Acta Physico-Chimica Sinica ›› 2019, Vol. 35 ›› Issue (9): 1005-1013.doi: 10.3866/PKU.WHXB201809006
Special Issue: C–H Activation
• Article • Previous Articles Next Articles
Dan WANG1,Xunlei DING2,*(),Henglu LIAO2,Jiayu DAI1,*()
Received:
2018-09-04
Accepted:
2018-10-15
Published:
2018-10-18
Contact:
Xunlei DING,Jiayu DAI
E-mail:dingxl@ncepu.edu.cn;jydai@nudt.edu.cn
Supported by:
Dan WANG,Xunlei DING,Henglu LIAO,Jiayu DAI. Methane Activation on (Au/Ag)1-Doped Vanadium Oxide Clusters[J]. Acta Physico-Chimica Sinica 2019, 35(9), 1005-1013. doi: 10.3866/PKU.WHXB201809006
Fig 1
Stable geometries of CH4 on MV3Oyq_x clusters In MV3Oyq_x, M (Au or Ag) is bonded to x (V or O). Some key bond lengths are labeled in pm, in which red labels indicate the longest C―H* bond length in each cluster while blue labels indicate the nearest distance from H* to MV3Oy. All calculations are at B3LYP/Def2-TZVP. Color online."
Fig 2
Interatomic distances in CH4/MV3Oyq_x systems Four curves (labeled as M_x) in each panel are for CH4 on MV3Oyq_x, in which M (Au or Ag) is bonded to x (V or O). Panel (a) is for the longest C―H* bond length in each cluster (dC―H*) and (b) is for the nearest distance from H* to MV3Oy (dH*―X, where X may be Au, Ag, V, or O)."
Table 1
Binding energies of CH4 adsorbed on MV3Oyq clusters (unit: eV)"
M_x (Ms) | M = Au | M = Ag | |||||
Au site | O site | V site | Ag site | O site | V site | ||
V3O6(4A) | M_v (3) | -0.002 | -0.023 | - | 0.046 | -0.005 | - |
M_o (5) | 0.566 | - | 0.131 | 0.366 | - | 0.082 | |
V3O6+ (3A) | M_v (2) | 0.295 | 0.038 | 0.535 | 0.283 | - | 0.457 |
M_o (4) | 0.943 | 0.290 | 0.469 | 0.487 | - | 0.426 | |
V3O7- (3A) | M_v (2) | 0.002 | 0.010 | - | - | 0.015 | - |
M_o (4) | 0.002 | - | - | - | 0.015 | - | |
V3O7 (2A) | M_v (1) | 0.043 | -0.011 | - | 0.072 | - | - |
M_o (3) | 0.481 | - | - | 0.375 | - | - | |
V3O7+ (1A) | M_v (2) | 0.365 | 0.018 | - | - | - | - |
M_o (2) | 1.018 | 0.096 | - | 0.523 | 0.158 | - | |
V3O8- (1A) | M_v (2) | - | 0.017 | - | -0.003 | 0.020 | - |
M_o (2) | - | 0.017 | - | 0.045 | - | - | |
V3O8 (2A) | M_v (1) | 0.044 | -0.007 | - | 0.522 | - | - |
M_o (1) | 0.727 | - | - | 0.232 | -0.003 | - |
Table 2
Energy differences due to different bonding sites of M in MV3Oyq"
V3Oyq | ?Eb, vo(CH4…M_x) | ?Evo(M_x) | ?Evo(CH4…M_x) | |||||
Au | Ag | Au | Ag | Au | Ag | |||
V3O6 | 0.568 | 0.320 | 1.725 | 0.589 | 1.157 | 0.269 | ||
V3O6+ | 0.408 | 0.031 | 0.373 | -0.753 | -0.035 | -0.784 | ||
V3O7- | -0.007 | 0.000 | 0.969 | 0.330 | 0.976 | 0.330 | ||
V3O7 | 0.438 | 0.303 | 1.122 | -0.176 | 0.684 | -0.479 | ||
V3O7+ | 0.652 | - | -0.686 | -2.637 | -1.338 | - | ||
V3O8- | 0.000 | 0.026 | -2.260 | -3.502 | -2.260 | -3.527 | ||
V3O8 | 0.683 | -0.290 | -2.227 | -4.181 | -2.910 | -3.891 |
Table 3
Natural charge on M or CH4 in MV3Oyq_x and CH4…MV3Oyq_x"
V3Oyq | Au_v | Au_o | Ag_v | Ag_o | CH4…Au_v | CH4…Au_o | CH4…Ag_v | CH4…Ag_o | |||||||
Q(Au) | Q(Au) | Q(Ag) | Q(Ag) | Q(Au) | Q(CH4) | Q(Au) | Q(CH4) | Q(Ag) | Q(CH4) | Q(Ag) | Q(CH4) | ||||
V3O6 | -0.078 | 0.476 | 0.220 | 0.762 | -0.070 | 0.011 | 0.590 | 0.081 | 0.238 | 0.025 | 0.763 | 0.048 | |||
V3O6+ | 0.315 | 0.820 | 0.542 | 0.932 | 0.267 | 0.213 | 0.693 | 0.114 | 0.493 | 0.206 | 0.833 | 0.059 | |||
V3O7- | -0.275 | -0.044 | 0.008 | -0.008 | -0.274 | -0.001 | -0.043 | -0.003 | 0.012 | -0.002 | -0.001 | -0.002 | |||
V3O7 | 0.083 | 0.424 | 0.316 | 0.855 | 0.110 | 0.031 | 0.581 | 0.079 | 0.335 | 0.027 | 0.766 | 0.049 | |||
V3O7+ | 0.602 | 0.855 | 0.708 | 0.947 | 0.601 | 0.081 | 0.708 | 0.124 | - | - | 0.846 | 0.061 | |||
V3O8- | -0.125 | 0.624 | 0.058 | 0.794 | -0.121 | -0.002 | 0.624 | -0.002 | 0.062 | -0.002 | 0.768 | 0.017 | |||
V3O8 | 0.077 | 0.678 | 0.316 | 0.879 | 0.104 | 0.031 | 0.627 | 0.088 | 0.353 | 0.028 | 0.800 | 0.043 |
Table 4
Influence of D3 correction on some critical bond lengths and energies"
dC―H*, D3 | dH*-Au, D3 | ΔED3, free | ΔED3, ads | ΔEb, D3 | |
CH4 | 108.9(0) | - | -0.052 | - | - |
AuV3O6_o | 115.0 (+0.7) | 182.2 (-1.2) | -0.842 | -1.071 | 0.176 |
AuV3O6+_o | 115.0 (0) | 183.0 (-0.3) | -0.804 | -0.980 | 0.124 |
AuV3O7_o | 114.0 (-0.1) | 184.8 (+0.5) | -0.929 | -1.090 | 0.109 |
AuV3O7+_o | 114.9 (0) | 184.3 (0) | -0.901 | -1.081 | 0.128 |
AuV3O8_o | 114.5 (+0.1) | 183.0 (-0.3) | -0.985 | -1.163 | 0.126 |
1 |
Mundhwa M. ; Thurgood C. P. Fuel Process. Technol. 2017, 168, 27.
doi: 10.1016/j.fuproc.2017.08.031 |
2 |
Dang T. T. H. ; Seeburg D. ; Radnik J. ; Kreyenschulte C. ; Atia H. ; Vu T. T. H. ; Wohlrab S. Catal. Commun. 2018, 103, 56.
doi: 10.1016/j.catcom.2017.09.004 |
3 |
Burch R. ; Chalker S. ; Loader P. ; Thomas J. M. ; Ueda W. Appl. Catal. A: Gen. 1992, 82, 77.
doi: 10.1016/0926-860X(92)80007-Y |
4 |
Schwarz H. Angew. Chem. Int. Ed. 2011, 50, 10096.
doi: 10.1002/anie.201006424 |
5 |
Tang W. ; Hu Z. ; Wang M. ; Stucky G. D. ; Metiu H. ; McFarland E. W. J. Catal. 2010, 273, 125.
doi: 10.1016/j.jcat.2010.05.005 |
6 |
Ashcroft A. T. ; Cheetham A. K. ; Green M. L. H. ; Vernon P. D. F. Nature 1991, 352, 225.
doi: 10.1038/352225a0 |
7 |
Enger B. C. ; Lodeng R. ; Holmen A. Appl. Catal. A: Gen. 2008, 346, 1.
doi: 10.1016/j.apcata.2008.05.018 |
8 | Zhu Q. ; Zhao X. ; Deng Y. J. Nat. Gas Chem. 2004, 13, 191. |
9 |
Bawornruttanaboonya K. ; Devahastin S. ; Mujumdar A. S. ; Laosiripojana N. Int. J. Heat Mass Tran. 2017, 115, 174.
doi: 10.1016/j.ijheatmasstransfer.2017.08.027 |
10 |
Chai R. J. ; Zhang Z. Q. ; Chen P. J. ; Zhao G. F. ; Liu Y. ; Lu Y. Microporous Mesoporous Mat. 2017, 253, 123.
doi: 10.1016/j.micromeso.2017.07.005 |
11 |
Cihlar J. ; Vrba R. ; Castkova K. ; Cihlar J. Int. J. Hydrog. Energy 2017, 42, 19920.
doi: 10.1016/j.ijhydene.2017.06.075 |
12 |
Zavyalova U. ; Holena M. ; Schlögl R. ; Baerns M. ChemCatChem 2011, 3, 1935.
doi: 10.1002/cctc.201100186 |
13 |
Wei Q. H. ; Gao X. H. ; Liu G. G. ; Yang R. Q. ; Zhang H. B. ; Yang G. H. ; Yoneyama Y. ; Tsubaki N. Fuel 2018, 211, 1.
doi: 10.1016/j.fuel.2017.08.093 |
14 | Wang S. ; Gao D. N. ; Zhang C. X. ; Yuan Z. S. ; Zhang P. ; Wang S. D. Prog. Chem. 2008, 20, 789. |
王胜; 高典楠; 张纯希; 袁中山; 张朋; 王树东. 化学进展, 2008, 20, 789. | |
15 |
Gao J. ; Guo J. Z. ; Liang D. ; Hou Z. Y. ; Fei J. H. ; Zheng X. M. Int. J. Hydrog. Energy 2008, 33, 5493.
doi: 10.1016/j.ijhydene.2008.07.040 |
16 |
Tompos A. ; Margitfalvi J. L. ; Hegedus M. ; Szegedi A. ; Fierro J. L. G. ; Rojas S. Comb. Chem. High T. Scr. 2007, 10, 71.
doi: 10.2174/138620707779802841 |
17 |
Launay H. ; Loridant S. ; Nguyen D. L. ; Volodin A. M. ; Dubois J. L. ; Millet J. M. M. Catal. Today 2007, 128, 176.
doi: 10.1016/j.cattod.2007.07.014 |
18 |
Wang X. ; Qi G. ; Xu J. ; Li B. ; Wang C. ; Deng F. Angew. Chem. Int. Ed. 2012, 51, 3850.
doi: 10.1002/anie.201108634 |
19 |
He J. L. ; Xu T. ; Wang Z. H. ; Zhang Q. H. ; Deng W. P. ; Wang Y. Angew. Chem. Int. Ed. 2012, 51, 2438.
doi: 10.1002/anie.201104071 |
20 |
Guo X. ; Fang G. ; Li G. ; Ma H. ; Fan H. ; Yu L. ; Ma C. ; Wu X. ; Deng D. ; Wei M. ; et al Science 2014, 344, 616.
doi: 10.1126/science.1253150 |
21 |
Schlangen M. ; Schwarz H. Catal. Lett. 2012, 142, 1265.
doi: 10.1007/s10562-012-0892-3 |
22 |
Lang S. M. ; Frank A. ; Bernhardt T. M. J. Phys. Chem. C 2013, 117, 9791.
doi: 10.1021/jp312852r |
23 |
Zhou S. ; Yue L. ; Schlangen M. ; Schwarz H. Angew. Chem. Int. Ed. 2017, 56, 14297.
doi: 10.1002/anie.201704979 |
24 |
Schwarz H. ; Shaik S. ; Li J. J. Am. Chem. Soc. 2017, 139, 17201.
doi: 10.1021/jacs.7b10139 |
25 |
Ding X. L. ; Wu X. N. ; Zhao Y. X. ; He S. G. Acc. Chem. Res. 2012, 45, 382.
doi: 10.1021/ar2001364 |
26 |
Zhao Y. X. ; Wu X. N. ; Ma J. B. ; He S. G. ; Ding X. L. Phys. Chem. Chem. Phys. 2011, 13, 1925.
doi: 10.1039/c0cp01171a |
27 |
Ding X. L. ; Zhao Y. X. ; Wu X. N. ; Wang Z. C. ; Ma J. B. ; He S. G. Chem. Eur. J. 2010, 16, 11463.
doi: 10.1002/chem.201001297 |
28 |
Wu X. N. ; Ding X. L. ; Li Z. Y. ; Zhao Y. X. ; He S. G. J. Phys. Chem. C 2014, 118, 24062.
doi: 10.1021/jp5059403 |
29 |
Lang S. M. ; Bernhardt T. M. ; Chernyy V. ; Bakker J. M. ; Barnett R. N. ; Landman U. Angew. Chem. Int. Ed. 2017, 56, 13406.
doi: 10.1002/anie.201706009 |
30 |
Qiao B. ; Wang A. ; Yang X. ; Allard L. F. ; Jiang Z. ; Cui Y. ; Liu J. ; Li J. ; Zhang T. Nat. Chem. 2011, 3, 634.
doi: 10.1038/Nchem.1095 |
31 |
Zhou X. ; Shen Q. ; Yuan K. ; Yang W. ; Chen Q. ; Geng Z. ; Zhang J. ; Shao X. ; Chen W. ; Xu G. ; et al J. Am. Chem. Soc. 2018, 140, 544.
doi: 10.1021/jacs.7b10394 |
32 |
Sun W. ; Shi R. N. ; Wang X. H. ; Liu S. S. ; Han X. X. ; Zhao C. F. ; Li Z. ; Ren J. Appl. Surf. Sci. 2017, 425, 291.
doi: 10.1016/j.apsusc.2017.07.002 |
33 |
Yuan J. ; Zhang W. ; Li X. ; Yang J. Chem. Commun. 2018, 54, 2284.
doi: 10.1039/c7cc08713f |
34 |
Wu X. N. ; Li X. N. ; Ding X. L. ; He S. G. Angew. Chem. Int. Ed. 2013, 52, 2444.
doi: 10.1002/anie.201207016 |
35 |
Ding X. L. ; Wang D. ; Li R. J. ; Liao H. L. ; Zhang Y. ; Zhang H. Y. Phys. Chem. Chem. Phys. 2016, 18, 9497.
doi: 10.1039/c6cp00808a |
36 |
Ding X. L. ; Li Z. Y. ; Meng J. H. ; Zhao Y. X. ; He S. G. J. Chem. Phys. 2012, 137, 214311.
doi: 10.1063/1.4769282 |
37 |
Stephens P. J. ; Devlin F. J. ; Chabalowski C. F. ; Frisch M. J. J. Phys. Chem. 1994, 98, 11623.
doi: 10.1021/j100096a001 |
38 | Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al., Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford CT, 2009. |
39 |
Asmis K. R. ; Wende T. ; Brummer M. ; Gause O. ; Santambrogio G. ; Stanca-Kaposta E. C. ; Dobler J. ; Niedziela A. ; Sauer J. Phys. Chem. Chem. Phys. 2012, 14, 9377.
doi: 10.1039/C2cp40245a |
40 |
Asmis K. R. ; Sauer J. Mass Spectrom. Rev. 2007, 26, 542.
doi: 10.1002/mas.20136 |
41 |
Santambrogio G. ; Brümmer M. ; Wöste L. ; Döbler J. ; Sierka M. ; Sauer J. ; Meijer G. ; Asmis K. R. Phys. Chem. Chem. Phys. 2008, 10, 3992.
doi: 10.1039/b803492c |
42 |
Fielicke A. ; Mitrić R. ; Meijer G. ; Bonačić-Koutecký V. ; von Helden G. J. Am. Chem. Soc. 2003, 125, 15716.
doi: 10.1021/ja036264d |
43 |
Bell R. C. ; Zemski K. A. ; Justes D. R. ; Castleman A. W. , Jr. J. Chem. Phys. 2001, 114, 798.
doi: 10.1063/1.1329643 |
44 |
Zhang X. H. ; Schwarz H. Chem. Eur. J. 2010, 16, 1163.
doi: 10.1002/chem.200902810 |
45 |
Rozanska X. ; Fortrie R. ; Sauer J. J. Phys. Chem. C 2007, 111, 6041.
doi: 10.1021/jp071409e |
46 |
Döbler J. ; Pritzsche M. ; Sauer J. J. Phys. Chem. C 2009, 113, 12454.
doi: 10.1021/jp901774t |
47 |
Ding X. L. ; Xue W. ; Ma Y. P. ; Zhao Y. X. ; Wu X. N. ; He S. G. J. Phys. Chem. C 2010, 114, 3161.
doi: 10.1021/jp9112415 |
48 |
Ma J. B. ; Wu X. N. ; Zhao Y. X. ; Ding X. L. ; He S. G. Phys. Chem. Chem. Phys. 2010, 12, 12223.
doi: 10.1039/C0CP00360C |
49 |
Ma J. B. ; Meng J. H. ; He S. G. Dalton Trans. 2015, 44, 3128.
doi: 10.1039/c4dt03398a |
50 |
Ma J. B. ; Wu X. N. ; Zhao Y. X. ; He S. G. ; Ding X. L. Acta Phys. -Chim. Sin. 2010, 26, 1761.
doi: 10.3866/pku.whxb20100737 |
马嘉璧; 吴晓楠; 赵艳霞; 何圣贵; 丁迅雷. 物理化学学报, 2010, 26, 1761.
doi: 10.3866/pku.whxb20100737 |
|
51 |
Weigend F. ; Ahlrichs R. Phys. Chem. Chem. Phys. 2005, 7, 3297.
doi: 10.1039/b508541a |
52 |
Zhao Y. X. ; Ding X. L. ; Ma Y. P. ; Wang Z. C. ; He S. G. Theor. Chem. Acc. 2010, 127, 449.
doi: 10.1007/s00214-010-0732-8 |
53 |
Grimme S. WIREs Comput. Mol. Sci. 2011, 1, 211.
doi: 10.1002/wcms.30 |
54 |
Goerigk L. ; Grimme S. Phys. Chem. Chem. Phys. 2011, 13, 6670.
doi: 10.1039/C0cp02984j |
55 |
Lu T. ; Chen F. J. Mol. Model. 2013, 19, 5387.
doi: 10.1007/s00894-013-2034-2 |
56 |
Grimme S. ; Ehrlich S. ; Goerigk L. J. Comput. Chem. 2011, 32, 1456.
doi: 10.1002/jcc.21759 |
[1] | Hanyu Xu, Xuedan Song, Qing Zhang, Chang Yu, Jieshan Qiu. Mechanistic Insights into Water-Mediated CO2 Electrochemical Reduction Reactions on Cu@C2N Catalysts: A Theoretical Study [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303040-. |
[2] | Heran Wang, Kai Chen, Shuo Fu, Haoxuan Wang, Jiaxuan Yuan, Xingyi Hu, Wenjuan Xu, Baoxiu Mi. Isomeric Bisbenzophenothiazines: Synthesis, Theoretical Calculations, and Photophysical Properties [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303047-. |
[3] | Cheng Luo, Qing Long, Bei Cheng, Bicheng Zhu, Linxi Wang. A DFT Study on S-Scheme Heterojunction Consisting of Pt Single Atom Loaded G-C3N4 and BiOCl for Photocatalytic CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2212026-. |
[4] | Ruoning Li, Xue Zhang, Na Xue, Jie Li, Tianhao Wu, Zhen Xu, Yifan Wang, Na Li, Hao Tang, Shimin Hou, Yongfeng Wang. Hierarchical Self-Assembly of Ag-Coordinated Motifs on Ag(111) [J]. Acta Phys. -Chim. Sin., 2022, 38(8): 2011060-. |
[5] | Rongchen Shen, Lei Hao, Qing Chen, Qiaoqing Zheng, Peng Zhang, Xin Li. P-Doped g-C3N4 Nanosheets with Highly Dispersed Co0.2Ni1.6Fe0.2P Cocatalyst for Efficient Photocatalytic Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2110014-. |
[6] | Haoran Lu, Yaqing Wei, Run Long. Charge Localization Induced by Nanopore Defects in Monolayer Black Phosphorus for Suppressing Nonradiative Electron-Hole Recombination through Time-Domain Simulation [J]. Acta Phys. -Chim. Sin., 2022, 38(5): 2006064-. |
[7] | Yishun Yang, Min Zhou, Yanxia Xing. Symmetry-Dependent Transport Properties of γ-Graphyne-based Molecular Magnetic Tunnel Junctions [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2003004-. |
[8] | Mengting Li, Xingqun Zheng, Li Li, Zidong Wei. Research Progress of Hydrogen Oxidation and Hydrogen Evolution Reaction Mechanism in Alkaline Media [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2007054-. |
[9] | Miaomiao Liu, Maomao Yang, XinXin Shu, Jintao Zhang. Design Strategies for Carbon-Based Electrocatalysts and Application to Oxygen Reduction in Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2007072-. |
[10] | Xingang Fei, Haiyan Tan, Bei Cheng, Bicheng Zhu, Liuyang Zhang. 2D/2D Black Phosphorus/g-C3N4 S-Scheme Heterojunction Photocatalysts for CO2 Reduction Investigated using DFT Calculations [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2010027-. |
[11] | Yunfei Wang, Jianhua Liu, Mei Yu, Jinyan Zhong, Qisen Zhou, Junming Qiu, Xiaoliang Zhang. SnO2 Surface Halogenation to Improve Photovoltaic Performance of Perovskite Solar Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(3): 2006030-. |
[12] | Yuan Liu, Zenghui Duan, Jun Li, Chunran Chang. Gas-Phase Mechanism Study of Methane Nonoxidative Conversion by ReaxFF Method [J]. Acta Phys. -Chim. Sin., 2021, 37(11): 2011012-. |
[13] | Junjie Shi, Ziqi Hu, Yihao Yang, Yuxiang Bu, Zujin Shi. Stability and Formation Mechanism of Endohedral Metal Carbonitride Clusterfullerenes [J]. Acta Phys. -Chim. Sin., 2021, 37(10): 1907077-. |
[14] | Danye Liu,Dong Chen,Hui Liu,Jun Yang. Inside-Out Migration of Noble Metals in Ag2S Nanoparticles [J]. Acta Physico-Chimica Sinica, 2020, 36(7): 1906069-. |
[15] | Xuezhu Xiao, Xiaofang Cao, Dongbo Zhao, Chunying Rong, Shubin Liu. Quantification of Molecular Basicity for Amines: a Combined Conceptual Density Functional Theory and Information-Theoretic Approach Study [J]. Acta Physico-Chimica Sinica, 2020, 36(11): 1906034-. |
|