes Ordered Charge Transfer for Efficient Photocatalytic Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2302051-. |
[13] | Xiaoyan Cai, Jiahao Du, Guangming Zhong, Yiming Zhang, Liang Mao, Zaizhu Lou. Constructing a CeO2/ZnxCd1−xIn2S4 S-Scheme Hollow Heterostructure for Efficient Photocatalytic H2 Evolution [J]. Acta Phys. -Chim. Sin., 2023, 39(11): 2302017-. |
[14] | Yue Huang, Feifei Mei, Jinfeng Zhang, Kai Dai, Graham Dawson. Construction of 1D/2D W18O49/Porous g-C3N4 S-Scheme Heterojunction with Enhanced Photocatalytic H2 Evolution [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2108028-. |
[15] | Shanchi Liu, Kai Wang, Mengxue Yang, Zhiliang Jin. Rationally Designed Mn0.2Cd0.8S@CoAl LDH S-Scheme Heterojunction for Efficient Photocatalytic Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2109023-. |
|