Acta Physico-Chimica Sinica ›› 2019, Vol. 35 ›› Issue (11): 1186-1206.doi: 10.3866/PKU.WHXB201902002
Previous Articles Next Articles
Qingqing WANG,Jinling WANG,Shengxiang JIANG,Pingyun LI*()
Received:
2019-02-01
Accepted:
2019-03-06
Published:
2019-03-20
Contact:
Pingyun LI
E-mail:lpyljr@126.com
Supported by:
Qingqing WANG, Jinling WANG, Shengxiang JIANG, Pingyun LI. Recent Progress in Sol-Gel Method for Designing and Preparing Metallic and Alloy Nanocrystals[J]. Acta Physico-Chimica Sinica 2019, 35(11), 1186-1206. doi: 10.3866/PKU.WHXB201902002
Table 1
Metallic nanocrystals being prepared by Sol-gel method."
Metallic material | Solvent | Chelating agent | Calcination atmosphere | Calcination Temperature/℃ | Crystal structure | Reference |
Ni | N, N-imethylformamide | L-isoleucine | Ar | 300-750 | FCC, HCP | |
Ni | Distilled water | Citric acid | Ar | 400 | FCC | |
Ni | Distilled water | Citric acid | Ar or N2 | 300 | FCC | |
Ni | Ethylene glycol | Citric acid | H2 | 600 | FCC | |
Ni | Deionized water | Citric acid, EDTA etc. | N2 | 350-550 | FCC, HCP | |
Ni | Deionized water | Gelatin | N2 | 350-550 | FCC, HCP | |
Ni | Deionized water | Citric acid | N2 | 350-550 | FCC | |
Ni | Deionized water | Acrylamide | N2 | 350-550 | FCC | |
Ni | Deionized water | Lactic acid | N2 | 350-550 | FCC, HCP | |
Ni | Ethanol, Isopropanol,Pentanol etc. | Citric acid | N2 | 350-550 | FCC, HCP | |
Ni | Ethanol | Citric acid | Air | 400 | FCC | |
Ni | Ethanol, Acetone,N-propanol | Citric acid, Tartaric acid | N2 | 350-550 | FCC, HCP | |
Ni | Ethanol | Citric acid | N2 | 350-550 | FCC, HCP | |
Ni | Deionized water | Citric acid, EDTA | N2 | 350-550 | FCC | |
Ni | Deionized water | Citric acid | Ar | 300-400 | FCC, HCP | |
Ni | Deionized water | Citric acid | Ar | 320-900 | FCC, HCP | |
Ni | Deionized water | Citric acid | Ar | 320-900 | FCC, HCP | |
Ni | Deionized water | Glycine | Air | Ignite | FCC | |
Ni | Deionized water | Hexamethylenetetramine | Air | Ignite | FCC | |
Ni | Deionized water | Glycine | Ar | 650 | FCC | |
Ni | Deionized water | Glycine | Air | Ignite | FCC | |
Ni | Deionized water | Glycine | Air | Ignite | FCC | |
Ni | Deionized water | 2-methoxymethanol | Air | Ignite | FCC | |
Ni | Deionized water | Glycine | Air | 400 | FCC | |
Ni | Deionized water | Glycine | Air | 400 | FCC | |
Ni | Deionized water | Glycine | Air | Ignite | FCC | |
Co | Deionized water | Citric acid | Ar | 300 | FCC | |
Co | Deionized water | Citric acid, EDTA etc. | N2 | 600-800 | FCC | |
Co | Deionized water | Hexamethylenetetramine | Air | 500-590 | FCC | |
Cu | Deionized water | Citric acid | Ar | 300 | FCC | |
Cu | Deionized water | Starch, EDTA etc. | N2 | 350-550 | FCC | |
Cu | Deionized water | Gelatin | N2 | 350-550 | FCC | |
Cu | Deionized water | Glycine | Ar | 600 | FCC | |
Cu | Deionized water | Glycine | Air | Ignite | FCC | |
Cu | Deionized water | Hexamethylenetetramine | Air | Ignite | FCC | |
Bi | Deionized water | Citric acid | Ar | 300 | Orthorhombic | |
Bi | Ethylene glycol | Citric acid, Gelatin | N2 | 350-550 | Orthorhombic | |
Sb | Ethylene glycol | Citric acid, Gelatin | N2 | 350-550 | Orthorhombic | |
Te | Deionized water | Citric acid, Gelatin etc. | N2 | 350-550 | HCP | |
Ag | Deionized water | Gelatin | N2 | 350-550 | FCC | |
Pt | Deionized water | Starch | N2 | 350-550 | FCC | |
Pd | Deionized water | Starch | N2 | 350-550 | FCC | |
Cd | Deionized water | Glucose | N2 | 350-450 | HCP | |
Sn | Deionized water | Glucose | N2 | 900 | Quartet | |
Ni-Cu | Deionized water | Glycine | Air | 400 | FCC | |
Ni-Cu | Deionized water | Citric acid | H2 | 500 | FCC | |
Cu-Pt | Deionized water | Starch | N2 | 350-550 | FCC | |
Ni-Pt | Deionized water | Starch | N2 | 350-550 | FCC | |
Bi-Sb | Ethylene glycol | Citric acid, Gelatin | N2 | 350-550 | Orthorhombic | |
Ni3Sn | Deionized water | Citric acid | N2 | 350-550 | FCC | |
Ni-Co | Deionized water | Citric acid | N2 | 300 | FCC | |
Ni-Co | Deionized water | Citric acid | N2 | 350-550 | FCC | |
Ni3Fe | N, N-dimethylformamide | L-isoleucine | Ar | 300-750 | FCC | |
Ni3Fe | Ethanol | Citric acid | H2 | 350-550 | FCC | |
Ni3Fe | Deionized water | Citric acid | N2 | 350-550 | FCC | |
Bi2Te3 | Ethylene glycol | Citric acid, Gelatin | N2 | 350-550 | Orthorhombic | |
Sb2Te3 | Ethylene glycol | Citric acid, Gelatin | N2 | 350-550 | Orthorhombic | |
Ag2Te | Deionized water | Gelatin | N2 | 350-550 | Monoclinic | |
NiTe1.5 | Deionized water | Citric acid, Gelatin | N2 | 350-550 | HCP | |
In2Te3 | Deionized water | Citric acid | N2 | 450 | FCC | |
SnTe | Deionized water | Citric acid | N2 | 450 | FCC | |
SnSb | Ethylene glycol | Citric acid | N2 | 450 | Orthorhombic | |
CoTe2 | Deionized water | Citric acid, Gelatin | N2 | 350-550 | Orthogonal | |
CdTe | Deionized water | Citric acid, Gelatin | N2 | 350-550 | FCC | |
CoPt | Deionized water | Citric acid | Ar | 700-800 | L10 | |
CoPt | Deionized water | Citric acid | Ar | 700 | L10 | |
CoPt | Deionized water | Citric acid | Ar | 800 | L10 | |
CoPt-Cu | Deionized water | Citric acid | Ar | 600 | L10 | |
CoPt | Deionized water | Citric acid | Ar | 700 | L10 | |
FePt | Ethanol | Citric acid | H2 | 470 | L10 | |
FePt | Ethanol | Citric acid | H2 | 370-680 | L10 | |
FePt | Deionized water | Citric acid | Ar | 700 | L10 | |
FePt | Deionized water | Citric acid | Ar | 700 | L10 | |
FePt-Cu | Deionized water | Citric acid | Ar | 650 | L10 | |
FePt | Deionized water | Citric acid | Ar | 700 | L10 | |
FePt | Deionized water | Citric acid | Ar | 400-700 | L10 | |
Ni2.9SnTe2 | Deionized water | Citric acid | N2 | 350-550 | L10 | |
CuGaTe2 | Deionized water | Citric acid | N2 | 450 | Quartet | |
CoCrCuNiAl | Deionized water | Citric acid | H2 | 300-1000 | FCC+ BCC |
Fig 4
XRD analysis results of Ni nanocrystals being calcinated at different temperatures by using sol-gel process. (a) L-arabinise was chelating agent, Ni(NO3)2·6H2O was nickel source, PVP was surfactant, and solvent was de-ionized water; (b) 1, 2-benzenediol was chelating agent, Ni(NO3)2·6H2O was nickel source, PVP was surfactant, and solvent was de-ionized water; (c) citric acid was chelating agent, Ni(acac)2 was nickel source, octadecylamine was surfactant, and solvent was absolute ethanol. (d) glutaraldyde was chelating agent, Ni(acac)2 was nickel source, tween 20 was surfactant, and solvent was absolute ethanol."
Fig 16
Schematic of the preparation of CoNi@NC electrocatalyst by applying Na4EDTA, Co(NO3)2·6H2O, and Ni(NO3)2·6H2O (a-d), XRD profiles of CoNi@NC nanomaterials being calcinated at different temperatures (e) and HRTEM image of CoNi@NC nanomaterials being caicinated at 475 ℃ 104. Adapted from John Wiley and Sons publisher."
Fig 17
TEM images of the products being calcinated at 700 ℃ followed by acid etching where citric acid, nickel acetate, cyanamide have been used as raw materials with LiNO3 (a), and without LiNO3 (b) 106, the XRD patterns (c) and catalytic behavior for oxygen evolution reaction of the products (d) 106. Adapted from Elsevier publisher."
Fig 19
Schematic of preparation of various kinds of 2D materials by using gel-blowing method (a), image of the gel precursor (b), the dried gel and the black Ni/NC product being calcinated in Ar atmosphere (c). The basic initial chemicals are citric acid and ethylene glycol and metal nitrates. NC means N doped carbon 112. Adapted from John Wiley and Sons publisher."
1 |
Cushing B. L. ; Kolesnichenko V. L. ; O'Connor C. J. Chem. Rev. 2004, 104, 3893.
doi: 10.1021/cr030027b |
2 |
Chen F. Y. ; Xiao L. ; Yang C. X. ; Zhuang L. Acta Phys. -Chim. Sin. 2015, 31, 2310.
doi: 10.3866/PKU.WHXB201510162 |
陈凤英; 肖丽; 杨翠霞; 庄林. 物理化学学报, 2015, 31, 2310.
doi: 10.3866/PKU.WHXB201510162 |
|
3 |
Gong C. ; Xiang S. W. ; Zhang Z. Y. ; Sun L. ; Ye C. Q. ; Lin C. J. Acta Phys. -Chim. Sin. 2019, 35, 616.
doi: 10.3866/PKU.WHXB201805082 |
弓程; 向思弯; 张泽阳; 孙岚; 叶陈清; 林昌健. 物理化学学报, 2019, 35, 616.
doi: 10.3866/PKU.WHXB201805082 |
|
4 |
Danks A. E. ; Hall S. R. ; Schnepp Z. Mater. Horizons. 2016, 3, 91.
doi: 10.1039/c5mh00260e |
5 |
Mathur S. ; Veith M. ; Rapalaviciute R. ; Shen. H. ; Goya G. F. ; Filho W. L. M. ; Berquo T. S. Chem. Mater. 2004, 16, 1906.
doi: 10.1021/cm0311729 |
6 |
Emili M. ; Incoccia L. ; Mobilio S. ; Fagherazzi G. ; Guglielmi M. J. Non-Cryst. Solids. 1985, 74, 129.
doi: 10.1016/0022-3093(85)90407-7 |
7 |
Liu J. ; Qiao S. Z. ; Liu H. ; Chen J. ; Orpe A. ; Zhao D. Y. ; Lu. G. Q. Angew. Chem. Int. Ed. 2011, 50, 5947.
doi: 10.1002/anie.201102011 |
8 |
Su H. L. ; Tang N. J. ; Wang R. L. ; Nie B. ; Tang S. L. ; Lv L. Y. ; Du Y. W. Chem. Lett. 2007, 36, 180.
doi: 10.1246/cl.2007.180 |
9 |
Su H. L. ; Tang N. J. ; Nie B. ; Tang S. L. ; Wang R. L. ; Lu M. ; Zhang S. Y. ; Lv L. Y. ; Du Y. W. Thin Solid Films. 2007, 515, 7066.
doi: 10.1016/j.tsf.2007.02.094 |
10 |
Xu L. Q. ; Chen L. Y. ; Huang H. F. ; Xie R. ; Xia W. B. ; Wei J. ; Zhong W. ; Tang S. L. ; Du Y. W. J. Alloy. Compd. 2014, 593, 93.
doi: 10.1016/j.jallcom.2014.01.043 |
11 |
Xu L. Q. ; Huang H. F. ; Tang S. L. ; Chen L. Y. ; Xie R. ; Xia W. B. ; Wei J. ; Zhong W. ; Du Y. W. J. Sol-gel Sci. Technol. 2014, 69, 130.
doi: 10.1007/s10971-013-3195-2 |
12 |
Zhang X. W. ; Jiang X. H. ; Xiong F. ; Wang C. L. ; Yang S. G. Mater. Res. Bull. 2017, 95, 248.
doi: 10.1016/j.materresbull.2017.07.044 |
13 |
Jiang Y. W. ; Yang S. G. ; Hua Z. H. ; Huang H. B. Angew. Chem. Int. Ed. 2009, 48, 8529.
doi: 10.1002/anie.200903444 |
14 |
Hua Z. H. ; Yang S. G. ; Huang H. B. ; Lv L. Y. ; Lu M. ; Gu B. X. ; Du Y. W. Nanotechnology 2006, 17, 5106.
doi: 10.1088/0957-4484/17/20/011 |
15 |
Hua Z. H. ; Deng Y. ; Li K. N. ; Yang S. G. Nanoscale Res Lett. 2012, 7, 129.
doi: 10.1186/1556-276X-129 |
16 |
Hua Z. H. ; Cao Z. W. ; Deng Y. ; Jiang Y. W. ; Yang S. G. Mater. Chem. Phys. 2011, 126, 542.
doi: 10.1016/j.matchemphys.2011.01.033 |
17 |
Jiang Y. W. ; Yang S. G. ; Hua Z. H. ; Gong J. F. ; Zhao X. N. Mater. Res. Bull. 2011, 46, 2531.
doi: 10.1016/j.materresbull.2011.08.013 |
18 |
Zhang X. W. ; Hua Z. H. ; Yang S. G. J. Sol-gel Sci. Technol. 2016, 78, 171.
doi: 10.1007/s10971-015-3909-8 |
19 |
Zhang X. W. ; Xiong F. ; Jiang X. H. ; Hua Z. H. ; Wang C. L. ; Yang S. G. Appl. Phys. Lett. 2016, 109, 243106.
doi: 10.1063/1.4972185 |
20 |
Li P. Y. ; Li F. S. ; Deng G. D. ; Guo X.D. ; Liu H. Y. ; Jiang W. ; Wang T. H. Chem. Commun. 2016, 52, 2996.
doi: 10.1039/c5cc08848h |
21 |
Li P. Y. ; Wang Q. Q. ; Deng G. D. ; Guo X.D. ; Jiang W. ; Liu H. Y. ; Li F. S. ; Thanh N. T. K. Phys. Chem. Chem. Phys. 2017, 19, 24742.
doi: 10.1039/c7cp04097k |
22 |
Li P. Y. ; Deng G. D. ; Guo X.D. ; Liu H. Y. ; Jiang W. ; Li F. S. J. Alloy. Compd. 2016, 668, 159.
doi: 10.1016/j.jallcom.2016.01.203 |
23 |
Li P. Y. ; Sun J. ; Li H. ; Guo X.D. ; Deng G. D. ; Liu H. Y. ; Jiang W. ; Li F. S. ; Gu Z. M. ; Wang Y. J. Chem. Lett. 2015, 44, 868.
doi: 10.1246/cl.150118 |
24 |
Zhang P. ; Li P. Y. ; Li F. S. ; Jiang W. ; Cao Z. H. J. Sol-gel Sci. Technol. 2014, 72, 398.
doi: 10.1007/s10971-014-3449-7 |
25 |
Li P. Y. ; Zhang P. ; Li F. S. ; Jiang W. ; Cao Z. H. J. Sol-gel Sci. Technol. 2013, 68, 261.
doi: 10.1007/s10971-013-3162-y |
26 |
Li P. Y. ; Jiang W. ; Li F. S. Chem. Lett. 2013, 42, 816.
doi: 10.1246/cl.130213 |
27 |
Li P. Y. ; Jiang W. ; Li F. S. J. Sol-gel Sci. Technol. 2013, 66, 533.
doi: 10.1007/s10971-013-3043-4 |
28 |
Li P. Y. ; Jiang W. ; Li F. S. J. Sol-gel Sci. Technol. 2013, 65, 359.
doi: 10.1007/s10971-012-2944-y |
29 |
Li P. Y. ; Syed J. A. ; Meng X. K. J. Alloy. Compd. 2012, 512, 47.
doi: 10.1016/j.jallcom.2011.09.007 |
30 |
Li P. Y. ; Cao Z. H. ; Meng X. K. Dalton Trans. 2012, 41, 12101.
doi: 10.1039/c2dt31484c |
31 |
Gong J. ; Wang L. L. ; Liu Y. ; Yang J. H. ; Zong Z. G. J. Alloy. Compd. 2008, 457, 6.
doi: 10.1016/j.jallcom.2007.02.124 |
32 |
Yang J. H. ; Feng B. ; Liu Y. ; Zhang Y. J. ; Yang L. L. ; Wang Y. X. ; Wei M. B. ; Lang J. H. ; Wang D. D. ; Liu X. Y. Appl. Surf. Sci. 2008, 254, 7155.
doi: 10.1016/j.apsusc.2008.05.238 |
33 |
Yang J. H. ; Feng B. ; Liu Y. ; Zhang Y. J. ; Yang L. L. ; Wang Y. X. ; Wei M. B. ; Lang J. H. ; Wang D. D. J. Alloy. Compd. 2009, 467, L21.
doi: 10.1016/j.jallcom.2007.12.068 |
34 |
Zhang Y. J. ; Yang Y. T. ; Liu Y. ; Wang Y. X. ; Yang L. L. ; Wei M. B. ; Fan H. G. ; Zhai H. J. ; Liu X. Y. ; Liu Y.Q. ; et al J. Phys. D: Appl. Phys. 2011, 44, 295003.
doi: 10.1088/0022-3727/44/29/295003 |
35 |
Wang Y. X. ; Zhang X. L. ; Liu Y. ; Jiang Y. H. ; Zhang Y. J. ; Wang J. S. ; Liu Y. Q. ; Liu H. L. ; Sun Y. F. ; Beach G. S.D. ; et al J. Phys. D-Appl. Phys. 2012, 45, 485001.
doi: 10.1088/0022-3727/45/48/485001 |
36 |
Liu Y. ; Yang Y. T. ; Zhang Y. J. ; Wang Y. X. ; Zhang X. L. ; Jiang Y. H. ; Wei M. B. ; Liu Y. Q. ; Liu X. Y. ; Yang J. H. Mater. Res. Bull. 2013, 48, 721.
doi: 10.1016/j.materresbull.2012.11.019 |
37 |
Wang Y. X. ; Zhang X. L. ; Liu Y. ; Lv S. Q. ; Jiang Y. H. ; Zhang Y. J. ; Liu H. L. ; Liu Y. Q. ; Yang J. H. J. Alloy. Compd. 2014, 582, 511.
doi: 10.1016/j.jallcom.2013.08.104 |
38 |
Wang Y. X. ; Zhang X. L. ; Liu Y. ; Jiang Y. H. ; Zhang Y. J. ; Yang J. H. J. Solid State Chem. 2014, 213, 204.
doi: 10.10106/j.jssc.2014.03.001 |
39 |
Liu Y. ; Jiang Y. H. ; Zhang X. L. ; Wang Y. X. ; Zhang Y. J. ; Liu H. L. ; Zhai H. J. ; Liu Y. Q. ; Yang J. H. ; Yan Y. S. J. Solid State Chem. 2014, 209, 69.
doi: 10.10106/j.jssc.2013.10.027 |
40 |
Liu Y. ; Jiang Y. H. ; Kadasala N. ; Zhang X. L. ; Mao C. Y. ; Wang Y. X. ; Liu H. L. ; Jiang X. N. ; Yang J. H. ; Yan Y. S. J. Sol-gel Sci. Technol. 2014, 72, 156.
doi: 10.1007/s10971-014-3442-1 |
41 |
Yang J. H. ; Jiang Y. H. ; Liu Y. ; Zhang X. L. ; Wang Y. X. ; Zhang Y. J. ; Wang J. ; Li W. ; Cheng X. Mater. Lett. 2013, 91, 348.
doi: 10.10106/j.matlet.2012.08.125 |
42 |
Liu Y. ; Jiang Y. H. ; Zhang X. L. ; Wang Y. X. ; Zhang Y. J. ; Liu H. L. ; Zhai H. J. ; Liu Y. Q. ; Yang J. H. ; Yan Y. S. Powder Technol. 2013, 239, 217.
doi: 10.1016/j.powtec.2013.01.069 |
43 |
Erri P. ; Nader J. ; Varma A. Adv. Mater. 2008, 20, 1243.
doi: 10.1002/adma.200701365 |
44 |
Khort A. ; Podbolotov K. ; Serrano-García R. ; Gunko Y. J. Solid State Chem. 2017, 253, 270.
doi: 10.1016/j.jssc.2017.05.043 |
45 |
Trusov G. V. ; Tarasov A. B. ; Goodilin E. A. ; Rogachev A.S. ; Roslyakov S. I. ; Rouvimov S. ; Podbolotov K. B. ; Mukasyan A. S. J. Phys. Chem. C. 2016, 120, 7165.
doi: 10.1021/acs.jpcc.6b00788 |
46 |
Cross A. ; Roslyakov S. ; Manukyan K. V. ; Rouvimov S. ; Rogachev A. S. ; Kovalev D. ; Wolf E. E. ; Mukasyan A. S. J. Phys. Chem. C. 2014, 118, 26191.
doi: 10.1021/jp508546n |
47 |
Maunkyan K. V. ; Cross A. ; Roslyakov S. ; Rouvimov S. ; Rogachev A. S. ; Wolf E. E. ; Mukasyan A. S. J. Phys. Chem. C. 2013, 117, 24417.
doi: 10.1021/jp408260m |
48 |
Gao D. Q. ; Yang G. J. ; Zhu Z. H. ; Zhang J. ; Yang Z. L. ; Zhang Z. P. ; Xue D. S. J. Mater. Chem. 2012, 22, 9462.
doi: 10.1039/c2jm30548h |
49 |
Foo Y. T. ; Chan J. E. M. ; Ngoh G. C. ; Abdullah A. Z. ; Horri B. A. ; Salamatinia B. Ceram. Int. 2018, 18, 16331.
doi: 10.1016/j.ceramint.2017.09.006 |
50 |
Kumar A. ; Ashok A. ; Bhosale R. R. ; Saleh M. A. H. ; Almomani F. A. ; Marri M. A. ; Khader M. M. ; Tarlochan F. Catal. Lett. 2016, 146, 778.
doi: 10.1007/s10562-0161706-9 |
51 |
Kumar A. ; Wolf E. E. ; Mukasyan A. S. Aiche J 2011, 57, 2207.
doi: 10.1002/aic.12416 |
52 |
Khort A. ; Podbolotov K. ; Serrano-García R. ; Gunko Y. Inorg. Mater. 2018, 57, 1464.
doi: 10.1021/acs.ionrgchem.7b02848 |
53 |
Podbolotov K. B. ; Khort A. A. ; Tarasov A. B. ; Trusov G. V. ; Roslyakov S. I. ; Mukasyan A. S. Combus. Sci. Technol. 2017, 189, 1878.
doi: 10.1080/00102202.2017.1334646 |
54 |
Pál. E. ; Kun R. ; Schulze C. ; Z llmer V. ; Lehmhus D. ; B umer M. ; Busse M. Colloid Polym. Sci. 2012, 290, 941.
doi: 10.1007/s00396-012-2612-3 |
55 |
Niu B. ; Zhang F. ; Ping H. ; Li N. ; Zhou J. Y. ; Lei L. W. ; Xie J. J. ; Zhang J. Y. ; Wang W. M. ; Fu Z. Y. Sci. Rep. 2017, 7, 2421.
doi: 10.1038/s41598-017-03644-6 |
56 |
Han Y. D. ; Lu Z. Y. ; Teng Z. G. ; Liang J. L. ; Guo Z. L. ; Wang D. Y. ; Han M. Y. ; Yang W. S. Langmuir. 2017, 33, 5879.
doi: 10.1021/acs.langmuir.7b01140 |
57 |
Mahy J. G. ; Deschamaps F. ; Collard V. ; Jerome C. ; Bartlett J. ; Lambert S. D. ; Heinrichs B. J. Sol-gel Sci. Technol. 2018, 87, 568.
doi: 10.1007/s10971-018-4751-6 |
58 |
Crisan M. ; Zaharescu M. ; Kumari V.D. ; Subrahmanyam M. ; Crisan D. ; Dragan N. ; Raileanu M. ; Jitianu M. ; Rusu A. ; Sadanandam G. ; et al Appl. Surf. Sci. 2011, 258, 448.
doi: 10.1016/j.apsusc.2011.08-104 |
59 |
Aronne A. ; Sannino F. ; Bonavolonta S. R. ; Fanelli E. ; Mingione A. ; Pernice P. ; Spaccini R. ; Pirozzi D. Environ, Sci. Technol. 2012, 46, 1755.
doi: 10.1021/es203223s |
60 |
Mahendraprabhu K. ; Elumalai P. J. Sol-gel Sci. Technol. 2015, 73, 428.
doi: 10.1007/s10971-014-3554-7 |
61 |
Adhikari S. ; Madras G. Phys. Chem. Chem. Phys. 2017, 19, 13895.
doi: 10.1039/c7cp01332a |
62 |
Das H. T. ; Mahendraprabhu K. ; Maiyalagan T. ; Elumalai P. Sci. Rep. 2017, 7, 15342.
doi: 10.1038/s41598-017-15444-z |
63 |
Jiang X. C. ; Chen C. Y. ; Chen W. M. ; Yu A. B. Langmuir. 2010, 26, 4400.
doi: 10.1021/la903470f |
64 |
Zhang H. ; Jin M. S. ; Wang J. G. ; Kim M. J. ; Yang D.R. ; Xia Y. N. J. Am. Chem. Soc. 2011, 133, 10422.
doi: 10.1021/ja204447k |
65 | Teaching and Research Section of Inorganic Chemistry, Dalian University of Technology. Inorganic Chemistry, 4th ed.; Higher Education Press: Beijing, 2001; pps. 659-661, 248. |
大连理工大学无机化学教研室.无机化学,第4版.北京:高等教育出版社, 2001: 659-661, 248. | |
66 | Aegerter, M. A.; Leventis, N.; Koebel, M. M. Aerogels Handbook, 1st ed.; Springer: Berlin, Germany, 2011; pps. 155-168, 215-231. |
67 |
Jin H. Y. ; liu X. ; Chen S. M. ; Vasileff A. ; Li L. Q. ; Jiao Y. ; Song L. ; Zheng Y. ; Qiao S. Z. ACS Energy Lett. 2019, 4, 805.
doi: 10.1021/acsenergylett.9b00348 |
68 |
He L. J. Magn. Magn. Mater. 2010, 32, 1991.
doi: 10.1016/j.jmmm.2010.01.020 |
69 |
Schaefer Z. L. ; Weeber K. M. ; Misra R. ; Schiffer P. ; Schaak R. E. Chem. Mater. 2011, 23, 2475.
doi: 10.1021/cm200410s |
70 |
Ferrando R. ; Jellinek J. ; Johnston R. L. Chem. Rev. 2008, 108, 845.
doi: 10.1021/cr040090g |
71 |
Wang D. S. ; Li Y. D. Adv. Mater. 2011, 23, 1044.
doi: 10.1002/adma.201003695 |
72 |
Guo H. Z. ; Liu X. ; Bai C. D. ; Chen Y. Z. ; Wang L. S. ; Zheng M. S. ; Dong. Q. F. ; Peng D. L. ChemSusChem. 2015, 8, 486.
doi: 10.1002/cssc.201403037 |
73 |
He J. H. ; Bian B. R. ; Zheng Q. ; Du J. ; Xia W. X. ; Zhang J. ; Yan A. ; Liu J. P. Green Chem. 2016, 18, 417.
doi: 10.1039/c5gc01253h |
74 |
Sun S. H. ; Murray C. B. ; Weller D. ; Folks L. ; Moser A. Science 2000, 287, 1989.
doi: 10.1126/science.287.5460.1989 |
75 |
Mizrahi M. D. ; Krylova G. ; Giovanetti L. J. ; Ramallo-Lopez J. M. ; Liu Y. Z. ; Schevchenko E. V. ; Requejo F. G. Nanoscale 2018, 10, 6382.
doi: 10.1039/c8nr0060c |
76 |
Miracle D. B. ; Senkov O. N. Acta Mater. 2017, 122, 448.
doi: 10.1016/j.actamat.2016.08.081 |
77 |
Wang D. S. ; Li Y. D. Inorg. Chem. 2011, 50, 5196.
doi: 10.1021/ic200485v |
78 |
Wang D. S. ; Peng D. ; Li Y. D. Nano Res. 2010, 3, 574.
doi: 10.1007/s12274-010-0018-4 |
79 | Martienssen W. ; Warlimont H. Springer Handbook of Condensed Matter and Materials Data 2005 Springer: Berlin, Germany, 2005, 10- 114. |
80 | Lide, D. R. CRC Handbook of Chemistry and Physics, 84th ed.; CRC Press: Flordia, United States, 2003-2004. |
81 | Barin I. I. Thermochemical Data of Pure Substances 3rd ed. VCH: Weinheim, Germany, 1995. |
82 |
Yang H. R. ; Finefrock S. W. ; Caballero J. D. ; Wu Y. J. Am. Chem. Soc. 2014, 136, 10242.
doi: 10.1021/ja505304v |
83 |
He J. R. ; Chen Y. F. ; Lv W. Q. ; Wen K. C. ; Wang Z. G. ; Zhang W. L. ; Li Y. R. ; Qin W. ; He W. D. ACS Nano 2016, 10, 8837.
doi: 10.1021/acsnano.6b04622 |
84 | Fu, X. C.; Shen, W. X.; Yao, T. Y.; Hou, W. H. Physical Chemistry, 5th ed. (Second part); Higher Education Press: Beijing, 2006; p. 60. |
傅献彩,沈文霞,姚天扬,侯文华.物理化学,第五版(下册).北京:高等教育出版社, 2006: 60. | |
85 |
Huang J. L. ; Lin L. Q. ; Sun D. H. ; Chen H. M. ; Yang D. P. ; Li Q. B. Chem. Soc. Rev. 2015, 44, 6330.
doi: 10.1039/c5cs00133a |
86 |
Chen P. ; Wang L. K. ; Wang G. ; Gao M. R. ; Ge J. ; Yuan W. J. ; Shen Y. H. ; Xie A. J. ; Yu S. H. Energy Environ. Sci. 2014, 7, 4095.
doi: 10.1039/c4ee02531h |
87 |
Jeong U. ; Teng X. W. ; Wang Y. ; Yang H. ; Xia Y. N. Adv. Mater. 2007, 19, 33.
doi: 10.1002/adma.200600674 |
88 |
Peng B. ; Zhang X. L. ; Aarts D. G. A. L. ; Dullens R. P. A. Nat. Nanotechnol. 2018, 13, 478.
doi: 10.1038/s41565-018-0108-0 |
89 |
Seo W. S. ; Lee J. H. ; Sun X. M. ; Suzuki Y. ; Mann D. ; Liu Z. ; Terashima M. ; Yang P. C. ; McConnel M. V. ; Nishimura D.G. ; et al Nat. Mater. 2006, 5, 971.
doi: 10.1038/nmat1775 |
90 |
Margeat O. ; Ciuculescu D.. ; Lecante P. ; Respaud M. ; Amiens C. ; Chaudret B. Small 2007, 3, 451.
doi: 10.1002/smll.200600329 |
91 |
Cheng N. C. ; Stambula S. ; Wang D. ; Banis M. N. ; Liu J. ; Riese A. ; Xiao B. W. ; Li R. Y. ; Sham T. K. ; Liu L.M. ; et al Nat. Commun. 2016, 7, 13638.
doi: 10.1038/ncomms13638 |
92 |
Sasaki K. ; Marinkovic N. ; Isaacs H. S. ; Adzic R. R. ACS Catal. 2016, 6, 69.
doi: 10.1021/acscatal.5b01862 |
93 |
Zhang M. D. ; Dai Q. B. ; Zheng H. G. ; Chen M. D. ; Dai L. M. Adv. Mater. 2018, 30, 1705431.
doi: 10.1002/adma.201705431 |
94 |
Liang Z. Z. ; Fan X. ; Lei H. T. ; Qi J. ; Li Y. Y. ; Gao J. P. ; Huo M. L. ; Yuan H. T. ; Zhang W. ; Lin H.P. ; et al Angew. Chem. Int. Ed. 2018, 57, 13187.
doi: 10.1002/anie.201807854 |
95 |
Fan L. L. ; Liu P. F. ; Yan X. C. ; Gu L. ; Yang Z. Z. ; Yang H. G. ; Qiu S. L. ; Yao X. D. Nat. Commun. 2016, 7, 10667.
doi: 10.1038/ncomms10667 |
96 |
Ren J. W. ; Antonietti M. ; Fellinger T. P. Adv. Energy. Mater. 2015, 5, 1401660.
doi: 10.1002/aenm.201401160 |
97 |
Zhou M. ; Wang H. L. ; Guo S. J. Chem. Soc. Rev. 2016, 45, 1273.
doi: 10.1039/c5cs00414d |
98 |
Zhu Y. Q. ; Sun W. M. ; Luo J. ; Chen W. X. ; Cao T. ; Zheng L. R. ; Dong J. C. ; Zhang J. ; Zhang M. L. ; Han Y.H. ; et al Nat. Commun. 2018, 9, 3861.
doi: 10.1038/s41467-018-06296-w |
99 |
Fei H. L. ; Dong J. C. ; Feng Y. X. ; Allen C. S. ; Wan C. Z. ; Volosskiy B. ; Li M. F. ; Zhao Z. P. ; Wang Y. L. ; Sun H.T. ; et al Nat. Catal. 2018, 1, 63.
doi: 10.1038/s41929-017-0008-y |
100 |
Ma L. ; Wang R. ; Li Y. H. ; Liu X. F. ; Zhang Q. ; Q . ; Dong X. Y. ; Zang S. Q. J. Mater. Chem. A. 2018, 6, 24071.
doi: 10.1039/c8ta08668k |
101 |
Xu Y. ; Tu W. G. ; Zhang B. W. ; Yin S. M. ; Huang Y. Z. ; Kraft M. ; Xu R. Adv. Mater. 2017, 29, 1605957.
doi: 10.1002/adma.201605957 |
102 |
Zhong G. Y. ; Li S. M. ; Xu S. R. ; Liao W. B. ; Fu X. B. ; Peng F. ACS Sus. Chem. Eng. 2018, 6, 15108.
doi: 10.10121/acssuschemeng.8b03582 |
103 |
Lin J. ; Yu M. ; Lin C. K. ; Liu X. M. J. Phys. Chem. C. 2007, 111, 5835.
doi: 10.1021/jp070062c |
104 |
Deng J. ; Ren P. J. ; Deng D. H. ; Bao X. H. Angew. Chem. Int. Ed. 2015, 54, 2100.
doi: 10.1002/anie.201409524 |
105 |
Yu J. ; Chen G. ; Sunarso J. ; Zhu Y. L. ; Ran R. ; Zhu Z. H. ; Zhou W. ; Shao Z. P. Adv. Sci. 2016, 3, 1600060.
doi: 10.1002/advs.201600060 |
106 |
Yang S. L. ; Zhang T. R. ; Li G. C. ; Yang L. Q. ; Lee J. Y. Energy Storage Mater. 2017, 6, 140.
doi: 10.1016/j.ensm.2016.11.001 |
107 |
Wang M. Q. ; Ye C. ; Wang M. ; Li T. H. ; Yu Y. N. ; Bao S. J. Energy Storage Mater. 2018, 11, 112.
doi: 10.1016/j.ensm.2017.10.003 |
108 |
Vecchio C. L. ; Aricò A. S. ; Monforte G. ; Baglio V. Renew. Energy. 2018, 120, 342.
doi: 10.1016/j.renene.2017.12.084 |
109 |
Wei J. ; Wang G. ; Chen F. ; Bai M. ; Liang Y. ; Wang H. T. ; Zhao D. Y. ; Zhao Y. X. Angew. Chem. Int. Ed. 2018, 57, 9838.
doi: 10.1002/anie.201805781 |
110 |
Zhou Y. ; Zhou Z. Z. ; Shen R. X. ; Ma R. G. ; Liu Q. ; Cao G. Z. ; Wang J. C. Energy Storage Mater. 2018, 13, 189.
doi: 10.1016/j.ensm.2018.01.011 |
111 |
Gavrilov N. ; Momčilović M. ; Dobrota A. S. ; Stanković D. M. ; Jokić B. ; Babić B. ; Skorodumova N. V. ; Mentus S. V. ; Pašti I. A. Surf. Coating. Technol. 2018, 349, 511.
doi: 10.1016/j.surfcoat.2018.06.008 |
112 |
Wang D. ; Zhou W. W. ; Zhang R. ; Zeng J. J. ; Du Y. ; Qi S. ; Cong C. X. ; Ding C. Y. ; Huang X. X. ; Wen G.W. ; et al Adv. Mater. 2018, 30, 1803569.
doi: 10.1002/adma.201803569 |
113 |
Sanetuntikul J. ; Hyun S. ; Ganesan P. ; Shanmugam S. J. Mater. Chem. A. 2018, 6, 24078.
doi: 10.1039/c8ta08476a |
114 |
Zhang L. Z. ; Jia Y. ; Gao G. P. ; Yan X. C. ; Chen N. ; Chen J. ; Soo M. T. ; Wood B. ; Yang D. J. ; Du A. J. ; et al Chem. 2018, 4, 285.
doi: 10.1016/j.chempr.2017.12.005 |
115 |
Song X. K. ; Chen S. ; Guo L. L. ; Sun Y. ; Li X. P. ; Cao X. ; Wang Z. X. ; Sun J. H. ; Lin C. ; Wang Y. Adv. Energy Mater. 2018, 8, 1801101.
doi: 10.1002/aenm.201801101 |
116 |
Su H. ; Gao P. ; Wang M. Y. ; Zhai G. Y. ; Zhang J. J. ; Zhao T. J. ; Su J. ; Antonietti M. ; Li X. H. ; Chen J. S. Angew. Chem. Int. Ed. 2018, 57, 15194.
doi: 10.1002/anie.201809858 |
117 |
Gu D. G. ; Zhou Y. ; Ma R. G. ; Wang F. F. ; Liu Q. ; Wang J. C. Nano-Micro Lett. 2018, 10, 29.
doi: 10.1007/s40820-017-0181-1 |
118 |
Rao C. V. ; Cabrera C. R. ; Ishikawa Y. J. Phys. Chem. Lett. 2010, 1, 2622.
doi: 10.1021/jz100971v |
119 |
Yang L. J. ; Shui J. L. ; Du L. ; Shao Y. Y. ; Liu J. ; Dai L. M. ; Hu Z. Adv. Mater. 2019, 31, 1804799.
doi: 10.1002/adma.201804799 |
120 |
Wang N. ; Lu B. Z. ; Li L. G. ; Niu W. H. ; Tang Z. H. ; Kang X. W. ; Chen S. W. ACS Catal. 2018, 8, 6827.
doi: 10.1021/acscatal.8b00338 |
[1] | Ning Wang, Yi Li, Qian Cui, Xiaoyue Sun, Yue Hu, Yunjun Luo, Ran Du. Metal Aerogels: Controlled Synthesis and Applications [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212014-0. |
[2] | Xiao-Ru ZHANG,Yue-Feng XU,Shou-Yu SHEN,Yuan CHEN,Ling HUANG,Jun-Tao LI,Shi-Gang SUN. Reduced Graphene Oxide-LaFeO3 Composite Nanomaterials as Bifunctional Catalyst for Rechargeable Lithium-Oxygen Batteries [J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2237-2244. |
[3] | Xing-Zhong GUO,Li DING,Huan YU,Jia-Qi SHAN,Hui YANG. Construction and Preparation Mechanism of Hierarchically Porous SiO2 Monoliths [J]. Acta Phys. -Chim. Sin., 2016, 32(7): 1727-1733. |
[4] | Rui-Fen WANG,Fu-Ming WANG,Jin-Ling SONG,Sheng-Li AN,Xin WANG. Synthesis and Photocatalytic Activities of Rare Earth-Boron Co-Doped Slice Layer TiO2 [J]. Acta Phys. -Chim. Sin., 2016, 32(2): 536-542. |
[5] | Xiao-Fei. SUN,You-Long. XU,Xiao-Yu. ZHENG,Xiang-Fei. MENG,Peng. DING,Hang. REN,Long. LI. Triple-Cation-Doped Li3V2(PO4)3 Cathode Material for Lithium Ion Batteries [J]. Acta Phys. -Chim. Sin., 2015, 31(8): 1513-1520. |
[6] | HUANG Zhi-Peng, GUO Lin-Yu, GUO Chao, ZHAO Meng-Meng, WANG Xue-Hua, JIN Zhao, LUO Jin-Hua, WANG Xin, FENG Ji-Jun. Synthesis of Fluorinated Polyanionic Lithium Ion Insertion/Extraction Material LiVPO4F/C by Carbon Thermal Reduction Assisted Sol-Gel Method [J]. Acta Phys. -Chim. Sin., 2015, 31(4): 700-706. |
[7] | Feng-Ying. CHEN,Li. XIAO,Cui-Xia. YANG,Lin. ZHUANG. Preparation and Electrocatalytic Properties of Perovskite Type Oxides CaVO3 for Oxygen Reduction Reaction [J]. Acta Phys. -Chim. Sin., 2015, 31(12): 2310-2315. |
[8] | CHEN Ai-Min, BO Ying-Ying, SHAO Chen-Yi, WANG Jing, HU Jun. Synthesis of Single-Crystalline Cu3B2O6/CuB2O4 and Their Photocatalytic Degradation of Methylene Blue under Visible-Light Irradiation [J]. Acta Phys. -Chim. Sin., 2014, 30(9): 1713-1719. |
[9] | YAN Jing-Sen, WANG Hai-Yan, ZHANG Jing-Ru, XU Hui-Juan. Effect of TiO2-Al2O3 Support Preparation Technique on Hydrodenitrogenation of Ni2P/TiO2-Al2O3 Catalysts [J]. Acta Phys. -Chim. Sin., 2014, 30(7): 1309-1317. |
[10] | YU Huan, YANG Hui, YAO Rui, GUO Xing-Zhong. Preparation and Characterization of Ag Nanoparticles Embedded in Hierarchically Porous Monolithic Silica [J]. Acta Phys. -Chim. Sin., 2014, 30(7): 1384-1390. |
[11] | WANG Wen-Jun, ZHAO Hong-Bin, YUAN An-Bao, FANG Jian-Hui, XU Jia-Qiang. Hydrothermal Sol-Gel Method for the Synthesis of a Multiwalled Carbon Nanotube-Na3V2(PO4)3 Composite as a Novel Electrode Material for Lithium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2014, 30(6): 1113-1120. |
[12] | ZHAO Wei-Rong, ZENG Wan-Yun, XI Hai-Ping, YU Xian-Xian. Photocatalytic Degradation of Gas-Phase Toluene over CuO Loaded BiVO4 Hollow Nanospheres under Visible-light Irradiation [J]. Acta Phys. -Chim. Sin., 2014, 30(4): 761-767. |
[13] | WU Yue, LIU Xing-Quan, ZHANG Zheng, ZHAO Hong-Yuan. Preparation and Characterization of M(Ⅱ) and M(Ⅳ) Iso-Molar Co-Doped LiMn1.9Mg0.05Ti0.05O4 Cathode Materials for Lithium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2014, 30(12): 2283-2290. |
[14] | LI Song-Mei, YIN Xiao-Lin, LIU Jian-Hua, ZHANG You, XUE Bing. Effect of Doping with Zn-Al-[V10O28]6- Layered Double Hydroxide on the Properties of Hybrid Sol-Gel Coatings on the LY12 Aluminum Surface [J]. Acta Phys. -Chim. Sin., 2014, 30(11): 2092-2100. |
[15] | PANG Rui-Zhi, LI Xin, LI Jian-Sheng, LU Zhuang-Yu, HUANG Cheng, SUN Xiu-Yun, WANG Lian-Jun. In situ Preparation and Antifouling Performance of ZrO2/PVDF Hybrid Membrane [J]. Acta Phys. -Chim. Sin., 2013, 29(12): 2592-2598. |
|