Acta Physico-Chimica Sinica ›› 2020, Vol. 36 ›› Issue (4): 1905019.doi: 10.3866/PKU.WHXB201905019
Special Issue: Solid-State Nuclear Magnetic Resonance
• Review • Previous Articles Next Articles
Jing Deng1,2,Tao Ma1,2,Ziwei Chang1,Weijing Zhao1,Jun Yang1,*()
Received:
2019-05-02
Accepted:
2019-06-17
Published:
2020-03-12
Contact:
Jun Yang
E-mail:yangjun@wipm.ac.cn
Supported by:
Jing Deng,Tao Ma,Ziwei Chang,Weijing Zhao,Jun Yang. Determination of Three-Dimensional Structures of Protein Assemblies via Solid-State NMR[J]. Acta Physico-Chimica Sinica 2020, 36(4), 1905019. doi: 10.3866/PKU.WHXB201905019
Fig 1
Examples of biological assemblies that have resulted in high resolution structures by solid-state NMR data (a) Capsid model of M13 bacteriophage virus 8, PDB:2mjz; (b) Atomic model of the Type-Ⅲ secretion system needle 1, PDB:2Lpz; (c) Structure of theType 1 Pilus 9, PDB:2N7H; (d) the structure of the Pf1 Major Coat Protein 10, PDB:1ZN5. "
Fig 2
Examples of amyloid protein fibrils that have resulted in high resolution structures by solid-state NMR data (a) The structure of the HET-s(218–289) 14, PDB:2KJ3; (b) The structure of the Aβ42 amyloid fibrils analyzed by Luhrs et al. 15. Adapted from PNAS, copyright 2005. (c) The structure of Aβ42 amyloid fibrils analyzed by Colvin et al. 16, PDB:5KK3; (d) the structure of Osaka mutation amyloid fibrils analyzed by Schutz et al. 17. "
Fig 3
The structure restraints determining the Aβ42 fibril structure (a) The STEM dark-field image and MPL distribution of the Aβ42 fibril 16. Adapted with permission from American Chemical Society, copyright 2016; (b) The distance restraints from the different isotope labellimg scheme; (c) The sketch-map about the long range inner-molecular and intermolecular distance constraints."
Fig 4
The various structure models of Aβ40 fibrils (a) The fibril structure determined by Petkova et al. 46 in 2002. Adapted from PNAS, copyright 2002. (b) The fibril structure determined by Bertini et al. 48 in 2011. Adapted with permission from American Chemical Society, copyright 2011. (c) The fibril structure determined by Paravastu et al. 49 in 2008. Adapted from PNAS, copyright 2008. The corresponding topologies are shown below."
Fig 5
Intermolecular interfaces of the TSSS needle (a) The side perspective of the T3SS needle 51. Adapted from American Chemical Society; (b) The top view of the T3SS needle 1. Adapted from Macmillan Publishers; (c) Anchor point identification by abundant unambiguous contacts 41. Adapted from Macmillan Publishers; (d) The assignment strategy of ssNMR ambiguous contacts from the inter-molecular and intra-molecular 41. Adapted from Macmillan Publishers. "
1 |
Loquet A. ; Sgourakis N. G. ; Gupta R. ; Giller K. ; Riedel D. ; Goosmann C. ; Griesinger C. ; Kolbe M. ; Baker D. ; Becker S. ; et al Nature 2012, 486 (7402), 276.
doi: 10.1038/nature11079 |
2 |
Jeon J. ; Qiao X. ; Hung I. ; Mitra A. K. ; Desfosses A. ; Huang D. ; Gor'kov P. L. ; Craven R. C. ; Kingston R. L. ; Gan Z. ; et al J. Am. Chem. Soc. 2017, 139 (5), 2006.
doi: 10.1021/jacs.6b11939 |
3 |
Vasa S. ; Lin L. ; Shi C. ; Habenstein B. ; Riedel D. ; Kuehn J. ; Thanbichler M. ; Lange A. Proc. Natl. Acad. Sci. U.S.A. 2015, 112 (2), E127.
doi: 10.1073/pnas.1418450112 |
4 |
Chiti F. ; Dobson C. M. Annu. Rev. Biochem. 2006, 75, 333.
doi: 10.1146/annurev.biochem.75.101304.123901 |
5 |
Wälti M. A. ; Ravotti F. ; Arai H. ; Glabe C. G. ; Wall J. S. ; Bockmann A. ; Guentert P. ; Meier B. H. ; Riek R. Proc. Natl. Acad. Sci. U.S.A. 2016, 113 (34), E4976.
doi: 10.1073/pnas.1600749113 |
6 |
Spillantini M. G. ; Schmidt M. L. ; Lee V. M. Y. ; Trojanowski J. Q. ; Jakes R. ; Goedert M. Nature 1997, 388 (6645), 839.
doi: 10.1038/42166 |
7 | (a) Li, S.; Li, J.; Zheng, A.; Deng, F. Acta Phys. -Chim. Sin. 2017, 33 (2), 270.[李申慧,李静,郑安民,邓风.物理化学学报, 2017, 33 (2), 270.] doi: 10.3866/PKU.WHXB201611022 |
(b) Hou, W. Acta Phys. -Chim. Sin. 2018, 34 (4), 329.[侯文华.物理化学学报, 2018, 34 (4), 329.] doi: 10.3866/PKU.WHXB201709251 | |
8 |
Morag O. ; Sgourakis N. G. ; Baker D. ; Goldbourt A. Proc. Natl. Acad. Sci. U.S.A. 2015, 112 (4), 971.
doi: 10.1073/pnas.1415393112 |
9 |
Habenstein B. ; Loquet A. ; Hwang S. H. ; Giller K. ; Vasa S. K. ; Becker S. ; Habeck M. ; Lange A. Angew. Chem. Int. Ed. 2015, 54 (40), 11691.
doi: 10.1002/anie.201505065 |
10 |
Thiriot D. S. ; Nevzorov A. A. ; Opella S. J. Protein Sci. 2005, 14 (4), 1064.
doi: 10.1110/ps.041220305 |
11 |
Schwieters C. D. ; Kuszewski J. J. ; Tjandra N. ; Clore G. M. J. Magn. Reson. 2003, 160 (1), 65.
doi: 10.1016/s1090-7807(02)00014-9 |
12 |
Brunger A. T. ; Adams P. D. ; Clore G. M. ; DeLano W. L. ; Gros P. ; Grosse-Kunstleve R. W. ; Jiang J. S. ; Kuszewski J. ; Nilges M. ; Pannu N. S. ; et al Acta Crystallograph. Sec. D-Biolog. Crystallography 1998, 54, 905.
doi: 10.1107/s0907444998003254 |
13 |
Guntert P. ; Buchner L. J. Biomol. NMR 2015, 62 (4), 453.
doi: 10.1007/s10858-015-9924-9 |
14 |
Van Melckebeke H. ; Wasmer C. ; Lange A. ; Ab E. ; Loquet A. ; Bockmann A. ; Meier B. H. J. Am. Chem. Soc. 2010, 132 (39), 13765.
doi: 10.1021/ja104213J |
15 |
Luhrs T. ; Ritter C. ; Adrian M. ; Riek-Loher D. ; Bohrmann B. ; Doeli H. ; Schubert D. ; Riek R. Proc. Natl. Acad. Sci. U.S.A. 2005, 102 (48), 17342.
doi: 10.1073/pnas.0506723102 |
16 |
Colvin M. T. ; Silvers R. ; Ni Q. Z. ; Can T. V. ; Sergeyev I. ; Rosay M. ; Donovan K. J. ; Michael B. ; Wall J. ; Linse S. ; et al J. Am. Chem. Soc. 2016, 138 (30), 9663.
doi: 10.1021/jacs.6b05129 |
17 |
Schutz A. K. ; Vagt T. ; Huber M. ; Ovchinnikova O. Y. ; Cadalbert R. ; Wall J. ; Guntert P. ; Bockmann A. ; Glockshuber R. ; Meier B. H. Angew. Chem. Int. Ed. 2015, 54 (1), 331.
doi: 10.1002/anie.201408598 |
18 |
Habenstein B. ; Loquet A. Biophys. Chem. 2016, 210, 14.
doi: 10.1016/j.bpc.2015.07.003 |
19 | (a) Niu, Z.; Zhao, W. J.; Zhang, Z. F.; Xiao, F. S.; Tang, X. Q.; Yang, J. Angew. Chem. Int. Ed. 2014, 53 (35), 9294. doi: 10.1002/anie.201311106 |
(b) Niu, Z.; Zhang, Z. F.; Zhao, W. J.; Yang, J. Biochim. Biophys. Acta-Biomembranes 2018, 1860 (9), 1663. doi: 10.1016/j.bbamem.2018.04.004 | |
20 | (a) Lacabanne, D.; Meier, B. H.; Bockmann, A. J. Biomol. NMR 2018, 71 (3), 141. doi: 10.1007/s10858-017-0156-z |
(b) Higman, V. A.; Flinders, J.; Hiller, M.; Jehle, S.; Markovic, S.; Fiedler, S.; van Rossum, B. J.; Oschkinat, H. J. Biomol. NMR 2009, 44 (4), 245. doi: 10.1007/s10858-009-9338-7 | |
(c) Hong, M. J. Magn. Reson. 1999, 139 (2), 389. doi: 10.1006/jmre.1999.1805 | |
(d) Lundstrom, P.; Teilum, K.; Carstensen, T.; Bezsonova, I.; Wiesner, S.; Hansen, D. F.; Religa, T. L.; Akke, M.; Kay, L. E. J. Biomol. NMR 2007, 38 (3), 199. doi: 10.1007/s10858-007-9158-6 | |
21 | (a) Ladizhansky, V. Solid State Nucl. Magn. Reso. 2009, 36 (3), 119. doi: 10.1016/j.ssnmr.2009.07.003 |
(b) De Paepe, G. Dipolar Recoupling in Magic Angle Spinning Solid-State Nuclear Magnetic Resonance. In Annual Review of Physical Chemistry; Johnson, M. A.; Martinez, T. J. Eds. 2012; Vol. 63, pp. 661–684. doi: 10.1146/annurev-physchem-032511-143726 | |
(c) Griffin, R. G. Nat. Struct. Biol. 1998, 5, 508. doi: 10.1038/749 | |
22 |
Nishiyama Y. ; Endo Y. ; Nemoto T. ; Utsumi H. ; Yamauchi K. ; Hioka K. ; Asakura T. J. Magn. Reson. 2011, 208 (1), 44.
doi: 10.1016/j.jmr.2010.10.001 |
23 |
Demers J. P. ; Chevelkov V. ; Lange A. Solid State Nucl. Magn. Reson. 2011, 40 (3), 101.
doi: 10.1016/j.ssnmr.2011.07.002 |
24 |
Zhang Z. ; Liu H. ; Deng J. ; Tycko R. ; Yang J. J. Chem. Phys. 2019, 150 (15), 154201.
doi: 10.1063/1.5092986 |
25 | (a) Zhang, Z. F.; Li, J. P.; Chen, Y. K.; Xie, H. Y.; Yang, J. J. Magn. Reson. 2017, 285, 79. doi: 10.1016/j.jmr.2017.10.012 |
(b) Zhang, Z. F.; Chen, Y. K.; Yang, J. J. Magn. Reson. 2016, 272, 46. doi: 10.1016/j.jmr.2016.09.003 | |
26 |
Shen Y. ; Delaglio F. ; Cornilescu G. ; Bax A. J. Biomol. NMR 2009, 44 (4), 213.
doi: 10.1007/s10858-009-9333-z |
27 |
Luca S. ; Filippov D. V. ; van Boom J. H. ; Oschkinat H. ; de Groot H. J. M. ; Baldus M. J. Biomol. NMR 2001, 20 (4), 325.
doi: 10.1023/a:1011278317489 |
28 |
Szeverenyi N. M. ; Sullivan M. J. ; Maciel G. E. J. Magn. Reson. 1982, 47 (3), 462.
doi: 10.1016/0022-2364(82)90213-x |
29 |
Takegoshi K. ; Nakamura S. ; Terao T. Chem. Phys. Lett. 2001, 344 (5-6), 631.
doi: 10.1016/s0009-2614(01)00791-6 |
30 |
Hou G. J. ; Lu X. Y. ; Vega A. J. ; Polenova T. J. Chem. Phys. 2014, 141 (10), 104202.
doi: 10.1063/1.4894226 |
31 | (a) Michal, C. A.; Jelinski, L. W. J. Am. Chem. Soc. 1997, 119 (38), 9059. doi: 10.1021/ja9711730 |
(b) Jaroniec, C. P.; Filip, C.; Griffin, R. G. J. Am. Chem. Soc. 2002, 124 (36), 10728. doi: 10.1021/ja026385y | |
32 | (a) Lange, A.; Luca, S.; Baldus, M. J. Am. Chem. Soc. 2002, 124 (33), 9704. doi: 10.1021/ja026691b |
(b) Lange, A.; Seidel, K.; Verdier, L.; Luca, S.; Baldus, M. J. Am. Chem. Soc. 2003, 125 (41), 12640. doi: 10.1021/ja034555g | |
33 | (a) Linser, R.; Bardiaux, B.; Andreas, L. B.; Hyberts, S. G.; Morris, V. K.; Pintacuda, G.; Sunde, M.; Kwan, A. H.; Wagner, G. J. Am. Chem. Soc. 2014, 136 (31), 11002. doi: 10.1021/ja504603g |
(b) Andreas, L. B.; Jaudzems, K.; Stanek, J.; Lalli, D.; Bertarello, A.; Le Marchand, T.; Paepe, D. C. D.; Kotelovica, S.; Akopjana, I.; Knott, B.; et al. Proc. Natl. Acad. Sci. U.S.A. 2016, 113 (33), 9187. doi: 10.1073/pnas.1602248113 | |
(c) Huber, M.; Hiller, S.; Schanda, P.; Ernst, M.; Boeckmann, A.; Verel, R.; Meier, B. H. ChemPhysChem 2011, 12 (5), 915. doi: 10.1002/cphc.201100062 | |
34 |
Sengupta I. ; Nadaud P. S. ; Helmus J. J. ; Schwieters C. D. ; Jaroniec C. P. Nat. Chem. 2012, 4 (5), 410.
doi: 10.1038/nchem.1299 |
35 |
Li J. ; Pilla K. B. ; Li Q. ; Zhang Z. ; Su X. ; Huber T. ; Yang J. J. Am. Chem. Soc. 2013, 135 (22), 8294.
doi: 10.1021/ja4021149 |
36 | (a) Nelson, R.; Sawaya, M. R.; Balbirnie, M.; Madsen, A. O.; Riekel, C.; Grothe, R.; Eisenberg, D. Nature 2005, 435 (7043), 773. doi: 10.1038/nature03680 |
(b) Sawaya, M. R.; Sambashivan, S.; Nelson, R.; Ivanova, M. I.; Sievers, S. A.; Apostol, M. I.; Thompson, M. J.; Balbirnie, M.; Wiltzius, J. J. W.; McFarlane, H. T.; et al. Nature 2007, 447 (7143), 453. doi: 10.1038/nature05695 | |
37 |
Madine J. ; Jack E. ; Stockley P. G. ; Radford S. E. ; Serpell L. C. ; Middleton D. A. J. Am. Chem. Soc. 2008, 130 (45), 14990.
doi: 10.1021/ja802483d |
38 | (a) Goldsbury, C.; Baxa, U.; Simon, M. N.; Steven, A. C.; Engel, A.; Wall, J. S.; Aebi, U.; Muller, S. A. J. Struct. Biol. 2011, 173 (1), 1. doi: 10.1016/j.jsb.2010.09.018 |
(b) Sen, A.; Baxa, U.; Simon, M. N.; Wall, J. S.; Sabate, R.; Saupe, S. J.; Steven, A. C. J. Biol. Chem. 2007, 282 (8), 5545. doi: 10.1074/jbc.M611464200 | |
(c) Chen, B.; Thurber, K. R.; Shewmaker, F.; Wickner, R. B.; Tycko, R. Proc. Natl. Acad. Sci. U.S.A. 2009, 106 (34), 14339. doi: 10.1073/pnas.0907821106 | |
39 |
Naito A. ; Nagao T. ; Norisada K. ; Javkhlantugs N. ; Mishima D. ; Kawamura I. ; Ueda K. Biophys. J. 2018, 114 (3), 453A.
doi: 10.1016/j.bpj.2017.11.2506 |
40 | Rohl, C. A.; Strauss, C. E. M.; Misura, K. M. S.; Baker, D., Protein Structure Prediction Using Rosetta. In Numerical Computer Methods, Part D; Brand, L.; Johnson, M. L. Eds. 2004; Vol. 383, pp. 66–93. doi: 10.1016/s0076-6879(04)83004-0 |
41 |
Demers J. P. ; Habenstein B. ; Loquet A. ; Vasa S. K. ; Giller K. ; Becker S. ; Baker D. ; Lange A. ; Sgourakis N. G. Nat. Commun. 2014, 5, 4976.
doi: 10.1038/ncomms5976 |
42 |
Fitzpatrick A. W. P. ; Debelouchina G. T. ; Bayro M. J. ; Clare D. K. ; Caporini M. A. ; Bajaj V. S. ; Jaroniec C. P. ; Wang L. ; Ladizhansky V. ; Mueller S. A. ; et al Proc. Natl. Acad. Sci. U.S.A. 2013, 110 (14), 5468.
doi: 10.1073/pnas.1219476110 |
43 |
Sborgi L. ; Ravotti F. ; Dandey V. P. ; Dick M. S. ; Mazur A. ; Reckel S. ; Chami M. ; Scherer S. ; Huber M. ; Boeckmann A. ; et al Proc. Natl. Acad. Sci. U.S.A. 2015, 112 (43), 13237.
doi: 10.1073/pnas.1507579112 |
44 |
Loquet A. ; Giller K. ; Becker S. ; Lange A. J. Am. Chem. Soc. 2010, 132 (43), 15164.
doi: 10.1021/ja107460j |
45 |
Xiao Y. L. ; Ma B. Y. ; McElheny D. ; Parthasarathy S. ; Long F. ; Hoshi M. ; Nussinov R. ; Ishii Y. Nat. Struct. Mol. Biol. 2015, 22 (6), 499.
doi: 10.1038/nsmb.2991 |
46 |
Petkova A. T. ; Ishii Y. ; Balbach J. J. ; Antzutkin O. N. ; Leapman R. D. ; Delaglio F. ; Tycko R. Proc. Natl. Acad. Sci. U.S.A. 2002, 99 (26), 16742.
doi: 10.1073/pnas.262663499 |
47 |
Petkova A. T. ; Yau W. M. ; Tycko R. Biochemistry 2006, 45 (2), 498.
doi: 10.1021/bi051952q |
48 |
Bertini I. ; Gonnelli L. ; Luchinat C. ; Mao J. F. ; Nesi A. J. Am. Chem. Soc. 2011, 133 (40), 16013.
doi: 10.1021/ja2035859 |
49 |
Paravastu A. K. ; Leapman R. D. ; Yau W. M. ; Tycko R. Proc. Natl. Acad. Sci. U.S.A. 2008, 105 (47), 18349.
doi: 10.1073/pnas.0806270105 |
50 |
Loquet A. ; Lv G. ; Giller K. ; Becker S. ; Lange A. J. Am. Chem. Soc. 2011, 133 (13), 4722.
doi: 10.1021/ja200066s |
51 |
Loquet A. ; Habenstein B. ; Chevelkov V. ; Vasa S. K. ; Giller K. ; Becker S. ; Lange A. J. Am. Chem. Soc. 2013, 135 (51), 19135.
doi: 10.1021/ja411362q |
[1] | Chao Li, Ming Shen, Bingwen Hu. Solid-State NMR and EPR Methods for Metal Ion Battery Research [J]. Acta Physico-Chimica Sinica, 2020, 36(4): 1902019-. |
[2] | Shihan Li,Zhenchao Zhao,Shikun Li,Youdong Xing,Weiping Zhang. Aluminum Distribution and Brønsted Acidity of Al-Rich SSZ-13 Zeolite: A Combined DFT Calculation and Solid-State NMR Study [J]. Acta Physico-Chimica Sinica, 2020, 36(4): 1903021-. |
[3] | Yi Ji, Lixin Liang, Changmiao Guo, Xinhe Bao, Tatyana Polenova, Guangjin Hou. Zero-Quantum Homonuclear Recoupling Symmetry Sequences in Solid-State Fast MAS NMR Spectroscopy [J]. Acta Physico-Chimica Sinica, 2020, 36(4): 1905029-. |
[4] | Xiaolong Liu, Qiang Wang, Chao Wang, Jun Xu, Feng Deng. Hydrogen-Bond Induced Crystallization of Silicalite-1 Zeolite as Revealed by Solid-State NMR Spectroscopy [J]. Acta Physico-Chimica Sinica, 2020, 36(4): 1905035-. |
[5] | Yuhong Li,Xin-Ping Wu,Cong Liu,Meng Wang,Benteng Song,Guiyun Yu,Gang Yang,Wenhua Hou,Xue-Qing Gong,Luming Peng. NMR and EPR Studies of Partially Reduced TiO2 [J]. Acta Physico-Chimica Sinica, 2020, 36(4): 1905021-. |
[6] | Yongchao Shi, Mingxue Tang. NMR/EPR Investigation of Rechargeable Batteries [J]. Acta Physico-Chimica Sinica, 2020, 36(4): 1905004-. |
[7] | Fenfen Wang, Peng Wang, Hongyao Niu, Yingfeng Yu, Pingchuan Sun. Solid-State NMR Studies on Hydrogen Bonding Interactions and Structural Evolution in PAA/PEO Blends [J]. Acta Physico-Chimica Sinica, 2020, 36(4): 1912016-. |
[8] | Zonghui Zhang, Jinjun Ren, Lili Hu. Structure Investigations on 100LiO1/2-(100-x)PO5/2-xTeO2 Fast Ionic Conducting Glasses Using Solid-State Nuclear Magnetic Resonance Spectroscopy [J]. Acta Physico-Chimica Sinica, 2020, 36(11): 2001048-. |
[9] | Shen-Hui LI,Jing LI,An-Min ZHENG,Feng DENG. Solid-State NMR Characterization of the Structure and Catalytic Reaction Mechanism of Solid Acid Catalysts [J]. Acta Phys. -Chim. Sin., 2017, 33(2): 270-282. |
[10] | DENG Yi-Bin, HU Bing-Wen, ZHOU Ping. Solid-State NMR Studies of Structures and Molecular Motions for the Spidroin-Like Polymers [J]. Acta Phys. -Chim. Sin., 2009, 25(07): 1427-1433. |
|