Acta Physico-Chimica Sinica ›› 2019, Vol. 35 ›› Issue (9): 968-976.doi: 10.3866/PKU.WHXB201810007
Special Issue: C–H Activation
• Review • Previous Articles Next Articles
Received:
2018-10-08
Accepted:
2018-11-30
Published:
2018-12-07
Contact:
Lu LI
E-mail:luli@jlu.edu.cn
Supported by:
Xiaoyue MU,Lu LI. Photo-Induced Activation of Methane at Room Temperature[J]. Acta Physico-Chimica Sinica 2019, 35(9), 968-976. doi: 10.3866/PKU.WHXB201810007
1 |
Choudhary V. R. ; Kinage A. K. ; Choudhary T. V. Science 1997, 275, 1286.
doi: 10.1126/science.275.5304.1286 |
2 |
Lunsford J. H. Catal. Today 2000, 63, 165.
doi: 10.1016/S0920-5861(00)00456-9 |
3 |
Holmen A. Catal. Today 2009, 142, 2.
doi: 10.1016/j.cattod.2009.01.004 |
4 |
Schwach P. ; Pan X. L. ; Bao X. H. Chem. Rev. 2017, 117, 8497.
doi: 10.1021/acs.chemrev.6b00715 |
5 |
Gunsalus N. J. ; Koppaka A. ; Park S. H. ; Bischof S. M. ; Hashiguchi B. G. ; Periana R. A. Chem. Rev. 2017, 117, 8521.
doi: 10.1021/acs.chemrev.6b00739 |
6 |
Tang P. ; Zhu Q. J. ; Wu Z. X. ; Ma D. Energy Environ. Sci. 2014, 7, 2580.
doi: 10.1039/C4EE00604F |
7 |
Richard A. K. Science 2010, 328, 1624.
doi: 10.1126/science.328.5986.1624 |
8 |
Schwarz H. Angew. Chem. Int. Ed. 2011, 50, 10096.
doi: 10.1002/anie.201006424 |
9 |
Lelieveld J. ; Lechtenböhmer S. ; Assonov S. S. ; Brenninkmeijer C. A. M. ; Dienst C. ; Fischedick M. ; Hanke T. Nature 2005, 434, 841.
doi: 10.1038/434841a |
10 |
Bergman R. G. Nature 2007, 446, 391.
doi: 10.1038/446391a |
11 |
Arora S. ; Prasad R. RSC Adv. 2016, 6, 108668.
doi: 10.1039/C6RA20450C |
12 |
Pakhare D. ; Spivey J. Chem. Soc. Rev. 2014, 43, 7813.
doi: 10.1039/C3CS60395D |
13 |
Jones G. ; Jakobsen J. G. ; Shim S. S. ; Kleis J. ; Andersson M. P. ; Rossmeisl J. ; Abild-Pedersen F. ; Bligaard T. ; Helveg S. ; Hinnemann B. ; et al J. Catal. 2008, 259, 147.
doi: 10.1016/j.jcat.2008.08.003 |
14 |
Hook J. P. V. Catal. Rev. -Sci. Eng. 1980, 21, 1.
doi: 10.1080/03602458008068059 |
15 |
Latimer A. A. ; Kulkarni A. R. ; AljamaH. ; Montoya J. H. ; Yoo J. S. ; Tsai C. ; Abild-Pedersen F. ; Studt F. ; Nørskov J. K. Nat. Mater. 2017, 16, 225.
doi: 10.1038/nmat4760 |
16 |
Liang Z. ; Li T. ; Kim M. ; Asthagiri A. ; Weaver J. F. Science 2017, 356, 299.
doi: 10.1126/science.aam9147 |
17 |
Labinger J. A. ; Bercaw J. E. Nature 2002, 417, 507.
doi: 10.1038/417507a |
18 |
Sushkevich V. L. ; Palagin D. ; Ranocchiari M. ; van Bokhoven J. A. Science 2017, 356, 523.
doi: 10.1126/science.aam9035 |
19 |
Berndt H. ; Martin A. ; Brückner A. ; Schreier E. ; Müller D. ; Kosslick H. ; Wolf G.-U. ; Lücke B. J. Catal. 2000, 191, 384.
doi: 10.1006/jcat.1999.2786 |
20 |
Periana R. A. ; Mironov O. ; Taube D. ; Bhalla G.C.J. J. Science 2003, 301, 814.
doi: 10.1126/science.1086466 |
21 |
Lunsford J. H. Angew. Chem. Int. Ed. 1995, 34, 970.
doi: 10.1002/anie.199509701 |
22 |
Spivey J. J. ; Hutchings G. Chem. Soc. Rev. 2014, 43, 792.
doi: 10.1039/C3CS60259A |
23 |
Zheng H. ; Ma D. ; Bao X. H. ; Hu J. Z. ; Kwak J. H. ; Wang Y. ; Peden C. H. F. J. Am. Chem. Soc. 2008, 130, 3722.
doi: 10.1021/ja7110916 |
24 |
Wang L. ; Tao L. ; Xie M. ; Xu G. Catal. Lett. 1993, 21, 35.
doi: 10.1007/BF00767368 |
25 |
Guo X. G. ; Fang G. Z. ; Li G. ; Ma H. ; Fan H. J. ; Yu L. ; Ma C. ; Wu X. ; Deng D. H. ; Wei M. M. ; et al Science 2014, 344, 616.
doi: 10.1126/science.1253150 |
26 |
Cui X. J. ; Li H. B. ; Wang Y. ; Hu Y. L. ; Hua L. ; Li H. Y. ; Han X. W. ; Liu Q. F. ; Yang F. ; He L. M. ; et al Chem 2018, 4, 1902.
doi: 10.1016/j.chempr.2018.05.006 |
27 |
Xu Y. D. ; Bao X. H. ; Lin L. W. J. Catal. 2003, 216, 386.
doi: 10.1016/S0021-9517(02)00124-0 |
28 |
Kato Y. ; Yoshida H. ; Hattori T. Chem. Commun. 1998, 21, 2389.
doi: 10.1039/A806825I |
29 |
Yuliati L. ; Yoshida H. Chem. Soc. Rev. 2008, 37, 1592.
doi: 10.1039/B710575B |
30 | Yoshida H. ; Matsushita N. ; Kato Y. ; Hattori T. J. Phys. Chem. B 2003, 107, 8355. |
31 |
Li L. ; Li G.-D. ; Yan C. ; Mu X.-Y. ; Pan X.-L. ; Zou X.-X. ; Wang K.-X. ; Chen J.-S. Angew. Chem. Int. Ed. 2011, 50, 8299.
doi: 10.1002/anie.201102320 |
32 |
Dietl N. ; Engeser M. ; Schwarz H. Angew. Chem. Int. Ed. 2009, 48, 4861.
doi: 10.1002/anie.200901596 |
33 |
Copéret C. Chem. Rev. 2010, 110, 656.
doi: 10.1021/cr900122p |
34 |
Yuliati L. ; Hamajima T. ; Hattori T. ; Yoshida H. J. Phys. Chem. C 2008, 112, 7223.
doi: 10.1021/jp712029w |
35 |
Anderson M. W. ; Terasaki O. ; Ohsuna T. ; Philippou A. ; Mackay S. P. ; Ferreira A. ; Rocha J. ; Lidin S. Nature 1994, 367, 347.
doi: 10.1038/367347a0 |
36 |
Li L. ; Cai Y.-Y. ; Li G.-D. ; Mu X.-Y. ; Wang K.-X. ; Chen J.-S. Angew. Chem. Int. Ed. 2012, 51, 4702.
doi: 10.1002/anie.201200045 |
37 |
Li L. ; Fan S. ; Mu X. ; Mi Z. ; Li C.-J. J. Am. Chem. Soc. 2014, 136, 7793.
doi: 10.1021/ja5004119 |
38 |
Li L. ; Mu X. ; Liu W. ; Kong X. ; Fan S. ; Mi Z. ; Li C. J. Angew. Chem. Int. Ed. 2014, 53, 14106.
doi: 10.1002/anie.201408754 |
39 |
Goldberger J. ; He R. R. ; Zhang Y. F. ; Lee S. ; Yan H. Q. ; Choi H. J. ; Yang P. D. Nature 2003, 422, 599.
doi: 10.1038/nature01551 |
40 |
Ibbetson J. P. ; Fini P. T. ; Ness K. D. ; DenBaars S. P. ; Speck J. S. ; Mishra U. K. Appl. Phys. Lett. 2000, 77, 250.
doi: 10.1063/1.126940 |
41 |
Eller B. S. ; Yang J. L. ; Nemanich R. J. J. Electron. Mat. 2014, 43, 4560.
doi: 10.1007/s11664-014-3383-z |
42 |
Meng L. ; Chen Z. ; Ma Z. ; He S. ; Hou Y. ; Li H. ; Yuan R. ; Huang X. ; Wang X. ; Wang X. ;et al Energy Environ. Sci. 2018, 11, 294.
doi: 10.1056/NEJMoa1304459 |
43 |
Yu L. H. ; Shao Y. ; Li D. Z. Appl. Catal. B-Environ. 2017, 204, 216.
doi: 10.1016/j.apcatb.2016.11.039 |
44 |
Kaliaguine S. L. ; Shelimov B. N. ; Kazansky V. B. J. Catal. 1978, 55, 384.
doi: 10.1016/0021-9517(78)90225-7 |
45 |
Chen X. ; Li Y. ; Pan X. ; Cortie D. ; Huang X. ; Yi Z. Nat. Commun. 2016, 7, 12273.
doi: 10.1038/ncomms12273 |
46 |
Wada K. ; Yamada H. ; Watanabe Y. ; Mitsudo T. J. Chem. Soc. Faraday Trans. 1998, 94, 1771.
doi: 10.1007/s10562-008-9491-8 |
47 |
López H. H. ; Martínez A. Catal. Lett. 2002, 83, 37.
doi: 10.1023/A:1020649313699 |
48 |
Thampi K. R. ; Kiwi J. ; Grätzel M. Catal. Lett. 1988, 1, 109.
doi: 10.1007/BF00765891 |
49 |
Ward M. D. ; Brazdil J. F. ; Mehandru S. P. ; Anderson A. B. J. Phys. Chem. 1987, 91, 6515.
doi: 10.1021/j100310a019 |
50 |
Wada K. ; Yoshida K. ; Watanabe Y. J. Chem. Soc. Faraday Trans. 1995, 91, 1647.
doi: 10.1039/FT9959101647 |
51 |
Noceti R. P. ; Taylor C. E. ; D'Este J. R. Catal. Today 1997, 33, 199.
doi: 10.1016/S0920-5861(96)00155-1 |
52 |
Villa K. ; Murcia-López M. ; Andreu T. ; Morante J. R. Appl. Catal. B: Environ. 2015, 163, 150.
doi: 10.1016/j.apcatb.2014.07.055 |
53 |
Murcia-López S. ; Bacariza M. C. ; Villa K. ; Lopes J. M. ; Henriques C. ; Morante J. R. ; Andreu T. ACS Catal. 2017, 7, 2878.
doi: 10.1021/acscatal.6b03535 |
54 |
Hu A. H. ; Guo J. J. ; Pan H. ; Zuo Z. W. Science 2018.
doi: 10.1126/science.aat9750 |
[1] | Chengbo Zhang, Xiaoping Tao, Wenchao Jiang, Junxue Guo, Pengfei Zhang, Can Li, Rengui Li. Microwave-Assisted Synthesis of Bismuth Chromate Crystals for Photogenerated Charge Separation [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303034-. |
[2] | Kezhen Lai, Fengyan Li, Ning Li, Yangqin Gao, Lei Ge. Identification of Charge Transfer Pathways in Metal-Organic Framework- Derived Ni-CNT/ZnIn2S4 Heterojunctions for Photocatalytic Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2304018-. |
[3] | Qianwei Song, Guanchao He, Huilong Fei. Photothermal Catalytic Conversion Based on Single Atom Catalysts: Fundamentals and Applications [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212038-0. |
[4] | Xinhe Wu, Guoqiang Chen, Juan Wang, Jinmao Li, Guohong Wang. Review on S-Scheme Heterojunctions for Photocatalytic Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2212016-0. |
[5] | Keyu Zhang, Yunfeng Li, Shidan Yuan, Luohong Zhang, Qian Wang. Review of S-Scheme Heterojunction Photocatalyst for H2O2 Production [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2212010-. |
[6] | Zhongliao Wang, Jing Wang, Jinfeng Zhang, Kai Dai. Overall Utilization of Photoexcited Charges for Simultaneous Photocatalytic Redox Reactions [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2209037-. |
[7] | Zhongqi Zan, Xibao Li, Xiaoming Gao, Juntong Huang, Yidan Luo, Lu Han. 0D/2D Carbon Nitride Quantum Dots (CNQDs)/BiOBr S-Scheme Heterojunction for Robust Photocatalytic Degradation and H2O2 Production [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2209016-. |
[8] | Wenjie Zhou, Qihang Jing, Jiaxin Li, Yingzhi Chen, Guodong Hao, Lu-Ning Wang. Organic Photocatalysts for Solar Water Splitting: Molecular- and Aggregate-Level Modifications [J]. Acta Phys. -Chim. Sin., 2023, 39(5): 2211010-0. |
[9] | Erjun Lu, Junqian Tao, Can Yang, Yidong Hou, Jinshui Zhang, Xinchen Wang, Xianzhi Fu. Carbon-Encapsulated Pd/TiO2 for Photocatalytic H2 Evolution Integrated with Photodehydrogenative Coupling of Amines to Imines [J]. Acta Phys. -Chim. Sin., 2023, 39(4): 2211029-0. |
[10] | Yonggang Lei, Tianyu Zhao, Kim Hoong Ng, Yingzhen Zhang, Xuerui Zang, Xiao Li, Weilong Cai, Jianying Huang, Jun Hu, Yuekun Lai. Metallic Tungsten Carbide Coupled with Liquid-Phase Dye Photosensitizer for Efficient Photocatalytic Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2023, 39(4): 2206006-0. |
[11] | Jing Kong, Jingui Zhang, Sufen Zhang, Juqun Xi, Ming Shen. Performance Improvement and Antibacterial Mechanism of BiOI/ZnO Nanocomposites as Antibacterial Agent under Visible Light [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2212039-. |
[12] | Jintao Dong, Sainan Ji, Yi Zhang, Mengxia Ji, Bin Wang, Yingjie Li, Zhigang Chen, Jiexiang Xia, Huaming Li. Construction of Z-Scheme MnO2/BiOBr Heterojunction for Photocatalytic Ciprofloxacin Removal and CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2023, 39(11): 2212011-. |
[13] | Cheng Hu, Hongwei Huang. Advances in Piezoelectric Polarization Enhanced Photocatalytic Energy Conversion [J]. Acta Phys. -Chim. Sin., 2023, 39(11): 2212048-. |
[14] | Xiaoyan Cai, Jiahao Du, Guangming Zhong, Yiming Zhang, Liang Mao, Zaizhu Lou. Constructing a CeO2/ZnxCd1−xIn2S4 S-Scheme Hollow Heterostructure for Efficient Photocatalytic H2 Evolution [J]. Acta Phys. -Chim. Sin., 2023, 39(11): 2302017-. |
[15] | Jun Xie, Yuheng Jiang, Siyang Li, Peng Xu, Qiang Zheng, Xiaoyu Fan, Hailin Peng, Zhiyong Tang. Stable Photocatalytic Coupling of Methane to Ethane with Water Vapor Using TiO2 Supported Ultralow Loading AuPd Nanoparticles [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2306037-. |
|