Acta Physico-Chimica Sinica ›› 2019, Vol. 35 ›› Issue (11): 1267-1275.doi: 10.3866/PKU.WHXB201812053
Previous Articles Next Articles
Yanjie HUANG1,*(),Chao LIAN2,Jinyan ZHOU1,Zichen HUANG1,Xiaohong KANG2,Zhenyu HUANG1,Xiaojing LI1,Lin CHEN1,Yan GUAN3,*()
Received:
2018-12-30
Accepted:
2019-02-25
Published:
2019-03-04
Contact:
Yanjie HUANG,Yan GUAN
E-mail:yjhuang@scm.com.cn;yanguan@pku.edu.cn
Supported by:
Yanjie HUANG, Chao LIAN, Jinyan ZHOU, Zichen HUANG, Xiaohong KANG, Zhenyu HUANG, Xiaojing LI, Lin CHEN, Yan GUAN. Investigation of Excitation-, pH-, Metal Ion-, Temperature-, and Polarity-Dependent Fluorescence of Carbon Dots Derived from Silkworm Excrement[J]. Acta Physico-Chimica Sinica 2019, 35(11), 1267-1275. doi: 10.3866/PKU.WHXB201812053
Fig 4
The emission spectrum of CDs in different pH B-R buffer solutions (The inset shows the color change of CDs versus pH); (b) Normalized emission spectrum of CDs. (λex = 440 nm, pH = 2.18, 3.59, 4.33, 5.56, 6.37, 7.63, 8.35, 9.25, 10.24). (c) The plot of λem, max versus pH; (d) CIE image of CDs."
Fig 5
Fluorescence emission spectrum of the as-prepared CDs as function of Cu2+. 20 μL of the as-prepared CDs was added into 0.2 mol L-1 HEPES buffer solutions (λex = 440 nm, CCu = 2 × 10-4, 4 × 10-4, 6 × 10-4, 8 × 10-4 mol L-1) (a) with increasing concentration of Cu2+ and (b) with different volume of 0.01 mol L-1 EDTA (VEDTA= 0, 20, 40, 60, 80 μL); (c) The Stern-Volmer plot of CDs. The IF0/IF value in (d) HEPES (pH = 7) and (e) B-R buffer solutions (pH = 5.56)."
1 |
Wang R. ; Lu K. Q. ; Tang Z. R. ; Xu Y. J. J. Mater. Chem. A 2017, 5 (8), 3717.
doi: 10.1039/C6TA08660H |
2 |
Li S. H. ; Weng B. ; Lu K. Q. ; Xu Y. J. Acta Phys. -Chim. Sin. 2018, 34 (6), 708.
doi: 10.3866/PKU.WHXB201710162 |
李少海; 翁波; 卢康强; 徐艺军. 物理化学学报, 2018, 34 (6), 708.
doi: 10.3866/PKU.WHXB201710162 |
|
3 |
Lu K. Q. ; Quan Q. ; Zhang N. ; Xu Y. J. J. Energy Chem. 2016, 25 (6), 927.
doi: 10.1016/j.jechem.2016.09.015 |
4 |
Wang X. ; Cao L. ; Lu F. S. ; Meziani M. J. ; Li H. T. ; Qi G. ; Zhou B. ; Harruff B. A. ; Kermarrec F. ; Sun Y. P. Chem. Commun. 2009, 46 (25), 3774.
doi: 10.1039/B906252A |
5 |
Kumar A. ; Chowdhuri A. R. ; Laha D. ; Mahto T. K. ; Karmakar P. ; Sahu S. K. Sensor Actuat. B-Chem. 2017, 242, 679.
doi: 10.1016/j.snb.2016.11.109 |
6 |
Ge J. C. ; Jia Q. Y. ; Liu W. M. ; Guo L. ; Liu Q. Y. ; Lan M. H. ; Zhang H. Y. ; Meng X. M. ; Wang P. F. Adv. Mater. 2015, 27 (28), 4169.
doi: 10.1002/adma.201500323 |
7 |
Lin F. ; He W. N. ; Guo X. Q. Adv. Mater. Res. 2011, 415
doi: 10.4028/www.scientific.net/AMR.415-417.1319 |
8 |
Lin F. ; Pei D. J. ; He W. N. ; Huang Z. X. ; Huang Y. J. ; Guo X. Q. J. Mater. Chem. 2012, 22 (23), 11801.
doi: 10.1039/c2jm31191g |
9 |
Anjana R. R. ; Anjali Devi J. S. ; Jayasree M. ; Aparna R. S. ; Aswathy B. ; Praveen G. L. ; Lekha G. M. ; Sony G. Microchim. Acta 2018, 185 (1), 11.
doi: 10.1007/s00604-017-2574-8 |
10 |
Jiang K. ; Sun S. ; Zhang L. ; Lu Y. ; Wu A. G. ; Cai C. Z. ; Lin H. W. Angew. Chem. Int. Edit. 2015, 54 (18), 5360.
doi: 10.1002/ange.201501193 |
11 |
Wang X. D. ; Wolfbeis O. S. ; Meier R. J. Chem. Soc. Rev. 2013, 42 (19), 7834.
doi: 10.1039/c3cs60102a |
12 |
Zu F. L. ; Yan F. Y. ; Bai Z. J. ; Xu J. X. ; Wang Y. Y. ; Huang Y. C. ; Zhou X. G. Microchim. Acta 2017, 184 (7), 1899.
doi: 10.1007/s00604-017-2318-9 |
13 |
Sun Y. P. ; Zhou B. ; Lin Y. ; Wang W. ; Fernando K. A. ; Pathak P. ; Meziani M. J. ; Harruff B. A. ; Wang X. ; Wang H. J. Am. Chem. Soc. 2006, 128 (24), 7756.
doi: 10.1021/ja062677d |
14 |
Yang S. T. ; Wang X. ; Wang H. F. ; Lu F. S. ; Luo P. G. ; Cao L. ; Meziani M. J. ; Liu J. H. ; Liu Y. F. ; Chen M. ; et al J. Phys. Chem. C 2009, 113 (42), 18110.
doi: 10.1021/jp9085969 |
15 |
Dong Y. Q. ; Zhou N. N. ; Lin X. M. ; Lin J. P. ; Chi Y. W. ; Chen G. N. Chem. Mater. 2010, 22 (21), 5895.
doi: 10.1021/cm1018844 |
16 |
Bourlinos A. B. ; Stassinopoulos A. ; Anglos D. ; Zboril R. ; Georgakilas V. ; Giannelis E. P. Chem. Mater. 2008, 20 (14), 4539.
doi: 10.1021/cm800506r |
17 |
Lim S. Y. ; Shen W. ; Gao Z. Q. Chem. Soc. Rev. 2015, 44 (1), 362.
doi: 10.1039/C4CS00269E |
18 |
Balandin A. A. Nat. Mater. 2011, 10 (8), 569.
doi: 10.1038/nmat3064 |
19 |
Zhou J. J. ; Sheng Z. H. ; Han H. Y. ; Zou M. Q. ; Li C. X. Mater. Lett. 2012, 66 (1), 222.
doi: 10.1016/j.matlet.2011.08.081 |
20 |
Wang L. ; Zhou H. S. Anal. Chem. 2014, 86 (18), 8902.
doi: 10.1021/ac502646x |
21 |
Xu J. Y. ; Zhou Y. ; Liu S. X. ; Dong M. T. ; Huang C. B. Anal. Methods 2014, 6 (7), 2086.
doi: 10.1039/C3AY41715H |
22 |
Zhu S. J. ; Meng Q. N. ; Wang L. ; Zhang J. H. ; Song Y. B. ; Jin H. ; Zhang K. ; Sun H. C. ; Wang H. ; Yang B. Angew. Chem. Int. Edit. 2013, 52 (14), 3953.
doi: 10.1002/anie.201300519 |
23 |
Sun D. ; Ban R. ; Zhang P. H. ; Wu G. H. ; Zhang J. R. ; Zhu J. J. Carbon 2013, 64 (11), 424.
doi: 10.1016/j.carbon.2013.07.095 |
24 |
Wang J. ; Wang C. F. ; Chen S. Angew. Chem. Int. Edit. 2012, 51 (37), 9297.
doi: 10.1002/anie.201204381 |
25 |
Liu K. P. ; Zhang J. J. ; Cheng F. F. ; Zheng T. T. ; Wang C. M. ; Zhu J. J. J. Mater. Chem. 2011, 21 (32), 12034.
doi: 10.1039/C1JM10749F |
26 |
Zong J. ; Yang X. L. ; Trinchi A. ; Hardin S. ; Cole I. ; Zhu Y. H. ; Li C. Z. ; Muster T. ; Wei G. Biosens. Bioelectron. 2014, 51, 330.
doi: 10.1016/j.bios.2013.07.042 |
27 |
Wei W. L. ; Xu C. ; Ren J. S. ; Xu B. L. ; Qu X. G. Chem. Commun. 2012, 48 (9), 1284.
doi: 10.1039/C2CC16481G |
28 |
Tang M. X. ; Huang Y. J. ; Wang Y. ; Fu L. M. Dalton T. 2015, 44 (16), 7449.
doi: 10.1039/C5DT00611B |
29 |
Faustino W. M. ; Nunes L. A. ; Terra I. A. A. ; Felinto M. C. F. C. ; Brito H. F. ; Malta O. L. J. Lumin. 2013, 137, 269.
doi: 10.1016/j.jlumin.2013.01.008 |
30 |
Pan D. Y. ; Zhang J. C. ; Li Z. ; Wu C. ; Yan X. M. ; Wu M. H. Chem. Commun. 2010, 46 (21), 3681.
doi: 10.1039/C000114G |
31 |
Paraknowitsch J. P. ; Zhang Y. J. ; Wienert B. ; Thomas A. Chem. Commun. 2013, 49 (12), 1208.
doi: 10.1039/c2cc37398j |
32 |
Liu H. ; Zhang Y. ; Liu J. H. ; Hou P. ; Zhou J. ; Huang C. Z. RSC Adv. 2017, 7 (80), 50584.
doi: 10.1039/C7RA10130A |
33 |
Wu Z. L. ; Zhang P. ; Gao M. X. ; Liu C. F. ; Wang W. ; Leng F. ; Huang C. Z. J. Mater. Chem. B 2013, 1 (22), 2868.
doi: 10.1039/C3TB20418A |
34 |
Zhu L. L. ; Yin Y. J. ; Wang C. F. ; Chen S. J. Mater. Chem. C 2013, 1 (32), 4925.
doi: 10.1039/C3TC30701H |
[1] | Jianqiao Chang, Huimin Xu, Wenjing Xie, Yang Zhang, Ling Qi, Louzhen Fan, Yong Li. Fluorescent Carbon Dots for Rapid and Highly Sensitive Detection of Nucleic Acids [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2301034-. |
[2] | Ye Fan, Chongmei Cao, Yun Fang, Yongmei Xia. Fabrication of Fluorescent Nanodots by Self-Crosslinking Ufasomes of Conjugated Linoleic Acid and Their Unique Fluorescence Properties [J]. Acta Phys. -Chim. Sin., 2022, 38(3): 2002032-. |
[3] | Mingkai Chang, Na Hu, Yao Li, Dongfan Xian, Wanqiang Zhou, Jingyi Wang, Yanlin Shi, Chunli Liu. Sorption of Eu(Ⅲ) on Montmorillonite and Effects of Carbonate and Phosphate on Its Sorption [J]. Acta Phys. -Chim. Sin., 2022, 38(3): 2003031-. |
[4] | Nianze Shang, Yi Cheng, Shen Ao, Gulimire Tuerdi, Mengwen Li, Xiaoyu Wang, Hao Hong, Zehui Li, Xiaoyan Zhang, Wangyang Fu, Kaihui Liu, Zhongfan Liu. Graphene Photonic Crystal Fiber-Based Fluid Sensor toward Distributed Environmental Monitoring [J]. Acta Phys. -Chim. Sin., 2022, 38(12): 2108041-. |
[5] | Jian Yang, Chen Lei, Xiang Liu, Jian Zhang, Yudie Sun, Cheng Zhang, Mingfu Ye, Kui Zhang. Versatile Performance of a Cationic Surfactant Derived from Carbon Quantum Dots [J]. Acta Phys. -Chim. Sin., 2022, 38(12): 2111030-. |
[6] | Yuan Liu, Weidong Li, Han Wu, Siyu Lu. Carbon Dots Enhance Ruthenium Nanoparticles for Efficient Hydrogen Production in Alkaline [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009082-. |
[7] | Jing Huang, Danyang Wang, Shuhua Li, Hong Fan, Louzhen Fan. Red Fluorescent Carbon Quantum Dots for Diagnosis of Acidic Microenvironment in Tumors [J]. Acta Phys. -Chim. Sin., 2021, 37(10): 1905067-. |
[8] | Tiantian Dai, Zanhong Deng, Gang Meng, Bin Tong, Hongyu Liu, Xiaodong Fang. Controllable Synthesis and Gas Sensing Properties of Bridged Tungsten Oxide Nanowires [J]. Acta Phys. -Chim. Sin., 2021, 37(10): 1911036-. |
[9] | Fanghong Qin, Ting Wan, Jiangyuan Qiu, Yihui Wang, Biyuan Xiao, Zaiyin Huang. Temperature Effects on Photocatalytic Heat Changes and Kinetics via In Situ Photocalorimetry-Fluorescence Spectroscopy [J]. Acta Physico-Chimica Sinica, 2020, 36(6): 1905087-. |
[10] | Taihong Liu, Rong Miao, Haonan Peng, Jing Liu, Liping Ding, Yu Fang. Adlayer Chemistry on Film-based Fluorescent Gas Sensors [J]. Acta Physico-Chimica Sinica, 2020, 36(10): 1908025-. |
[11] | Chao HU,Ye MU,Mingyu LI,Jieshan QIU. Recent Advances in the Synthesis and Applications of Carbon Dots [J]. Acta Physico-Chimica Sinica, 2019, 35(6): 572-590. |
[12] | Peixuan BU,Chenhui HE,Xinsheng ZHAO. Single-Molecule Study on the Folding of OmpT in Tween-20 Micelles [J]. Acta Phys. -Chim. Sin., 2019, 35(5): 546-554. |
[13] | Dandan CAO, Rong LÜ, Anchi YU. Preparation and Characterization of Carbon Nitride Film with High Optical Quality [J]. Acta Physico-Chimica Sinica, 2019, 35(4): 442-450. |
[14] | Huiyun XIA,Tong GENG,Xu ZHAO,Fangfang LI,Fengyan WANG,Lining GAO. Preparation and Sensing Properties of Organic Gel Fluorescence Films Based on ZnS Nanoparticles [J]. Acta Phys. -Chim. Sin., 2019, 35(3): 337-344. |
[15] | Xiaohong GUO,Ying ZHOU,Lihong SHI,Yan ZHANG,Caihong ZHANG,Chuan DONG,Guomei ZHANG,Shaomin SHUANG. Luminescence Emission of Copper Nanoclusters by Ethanol-induced Aggregation and Aluminum Ion-induced Aggregation [J]. Acta Phys. -Chim. Sin., 2018, 34(7): 818-824. |
|