Acta Phys. -Chim. Sin. ›› 2024, Vol. 40 ›› Issue (1): 2303047.doi: 10.3866/PKU.WHXB202303047
• ARTICLE • Previous Articles Next Articles
Heran Wang, Kai Chen, Shuo Fu, Haoxuan Wang, Jiaxuan Yuan, Xingyi Hu, Wenjuan Xu(), Baoxiu Mi()
Received:
2023-03-23
Accepted:
2023-05-17
Published:
2023-08-21
Contact:
Wenjuan Xu, Baoxiu Mi
E-mail:iamwjxu@njupt.edu.cn;iambxmi@njupt.edu.cn
Supported by:
Heran Wang, Kai Chen, Shuo Fu, Haoxuan Wang, Jiaxuan Yuan, Xingyi Hu, Wenjuan Xu, Baoxiu Mi. Isomeric Bisbenzophenothiazines: Synthesis, Theoretical Calculations, and Photophysical Properties[J]. Acta Phys. -Chim. Sin. 2024, 40(1), 2303047. doi: 10.3866/PKU.WHXB202303047
Fig 4
(a) The distribution of smoothed holes and electrons (green: electrons, blue: holes), (b) electron density difference between excited state and ground state (green and blue represent regions of increased and decreased electron density, respectively) and (c) Fragment distribution (red: fragment 1, green: fragment 2) of four compounds (isovalue = 0.0015)."
Fig 5
(a) Calculated UV-Vis absorbance spectra of four compounds in THF, full width at half maximum = 0.333 eV. (b) UV-Vis absorbance spectra of four compounds in THF (c = 1 × 10−5 mol·L−1). (c) Fluorescence spectra of four compounds in THF (c = 1 × 10−5 mol·L−1) and their fluorescence picture under 365 nm irradiation (inset)."
Table 2
The photophysical and electrochemical data of four compounds."
Compound | Calculation | Experiment | |||||||||
LUMO a | HOMO a | Gap a | HOMO c | λabs d | λPL e | ФPL f | τ1 g | τ2 g | χ2 | ||
eV | eV | eV | eV | nm | nm | % | ns | ns | |||
D-PTZ | −1.28 | −5.31 | 4.03 | −5.58 | 258,309 | 475 | 1.4 | 3.65 | – | 1.365 | |
D-PTZa | −1.42 | −4.90 | 3.48 | −5.57 | 266,367 | 501 | 14 | 6.53 | – | 1.219 | |
D-PTZb | −1.36 | −5.39 | 4.03 | −5.69 | 253,288,371 | 450 | 1.7 | 0.57 (83.16%) | 3.23 (16.84%) | 1.303 | |
D-PTZc | −1.55 | −5.21 | 3.66 | −5.43 | 275,328 | 501 | 13 | 0.27 (0.49%) | 10.87 (99.51%) | 1.212 |
1 |
Al-Busaidi I. J. ; Haque A. ; Al Rasbi N. K. ; Khan M. S. Synth. Met. 2019, 257, 116189.
doi: 10.1016/j.synthmet.2019.116189 |
2 |
Devadiga D. ; Selvakumar M. ; Shetty P. ; Santosh M. ; Chandrabose R. S. ; Karazhanov S. Int. J. Energy Res. 2021, 45, 6584.
doi: 10.1002/er.6348 |
3 |
Pandolfi F. ; Rocco D. ; Mattiello L. Org. Biomol. Chem. 2019, 17, 3018.
doi: 10.1039/c8ob03077d |
4 |
Thokala S. ; Singh S. P. ACS Omega 2020, 5, 5608.
doi: 10.1021/acsomega.0c00065 |
5 |
Simkus G. ; Tomkeviciene A. ; Volyniuk D. ; Mimaite V. ; Sini G. ; Budreckiene R. ; Grazulevicius J. V. J. Photochem. Photobiol. A 2017, 340, 62.
doi: 10.1016/j.jphotochem.2017.03.004 |
6 |
Reddy G. ; Duvva N. ; Seetharaman S. ; D'Souza F. ; Giribabu L. Phys. Chem. Chem. Phys. 2018, 20, 27418.
doi: 10.1039/c8cp05509b |
7 |
Liu A V. ; Wong S.-W. K.-T. Mater. Sci. Eng. R-Rep. 2018, 124, 1.
doi: 10.1016/j.mser.2018.01.001 |
8 |
Giri D. ; Raut S. K. ; Patra S. K. Dyes Pigm. 2020, 174, 108032.
doi: 10.1016/j.dyepig.2019.108032 |
9 |
Ochieng M. A. ; Ponder J. F. ; Reynolds J. R. Polym. Chem. 2020, 11, 2173.
doi: 10.1039/c9py01720h |
10 |
Wang Z. ; Gu P. ; Liu G. ; Yao H. ; Wu Y. ; Li Y. ; Rakesh G. ; Zhu J. ; Fu H. ; Zhang Q. Chem. Commun. 2017, 53, 7772.
doi: 10.1039/c7cc03898d |
11 |
Zhang Z. ; Wang Z. ; Aratani N. ; Zhu X. ; Zhang Q. CCS Chem. 2022, 4, 3491.
doi: 10.31635/ccschem.022.202202013 |
12 |
Bernthsen A. Ber. Chem. Ges. 1883, 16, 2896.
doi: 10.1002/cber.188301602249 |
13 |
McDowell J. J. H. Acta Crystallogr. B-Struct. Sci. Cryst. Eng. Mater. 1975, 32, 5.
doi: 10.1107/S0567740876002215 |
14 |
Gangadhar P. S. ; Reddy G. ; Prasanthkumar S. ; Giribabu L. Phys. Chem. Chem. Phys. 2021, 23, 14969.
doi: 10.1039/d1cp01185e |
15 |
Al-Ghamdi S. N. ; Al-Ghamdi H. A. ; El-Shishtawy R. M. ; Asiri A. M. Dyes Pigm. 2021, 194, 109638.
doi: 10.1016/j.dyepig.2021.109638 |
16 |
Ye X. ; Zhao X. ; Li Q. ; Ma Y. ; Song W. ; Quan Y.-Y. ; Wang Z. ; Wang M. ; Huang Z.-S. Dyes Pigm. 2019, 164, 407.
doi: 10.1016/j.dyepig.2019.01.059 |
17 |
Nobuyasu R. S. ; Ren Z. ; Griffiths G. C. ; Batsanov A. S. ; Data P. ; Yan S. ; Monkman A. P. ; Bryce M. R. ; Dias F. B. Adv. Opt. Mater. 2016, 4, 597.
doi: 10.1002/adom.201500689 |
18 |
Zhao Y. ; Yang H. ; Ma H. ; Li Y. ; Qian L. ; Yu T. ; Su W. Synth. Met. 2020, 265, 116406.
doi: 10.1016/j.synthmet.2020.116406 |
19 |
Periyasamy K. ; Sakthivel P. ; Vennila P. ; Anbarasan P. M. ; Venkatesh G. ; Sheena Mary Y. J. Photochem. Photobiol. A 2021, 413, 113269.
doi: 10.1016/j.jphotochem.2021.113269 |
20 |
Shanmugasundaram K. ; Chitumalla R. K. ; Jang J. ; Choe Y. New J. Chem. 2017, 41, 9668.
doi: 10.1039/c7nj00976c |
21 |
Cheng Y.-J. ; Yu S.-Y. ; Lin S.-C. ; Lin J. T. ; Chen L.-Y. ; Hsiu D.-S. ; Wen Y. S. ; Lee M. M. ; Sun S.-S. J. Mater. Chem. C 2016, 4, 9499.
doi: 10.1039/c6tc03335k |
22 |
Ran Q. ; Zhang Y.-L. ; Hua X. ; Fung M.-K. ; Liao L.-S. ; Fan J. Dyes Pigm. 2019, 162, 632.
doi: 10.1016/j.dyepig.2018.10.076 |
23 |
Kim S.-K. ; Lee C.-J. ; Kang I.-N. ; Park J.-W. ; Lee J.-H. ; Kim K.-S. ; Choi C.-K. ; Lee S.-D. Mol. Cryst. Liq. Cryst. 2006, 462, 135.
doi: 10.1080/07370650601013054 |
24 |
Yang W. ; Yang Y. ; Cao X. ; Liu Y. ; Chen Z. ; Huang Z. ; Gong S. ; Yang C. Chem. Eng. J. 2021, 415, 128909.
doi: 10.1016/j.cej.2021.128909 |
25 |
Wang Y. ; Zhang W. ; Yang J. ; Gong Y. ; Zhang J. ; Fang M. ; Yang Q.-H. ; Li Z. Matter 2022, 5, 4467.
doi: 10.1016/j.matt.2022.09.008 |
26 |
Wang Y. ; Yang J. ; Fang M. ; Gong Y. ; Ren J. ; Tu L. ; Tang B. Z. ; Li Z. Adv. Funct. Mater. 2021, 31, 2101719.
doi: 10.1002/adfm.202101719 |
27 | Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; et al. Gaussian 16, Revision A. 01; Gaussian Inc. : Wallingford CT, 2016. |
28 |
Stephens P. J. ; Devlin F. J. ; Chabalowski C. F. ; Frisch M. J. J. Phys. Chem. 1994, 98, 11623.
doi: 10.1021/j100096a001 |
29 |
McLean A. D. ; Chandler G. S. J. Chem. Phys. 2008, 72, 5639.
doi: 10.1063/1.438980 |
30 |
Jacquemin D. ; Planchat A. ; Adamo C. ; Mennucci B. J. Chem. Theory Comput. 2012, 8, 2359.
doi: 10.1021/ct300326f |
31 |
Yanai T. ; Tew D. P. ; Handy N. C. Chem. Phys. Lett. 2004, 393, 51.
doi: 10.1016/j.cplett.2004.06.011 |
32 |
Lu T. ; Chen F. J. Comput. Chem. 2012, 33, 580.
doi: 10.1002/jcc.22885 |
33 |
Lu T. ; Chen Q. Comput. Theor. Chem. 2021, 1200, 113249.
doi: 10.1016/j.comptc.2021.113249 |
34 |
Liu Z. ; Lu T. ; Chen Q. Carbon 2020, 165, 461.
doi: 10.1016/j.carbon.2020.05.023 |
35 |
Shen Y. ; Chen P. ; Liu J. ; Ding J. ; Xue P. Dyes Pigm. 2018, 150, 354.
doi: 10.1016/j.dyepig.2017.12.034 |
36 |
Li J. ; Ding Y. ; Liu S. ; Ding W. ; Fang D. ; Chen H. ; Jiao Y. ; Mi B. ; Xu W. ; Gao Z. Synth. Met. 2022, 287, 117067.
doi: 10.1016/j.synthmet.2022.117067 |
[1] | Wei Sun, Yongjing Wang, Kun Xiang, Saishuai Bai, Haitao Wang, Jing Zou, Arramel, Jizhou Jiang. CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction [J]. Acta Phys. -Chim. Sin., 2024, 40(8): 2308015-. |
[2] | Hanyu Xu, Xuedan Song, Qing Zhang, Chang Yu, Jieshan Qiu. Mechanistic Insights into Water-Mediated CO2 Electrochemical Reduction Reactions on Cu@C2N Catalysts: A Theoretical Study [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303040-. |
[3] | Cheng Luo, Qing Long, Bei Cheng, Bicheng Zhu, Linxi Wang. A DFT Study on S-Scheme Heterojunction Consisting of Pt Single Atom Loaded G-C3N4 and BiOCl for Photocatalytic CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2212026-. |
[4] | Bihao Zhuang, Zicong Jin, Dehua Tian, Suiyi Zhu, Linqian Zeng, Jiandong Fan, Zaizhu Lou, Wenzhe Li. Halogen Regulation for Enhanced Luminescence in Emerging (4-HBA)SbX5∙H2O Perovskite-Like Single Crystals [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2209007-0. |
[5] | Ruoning Li, Xue Zhang, Na Xue, Jie Li, Tianhao Wu, Zhen Xu, Yifan Wang, Na Li, Hao Tang, Shimin Hou, Yongfeng Wang. Hierarchical Self-Assembly of Ag-Coordinated Motifs on Ag(111) [J]. Acta Phys. -Chim. Sin., 2022, 38(8): 2011060-. |
[6] | Haoran Lu, Yaqing Wei, Run Long. Charge Localization Induced by Nanopore Defects in Monolayer Black Phosphorus for Suppressing Nonradiative Electron-Hole Recombination through Time-Domain Simulation [J]. Acta Phys. -Chim. Sin., 2022, 38(5): 2006064-. |
[7] | Yishun Yang, Min Zhou, Yanxia Xing. Symmetry-Dependent Transport Properties of γ-Graphyne-based Molecular Magnetic Tunnel Junctions [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2003004-. |
[8] | Mengting Li, Xingqun Zheng, Li Li, Zidong Wei. Research Progress of Hydrogen Oxidation and Hydrogen Evolution Reaction Mechanism in Alkaline Media [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2007054-. |
[9] | Xingang Fei, Haiyan Tan, Bei Cheng, Bicheng Zhu, Liuyang Zhang. 2D/2D Black Phosphorus/g-C3N4 S-Scheme Heterojunction Photocatalysts for CO2 Reduction Investigated using DFT Calculations [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2010027-. |
[10] | Yunfei Wang, Jianhua Liu, Mei Yu, Jinyan Zhong, Qisen Zhou, Junming Qiu, Xiaoliang Zhang. SnO2 Surface Halogenation to Improve Photovoltaic Performance of Perovskite Solar Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(3): 2006030-. |
[11] | Junjie Shi, Ziqi Hu, Yihao Yang, Yuxiang Bu, Zujin Shi. Stability and Formation Mechanism of Endohedral Metal Carbonitride Clusterfullerenes [J]. Acta Phys. -Chim. Sin., 2021, 37(10): 1907077-. |
[12] | Xuezhu Xiao, Xiaofang Cao, Dongbo Zhao, Chunying Rong, Shubin Liu. Quantification of Molecular Basicity for Amines: a Combined Conceptual Density Functional Theory and Information-Theoretic Approach Study [J]. Acta Physico-Chimica Sinica, 2020, 36(11): 1906034-. |
[13] | Zhichao Huang,Yazhong Dai,Xiaojie Wen,Dan Liu,Yuxuan Lin,Zhen Xu,Jian Pei,Kai Wu. Conformational Switching of Verdazyl Radicals on Au(111) [J]. Acta Physico-Chimica Sinica, 2020, 36(1): 1907043-. |
[14] | Dan WANG,Xunlei DING,Henglu LIAO,Jiayu DAI. Methane Activation on (Au/Ag)1-Doped Vanadium Oxide Clusters [J]. Acta Physico-Chimica Sinica, 2019, 35(9): 1005-1013. |
[15] | Qiang CHEN,Li-Xue JIANG,Hai-Fang LI,Jiao-Jiao CHEN,Yan-Xia ZHAO,Sheng-Gui HE. Thermal Activation of Methane by Diatomic Vanadium Boride Cations [J]. Acta Physico-Chimica Sinica, 2019, 35(9): 1014-1020. |
|