Acta Physico-Chimica Sinica ›› 2020, Vol. 36 ›› Issue (4): 1902019.doi: 10.3866/PKU.WHXB201902019
Special Issue: Solid-State Nuclear Magnetic Resonance
Previous Articles Next Articles
Chao Li,Ming Shen,Bingwen Hu*()
Received:
2019-02-22
Accepted:
2019-04-01
Published:
2020-03-12
Contact:
Bingwen Hu
E-mail:bwhu@phy.ecnu.edu.cn
Supported by:
Chao Li, Ming Shen, Bingwen Hu. Solid-State NMR and EPR Methods for Metal Ion Battery Research[J]. Acta Physico-Chimica Sinica 2020, 36(4), 1902019. doi: 10.3866/PKU.WHXB201902019
Fig 2
(a) Schematic for pj-MATPASS pulse sequence; (b) 1D 7Li NMR spectrum of LiMnPO4 cathode (one pulse, Hahn echo, Stimulated echo); (c) 1D 7Li pj-MATPASS NMR spectrum of Li2MnO3 cathode after shearing; (d) 2D 7Li pj-MATPASS NMR spectrum of Li2MnO3 cathode before shearing 34 Reprinted with permission from Ref. 34. Copyright (2012) American Chemical Society."
Fig 5
(a, b) 2D 6Li EXSY NMR spectra of Li3Fe2(PO4)3 with τm = 0.5, 3.0 ms (T = 311 K); (c, d) Normalized cross peak strength evolution as a function of τm with T = 311, 302 K; (e) Normalized selective inversion signal evolution as a function of τm under various temperature; (f) Measured rate constants k(T) as a function of temperature 54, 58, 59 Reprinted with permission from Refs. 54, 58, 59. Copyright (2012) American Chemical Society."
Fig 9
Three typical types of electrochemical cell design for in situ NMR: (a) flexible plastic cell 101; (b) cylindrical polypropylene cell 103; (c) "Swagelok"-like cylindrical cell 98 (a) Reprinted with permission from Ref. 101, Copyright (2009) American Chemical Society. (b) Reprinted with permission from Ref. 103, Copyright (2011) Elsevier. (c) Reprinted with permission from Ref. 98, Copyright (2014) American Chemical Society."
1 |
Li M. ; Lu J. ; Chen Z. ; Amine K. Adv. Mater. 2018, 30, 1800561.
doi: 10.1002/adma.201800561 |
2 |
Larcher D. ; Tarascon J. M. Nat. Chem. 2015, 7, 19.
doi: 10.1038/nchem.2085 |
3 |
Goodenough J. B. ; Park K. S. J. Am. Chem. Soc. 2013, 135, 1167.
doi: 10.1021/ja3091438 |
4 |
Yang Z. ; Zhang W. ; Shen Y. ; Yuan L. X. ; Huang Y. H. Acta Phys. -Chim. Sin. 2016, 32, 1062.
doi: 10.3866/PKU.WHXB201603231 |
杨泽; 张旺; 沈越; 袁利霞; 黄云辉. 物理化学学报, 2016, 32, 1062.
doi: 10.3866/PKU.WHXB201603231 |
|
5 |
Goodenough J. B. Energy Storage Mater. 2015, 1, 158.
doi: 10.1016/j.ensm.2015.07.001 |
6 |
Tarascon J. M. Nat. Chem. 2010, 2, 510.
doi: 10.1038/nchem.680 |
7 |
Choi J. W. ; Aurbach D. Nat. Rev. Mater. 2016, 1, 16013.
doi: 10.1038/natrevmats.2016.13 |
8 |
Slater M. D. ; Kim D. ; Lee E. ; Johnson C. S. Adv. Funct. Mater. 2013, 23, 947.
doi: 10.1002/adfm.201200691 |
9 |
Fang C. ; Huang Y. ; Zhang W. ; Han J. ; Deng Z. ; Cao Y. ; Yang H. Adv. Energy Mater. 2016, 6, 1501727.
doi: 10.1002/aenm.201501727 |
10 |
Wang P. F. ; You Y. ; Yin Y. X. ; Guo Y. G. Adv. Energy Mater. 2018, 8, 1701912.
doi: 10.1002/aenm.201701912 |
11 |
Fang Y. J. ; Chen Z. X. ; Ai X. P. ; Yang H. X. ; Cao Y. L. Acta Phys. -Chim. Sin. 2017, 33, 211.
doi: 10.3866/PKU.WHXB201610111 |
方永进; 陈重学; 艾新平; 杨汉西; 曹余良. 物理化学学报, 2017, 33, 211.
doi: 10.3866/PKU.WHXB201610111 |
|
12 |
Wu X. ; Leonard D. P. ; Ji X. Chem. Mater. 2017, 29, 5031.
doi: 10.1021/acs.chemmater.7b01764 |
13 |
Li C. ; Hu X. ; Hu B. Electrochim. Acta 2017, 253, 439.
doi: 10.1016/j.electacta.2017.09.090 |
14 |
Zhang Z. ; Dong S. ; Cui Z. ; Du A. ; Li G. ; Cui G. Small Methods 2018, 2, 1800020.
doi: 10.1002/smtd.201800020 |
15 |
Wang M. ; Jiang C. ; Zhang S. ; Song X. ; Tang Y. ; Cheng H. M. Nat. Chem. 2018, 10, 667.
doi: 10.1038/s41557-018-0045-4 |
16 |
Lin M. C. ; Gong M. ; Lu B. ; Wu W. ; Wang D. Y. ; Guan. M. ; Angell M. ; Chen C. ; Yang. J. ; Hwang B. J. ; et al Nature 2015, 520, 324.
doi: 10.1038/nature14340 |
17 |
Kim D. J. ; Yoo D. J. ; Otley M. T. ; Prokofjevs A. ; Pezzato C. ; Owczarek M. ; Lee S. J. ; Choi J. W. ; Stoddart J. F. Nat. Energy 2018, 4, 51.
doi: 10.1038/s41560-018-0291-0 |
18 |
Grey C. P. ; Tarascon J. M. Nat. Mater. 2017, 16, 45.
doi: 10.1038/nmat4777 |
19 |
Lu J. ; Wu T. ; Amine K. Nat. Energy 2017, 2, 17011.
doi: 10.1038/nenergy.2017.11 |
20 |
Pecher O. ; Carretero-González J. ; Griffith K. J. ; Grey C. P. Chem. Mater. 2017, 29, 213.
doi: 10.1021/acs.chemmater.6b03183 |
21 |
Grey C. P. ; Dupre N. Chem. Rev. 2004, 104, 4493.
doi: 10.1021/cr020734p |
22 |
Zhong G. ; Liu Z. ; Wang D. ; Li Q. ; Fu R. ; Yang. Y. J. Electrochem. 2016, 22, 231.
doi: 10.13208/j.electrochem.151246 |
钟贵明; 刘子庚; 王大为; 李琦; 傅日强; 杨勇. 电化学, 2016, 22, 231.
doi: 10.13208/j.electrochem.151246 |
|
23 | Duer, M. J. Solid-State Nmr Spectroscopy: Principles and Applications; Blackwell Sci., London, 2002. |
24 |
Pigliapochi R. ; Pell A. J. ; Seymour I. D. ; Grey C. P. ; Ceresoli D. ; Kaupp M. Phys. Rev. B 2017, 95, 054412.
doi: 10.1103/PhysRevB.95.054412 |
25 |
Frydman L. ; Harwood J. S. J. Am. Chem. Soc. 1995, 117, 5367.
doi: 10.1021/ja00124a023 |
26 |
Hrobárik P. ; Reviakine R. ; Arbuznikov A. V. ; Malkina O. L. ; Malkin V. G. ; Köhler F. H. ; Kaupp M. J. Chem. Phys. 2007, 126, 024107.
doi: 10.1063/1.2423003 |
27 |
Amoureux J. P. ; Fernandez C. ; Steuernagel S. J. Magn. Reson. A 1996, 123, 116.
doi: 10.1006/jmra.1996.0221 |
28 |
Gan Z. ; Kwak H. T. J. Magn. Reson. 2004, 168, 346.
doi: 10.1016/j.jmr.2004.03.021 |
29 |
Gan Z. J. Am. Chem. Soc. 2000, 122, 3242.
doi: 10.1021/ja9939791 |
30 |
Morita R. ; Gotoh K. ; Fukunishi M. ; Kubota K. ; Komaba S. ; Nishimura N. ; Yumura T. ; Deguchi K. ; Ohki S. ; Shimizu T. ; et al J. Mater. Chem. A 2016, 4, 13183.
doi: 10.1039/C6TA04273B |
31 |
Li C. ; Shen M. ; Hu B. ; Lou X. ; Zhang X. ; Tong W. ; Hu B. J. Mater. Chem. A 2018, 6, 8340.
doi: 10.1039/C8TA00568K |
32 |
Li C. ; Shen M. ; Lou X. ; Hu B. J. Phys. Chem. C 2018, 122, 27224.
doi: 10.1021/acs.jpcc.8b09151 |
33 |
Reeve Z. E. M. ; Franko C. J. ; Harris K. J. ; Yadegari H. ; Sun X. ; Goward G. R. J. Am. Chem. Soc. 2017, 139, 595.
doi: 10.1021/jacs.6b11333 |
34 |
Hung I. ; Zhou L. ; Pourpoint F. ; Grey C. P. ; Gan Z. J. Am. Chem. Soc. 2012, 134, 1898.
doi: 10.1021/ja209600m |
35 |
Clement R. J. ; Pell A. J. ; Middlemiss D. S. ; Strobridge F. C. ; Miller J. K. ; Whittingham M. S. ; Emsley L. ; Grey C. P. ; Pintacuda G. J. Am. Chem. Soc. 2012, 134, 17178.
doi: 10.1021/ja306876u |
36 |
Li X. ; Tang M. ; Feng X. ; Hung I. ; Rose A. ; Chien P. H. ; Gan Z. ; Hu Y. Y. Chem. Mater. 2017, 29, 8282.
doi: 10.1021/acs.chemmater.7b02589 |
37 |
Xu J. ; Lee D. H. ; Clément R. J. ; Yu X. ; Leskes M. ; Pell A. J. ; Pintacuda G. ; Yang X. Q. ; Grey C. P. ; Meng Y. S. Chem. Mater. 2014, 26, 1260.
doi: 10.1021/cm403855t |
38 |
Clément R. J. ; Xu J. ; Middlemiss D. S. ; Alvarado J. ; Ma C. ; Meng Y. S. ; Grey C. P. J. Mater. Chem. A 2017, 5, 4129.
doi: 10.1039/c6ta09601h |
39 |
Hung I. ; Gan Z. J. Magn. Reson. 2010, 204, 150.
doi: 10.1016/j.jmr.2010.02.004 |
40 |
Gan Z. J. Am. Chem. Soc. 1992, 114, 8307.
doi: 10.1021/ja00047a062 |
41 |
Antzutkin O. N. ; Shekar S. C. ; Levitt M. H. J. Magn. Reson., Series A 1995, 115, 7.
doi: 10.1006/jmra.1995.1142 |
42 |
Lee J. ; Kitchaev D. A. ; Kwon D. H. ; Lee C. W. ; Papp J. K. ; Liu Y. S. ; Lun Z. ; Clément R. ; Shi T. ; McCloskey B. D. ; et al Nature 2018, 556, 185.
doi: 10.1038/s41586-018-0015-4 |
43 |
Lee J. ; Urban A. ; Li X. ; Su D. ; Hautier G. ; Ceder G. Science 2014, 343, 519.
doi: 10.1126/science.1246432 |
44 |
Xu S. ; Wang G. ; Biswal B. P. ; Addicoat M. ; Paasch S. ; Sheng W. ; Zhuang X. ; Brunner E. ; Heine T. ; Berger R. ; et al Angew. Chem. Int. Ed. 2019, 58, 849.
doi: 10.1002/anie.201812685 |
45 |
O'Dell L. A. ; Schurko R. W. Chem. Phys. Lett. 2008, 464, 97.
doi: 10.1016/j.cplett.2008.08.095 |
46 |
MacGregor A. W. ; O'Dell L. A. ; Schurko R. W. J. Magn. Reson. 2011, 208, 103.
doi: 10.1016/j.jmr.2010.10.011 |
47 |
Hung I. ; Gan Z. J. Magn. Reson. 2010, 204, 256.
doi: 10.1016/j.jmr.2010.03.001 |
48 |
Harris K. J. ; Reeve Z. E. M. ; Wang D. ; Li X. ; Sun X. ; Goward G. R. Chem. Mater. 2015, 27, 3299.
doi: 10.1021/acs.chemmater.5b00323 |
49 |
Peng B. ; Shen M. ; Amoureux J. P. ; Hu B. Solid State Nucl. Magn. Reson. 2016, 78, 1.
doi: 10.1016/j.ssnmr.2016.05.002 |
50 |
Takegoshi K. ; Nakamura S. ; Terao T. J. Chem. Phys. 2003, 118, 2325.
doi: 10.1063/1.1534105 |
51 |
Takegoshi K. ; Nakamura S. ; Terao T. Chem. Phys. Lett. 2001, 344, 631.
doi: 10.1016/S0009-2614(01)00791-6 |
52 |
Hu B. ; Lafon O. ; Trébosc J. ; Chen Q. ; Amoureux J. P. J. Magn. Reson. 2011, 212, 320.
doi: 10.1016/j.jmr.2011.07.011 |
53 |
Hu B. ; Trébosc J. ; Lafon O. ; Chen Q. ; Masuda Y. ; Takegoshi K. ; Amoureux J. P. ChemPhysChem 2012, 13, 3585.
doi: 10.1002/cphc.201200548 |
54 |
Cahill L. S. ; Chapman R. P. ; Britten J. F. ; Goward G. R. J. Phys. Chem. B 2006, 110, 7171- 7177.
doi: 10.1021/jp057015+ |
55 |
Langer J. ; Smiley D. L. ; Bain A. D. ; Goward G. R. ; Wilkening M. J. Phys. Chem. C 2016, 120, 3130.
doi: 10.1021/acs.jpcc.5b09894 |
56 |
Bain A. D. Prog. Nucl. Magn. Reson. Spectrosc. 2003, 43, 63.
doi: 10.1016/j.pnmrs.2003.08.001 |
57 |
Davis L. J. M. ; He X. J. ; Bain A. D. ; Goward G. R. Solid State Nuclear Magnetic Resonance 2012, 42, 26.
doi: 10.1016/j.ssnmr.2012.01.002 |
58 |
Davis L. J. M. ; Heinmaa I. ; Goward G. R. Chem. Mater. 2010, 22, 769.
doi: 10.1021/cm901402u |
59 |
Smiley D. L. ; Davis L. J. M. ; Goward G. R. J. Phys. Chem. C 2013, 117, 24181.
doi: 10.1021/jp407510h |
60 |
Hu Y. Y. ; Liu Z. ; Nam K. W. ; Borkiewicz O. J. ; Cheng J. ; Hua X. ; Dunstan M. T. ; Yu X. ; Wiaderek K. M. ; Du L. S. ; et al Nat. Mater. 2013, 12, 1130.
doi: 10.1038/nmat3784 |
61 |
Kuhn A. ; Dupke S. ; Kunze M. ; Puravankara S. ; Langer T. ; Pöttgen R. ; Winter M. ; Wiemhöfer H. D. ; Eckert H. ; Heitjans P. J. Phys. Chem. C 2014, 118, 28350.
doi: 10.1021/jp505386u |
62 |
Smiley D. L. ; Goward G. R. Chem. Mater. 2016, 28, 7645.
doi: 10.1021/acs.chemmater.6b02539 |
63 |
Zheng J. ; Tang M. ; Hu Y. Y. Angew. Chem. Int. Ed. 2016, 55, 12538.
doi: 10.1002/anie.201607539 |
64 |
van Wullen L. ; Echelmeyer T. ; Meyer H. W. ; Wilmer D. Phys. Chem. Chem. Phys. 2007, 9, 3298.
doi: 10.1039/b703179c |
65 |
Wang D. ; Zhong G. ; Pang W. K. ; Guo Z. ; Li Y. ; McDonald M. J. ; Fu R. ; Mi J. X. ; Yang Y. Chem. Mater. 2015, 27, 6650.
doi: 10.1021/acs.chemmater.5b02429 |
66 |
Liu Q. ; Li C. ; Wei L. ; Shen M. ; Yao Y. ; Hu B. ; Chen Q. Polymer 2014, 55, 5454.
doi: 10.1016/j.polymer.2014.08.055 |
67 |
Cadars S. ; Sein J. ; Duma L. ; Lesage A. ; Pham T. N. ; Baltisberger J. H. ; Brown S. P. ; Emsley L. J. Magn. Reson. 2007, 188, 24.
doi: 10.1016/j.jmr.2007.05.016 |
68 |
Fayon F. ; Le Saout G. ; Emsley L. ; Massiot D. Chem. Commun. 2002, 1702.
doi: 10.1039/B205037B |
69 |
Feike M. ; Demco D. E. ; Graf R. ; Gottwald J. ; Hafner S. ; Spiess H. W. J. Magn. Reson., Series A 1996, 122, 214.
doi: 10.1006/jmra.1996.0197 |
70 |
Bennett A. E. ; Griffin R. G. ; Ok J. H. ; Vega S. J. Chem. Phys. 1992, 96, 8624.
doi: 10.1063/1.462267 |
71 |
Shen M. ; Hu B. ; Lafon O. ; Trébosc J. ; Chen Q. ; Amoureux J. P. J. Magn. Reson. 2012, 223, 107.
doi: 10.1016/j.jmr.2012.07.013 |
72 |
Nishiyama Y. ; Zhang R. ; Ramamoorthy A. J. Magn. Reson. 2014, 243, 25.
doi: 10.1016/j.jmr.2014.03.004 |
73 |
Wang Q. ; Hu B. ; Lafon O. ; Trébosc J. ; Deng F. ; Amoureux J. P. J. Magn. Reson. 2009, 200, 251.
doi: 10.1016/j.jmr.2009.07.009 |
74 |
Hu B. ; Wang Q. ; Lafon O. ; Trébosc J. ; Deng F. ; Amoureux J. P. J. Magn. Reson. 2009, 198, 41.
doi: 10.1016/j.jmr.2009.01.002 |
75 |
Wang Q. ; Hu B. ; Fayon F. ; Trébosc J. ; Legein C. ; Lafon O. ; Deng F. ; Amoureux J. P. Phys. Chem. Chem. Phys. 2009, 11, 10391.
doi: 10.1039/B914468D |
76 |
Messinger R. J. ; Ménétrier M. ; Salager E. ; Boulineau A. ; Duttine M. ; Carlier D. ; Mba J. M. A. ; Croguennec L. ; Masquelier C. ; Massiot D. ; et al Chem. Mater. 2015, 27, 5212.
doi: 10.1021/acs.chemmater.5b01234 |
77 |
Michan A. L. ; Divitini G. ; Pell A. J. ; Leskes M. ; Ducati C. ; Grey C. P. J. Am. Chem. Soc. 2016, 138, 7918.
doi: 10.1021/jacs.6b02882 |
78 |
Michan A. L. ; Leskes M. ; Grey C. P. Chem. Mater. 2016, 28, 385.
doi: 10.1021/acs.chemmater.5b04408 |
79 |
Neuberger S. ; Culver S. P. ; Eckert H. ; Zeier W. G. ; Auf der Gunne J. S. Dalton Trans. 2018, 47, 11691.
doi: 10.1039/c8dt02619j |
80 |
Pecquenard B. ; Gourier D. ; Baffier N. Solid State Ionics 1995, 78, 287.
doi: 10.1016/0167-2738(95)00099-R |
81 |
Massarotti V. ; Capsoni D. ; Bini M. ; Azzoni C. B. ; Paleari A. J. Solid State Chem. 1997, 128, 80.
doi: 10.1006/jssc.1996.7158 |
82 |
Stoyanova R. ; Gorova M. ; Zhecheva E. J. Phys. Chem. Solids 2000, 61, 609.
doi: 10.1016/S0022-3697(99)00244-9 |
83 |
Sathiya M. ; Rousse. G. ; Ramesha K. ; Laisa C. P. ; Vezin H. ; Sougrati M. T. ; Doublet M. L. ; Foix D. ; Gonbeau D. ; Walker W. ; et al Nat. Mater. 2013, 12, 827.
doi: 10.1038/nmat3699 |
84 |
Liao Y. ; Li C. ; Lou X. ; Hu X. ; Ning Y. ; Yuan F. ; Chen B. ; Shen M. ; Hu B. Electrochimica Acta 2018, 271, 608.
doi: 10.1016/j.electacta.2018.03.100 |
85 |
Li C. ; Lou X. ; Shen M. ; Hu X. ; Yan W. ; Zou Y. ; Tong W. ; Hu B. Energy Storage Materials 2017, 7, 195.
doi: 10.1016/j.ensm.2017.02.002 |
86 |
Li C. ; Lou X. ; Yang Q. ; Zou Y. ; Hu B. Chem. Eng. J. 2017, 326, 10008.
doi: 10.1016/j.cej.2017.06.048 |
87 |
Ning Y. ; Lou X. ; Li C. ; Hu X. ; Hu B. Chem. -Euro. J. 2017, 23, 15984.
doi: 10.1002/chem.201703077 |
88 |
Hendrich M. P. ; Debrunner P. G. Biophys. J. 1989, 56, 489.
doi: 10.1016/S0006-3495(89)82696-7 |
89 |
Petasis D. T. ; Hendrich M. P. Methods in Enzymology 2015, 563, 171.
doi: 10.1016/bs.mie.2015.06.025 |
90 |
Chevallier F. ; Letellier M. ; Morcrette M. ; Tarascon J. M. ; Frackowiak E. ; Rouzaud J. N. ; Bexguin F. Electrochem. Solid-State Lett. 2003, 6, A225.
doi: 10.1149/1.1612011 |
91 |
Poli F. ; Wong A. ; Kshetrimayum J. S. ; Monconduit L. ; Letellier M. Chem. Mater. 2016, 28, 1787.
doi: 10.1021/acs.chemmater.5b04802 |
92 |
Shimoda K. ; Murakami M. ; Komatsu H. ; Arai H. ; Uchimoto Y. ; Ogumi Z. J. Phys. Chem. C 2015, 119, 13472.
doi: 10.1021/acs.jpcc.5b03273 |
93 |
Jung H. ; Allan P. K. ; Hu Y. Y. ; Borkiewicz O. J. ; Wang X. L. ; Han W. Q. ; Du L. S. ; Pickard C. J. ; Chupas P. J. ; Chapman K. W. ; et al Chem. Mater. 2015, 27, 1031.
doi: 10.1021/cm504312x |
94 |
Bayley P. M. ; Trease N. M. ; Grey C. P. J. Am. Chem. Soc. 2016, 138, 1955.
doi: 10.1021/jacs.5b12423 |
95 |
Feng X. ; Tang M. ; O'Neill S. ; Hu Y. Y. J. Mater. Chem. A 2018, 6, 22240.
doi: 10.1039/c8ta05433a |
96 |
Letellier M. ; Chevallier F. ; Béguin F. J. Phys. Chem. Solids 2006, 67, 1228.
doi: 10.1016/j.jpcs.2006.01.088 |
97 |
Liu Z. ; Hu Y. Y. ; Dunstan M. T. ; Huo H. ; Hao X. ; Zou H. ; Zhong G. ; Yang Y. ; Grey C. P. Chem. Mater. 2014, 26, 2513.
doi: 10.1021/cm403728w |
98 |
Salager E. ; Kanian V. S. ; Sathiya M. ; Tang M. ; Leiche J. B. ; Melin P. ; Wang Z. ; Vezin H. ; Bessada C. ; Deschamps M. ; et al Chem. Mater. 2014, 26, 7009.
doi: 10.1021/cm503280s |
99 |
Shimoda K. ; Murakami M. ; Takamatsu D. ; Arai H. ; Uchimoto Y. ; Ogumi Z. Electrochim. Acta 2013, 108, 343.
doi: 10.1016/j.electacta.2013.06.120 |
100 |
Stratford J. M. ; Allan P. K. ; Pecher O. ; Chater P. A. ; Grey C. P. Chem Commun 2016, 52, 12430.
doi: 10.1039/c6cc06990h |
101 |
Key B. ; Bhattacharyya R. ; Morcrette M. ; Seznéc V. ; Tarascon J. M. ; Grey C. P. J. Am. Chem. Soc. 2009, 131, 9239.
doi: 10.1021/ja8086278 |
102 |
Zhou L. ; Leskes M. ; Liu T. ; Grey C. P. Angew. Chem. Int. Ed. 2015, 54, 14782.
doi: 10.1002/anie.201507632 |
103 |
Poli F. ; Kshetrimayum J. S. ; Monconduit L. ; Letellier M. Electrochem. Commun. 2011, 13, 1293.
doi: 10.1016/j.elecom.2011.07.019 |
104 |
Sathiya M. ; Leriche J. B. ; Salager E. ; Gourier D. ; Tarascon J. M. ; Vezin H. Nat. Commun. 2015, 6, 6276.
doi: 10.1038/ncomms7276 |
105 |
Tang M. ; Dalzini A. ; Li X. ; Feng X. ; Chien P. H. ; Song L. ; Hu Y. Y. J. Phys. Chem. Lett. 2017, 8, 4009.
doi: 10.1021/acs.jpclett.7b01425 |
106 |
Wandt J. ; Marino C. ; Gasteiger H. A. ; Jakes P. ; Eichel R. A. ; Granwehr J. Energy Environ. Sci. 2015, 8, 1358.
doi: 10.1039/c4ee02730b |
107 |
Wandt J. ; Jakes P. ; Granwehr J. ; Eichel R. A. ; Gasteiger H. A. Mater. Today 2018, 21, 231.
doi: 10.1016/j.mattod.2017.11.001 |
108 |
Pines A. ; Gibby M. G. ; Waugh J. S. J. Chem. Phys. 1973, 59, 569.
doi: 10.1063/1.1680061 |
109 |
Hartmann S. R. ; Hahn E. L. Phys. Rev. 1962, 128, 2042.
doi: 10.1103/PhysRev.128.2042 |
110 |
Lesage A. ; Emsley L. J. Magn. Reson. 2001, 148, 449.
doi: 10.1006/jmre.2000.2249 |
111 |
Wang Q. ; Trébosc J. ; Li Y. ; Xu J. ; Hu B. ; Feng N. ; Chen Q. ; Lafon O. ; Amoureux J. P. ; Deng F. Chem. Commun. 2013, 49, 6653.
doi: 10.1039/C3CC42961J |
112 |
Trebosc J. ; Hu B. ; Amoureux J. P. ; Gan Z. J. Magn. Reson. 2007, 186, 220.
doi: 10.1016/j.jmr.2007.02.015 |
113 |
Gan Z. J. Magn. Reson. 2007, 184, 39.
doi: 10.1016/j.jmr.2006.09.016 |
114 |
Hu B. ; Trébosc J. ; Amoureux J. P. J. Magn. Reson. 2008, 192, 112.
doi: 10.1016/j.jmr.2008.02.004 |
115 |
Cavadini S. ; Lupulescu A. ; Antonijevic S. ; Bodenhausen G. J. Am. Chem. Soc. 2006, 128, 7706.
doi: 10.1021/ja0618898 |
116 |
Peng B. ; Yao Y. ; Chen Q. ; Hu B. Annual Rep. NMR Spectros. 2014, 85, 1.
doi: 10.1016/bs.arnmr.2014.12.002 |
117 |
Lee H. H. ; Park Y. ; Shin K. H. ; Lee K. T. ; Hong S. Y. ACS Appl. Mater. Interfaces 2014, 6, 19118.
doi: 10.1021/am505090p |
118 |
Peng C. ; Ning G. H. ; Su J. ; Zhong G. ; Tang W. ; Tian B. ; Su C. ; Yu D. ; Zu L. ; Yang J. ; et al Nat. Energy 2017, 2, 17074.
doi: 10.1038/nenergy.2017.74 |
119 |
Griffith K. J. ; Wiaderek K. M. ; Cibin G. ; Marbella L. E. ; Grey C. P. Nature 2018, 559, 556.
doi: 10.1038/s41586-018-0347-0 |
120 |
Xiang Y. X. ; Zheng G. ; Zhong G. ; Wang D. ; Fu R. ; Yang Y. Solid State Ionics 2018, 318, 19.
doi: 10.1016/j.ssi.2017.11.025 |
121 |
Engelke S. ; Marbella L. E. ; Trease N. M. ; De Volder M. ; Grey C. P. Phys. Chem. Chem. Phys. 2019, 21, 4538.
doi: 10.1039/c8cp07776b |
122 |
Prutsch D. ; Gadermaier B. ; Brandstätter H. ; Pregartner V. ; Stanje B. ; Wohlmuth D. ; Epp V. ; Rettenwander D. ; Hanzu I. ; Wilkening H. M. R. Chem. Mater. 2018, 30, 7575.
doi: 10.1021/acs.chemmater.8b02753 |
123 |
Liang X. ; Wang L. ; Jiang Y. ; Wang J. ; Luo H. ; Liu C. ; Feng J. Chem. Mater. 2015, 27, 5503.
doi: 10.1021/acs.chemmater.5b01384 |
124 |
Kuhn A. ; Sreeraj P. ; Pottgen R. ; Wiemhofer H. D. ; Wilkening M. ; Heitjans P. J. Am. Chem. Soc. 2011, 133, 11018.
doi: 10.1021/ja2020108 |
125 |
Wilkening M. ; Heitjans P. ChemPhysChem 2012, 13, 53.
doi: 10.1002/cphc.201100580 |
126 |
Pigliapochi R. ; Seymour I. D. ; Merlet C. ; Pell A. J. ; Murphy D. T. ; Schmid S. ; Grey C. P. Chem. Mater. 2018, 30, 817.
doi: 10.1021/acs.chemmater.7b04314 |
127 |
Middlemiss D. S. ; Ilott A. J. ; Clément R. l. J. ; Strobridge F. C. ; Grey C. P. Chem. Mater. 2013, 25, 1723.
doi: 10.1021/cm400201t |
128 |
Castets A. ; Carlier D. ; Zhang Y. ; Boucher F. ; Ménétrier M. J. Phys. Chem. C 2012, 116, 18002.
doi: 10.1021/jp302549s |
129 |
Liu Y. ; Zeng L. ; Xu C. ; Geng F. ; Shen M. ; Yuan Q. ; Hu B. Chem. Phys. Lett. 2019, 736, 136779.
doi: 10.1016/j.cplett.2019.136779 |
130 |
Liu Z. ; Lee J. ; Xiang G. ; Glass H. F. J. ; Keyzer E. N. ; Dutton S. E. ; Grey C. P. Chem. Commun. 2017, 53, 743.
doi: 10.1039/C6CC08430C |
131 |
Lee J. ; Seymour I. D. ; Pell A. J. ; Dutton S. E. ; Grey C. P. Phys. Chem. Chem. Phys. 2017, 19, 613.
doi: 10.1039/C6CP06338A |
132 |
Canepa P. ; Bo S. H. ; Sai Gautam G. ; Key B. ; Richards W. D. ; Shi T. ; Tian Y. ; Wang Y. ; Li J. ; Ceder G. Nat. Commun. 2017, 8, 1759.
doi: 10.1038/s41467-017-01772-1 |
133 |
Leroy C. ; Bryce D. L. Prog. Nucl. Magn. Reson. Spectrosc. 2018, 109, 160.
doi: 10.1016/j.pnmrs.2018.08.002 |
134 |
Leskes M. ; Kim G. ; Liu T. ; Michan A. L. ; Aussenac F. ; Dorffer P. ; Paul S. ; Grey C. P. J. Phys. Chem. Lett. 2017, 8, 1078.
doi: 10.1021/acs.jpclett.6b02590 |
135 |
Chakrabarty T. ; Goldin N. ; Feintuch A. ; Houben L. ; Leskes M. ChemPhysChem 2018, 19, 2139.
doi: 10.1002/cphc.201800462 |
136 |
Wolf T. ; Kumar S. ; Singh H. ; Chakrabarty T. ; Aussenac F. ; Frenkel A. I. ; Major D. T. ; Leskes M. J. Am. Chem. Soc. 2018, 141, 451.
doi: 10.1021/jacs.8b11015 |
[1] | Hangyu Lu, Ruilin Hou, Shiyong Chu, Haoshen Zhou, Shaohua Guo. Progress on Modification Strategies of Layered Lithium-Rich Cathode Materials for High Energy Lithium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(7): 2211057-0. |
[2] | Mingli Xu, Mengchuang Liu, Zezhou Yang, Chen Wu, Jiangfeng Qian. Research Progress on Presodiation Strategies for High Energy Sodium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(3): 2210043-0. |
[3] | Ru Wang, Zhikang Liu, Chao Yan, Long Qie, Yunhui Huang. Interface Strengthening of Composite Current Collectors for High-Safety Lithium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2203043-0. |
[4] | Yue Yang, Jiawei Zhu, Pengyan Wang, Haimi Liu, Weihao Zeng, Lei Chen, Zhixiang Chen, Shichun Mu. NH2-MIL-125 (Ti) Derived Flower-Like Fine TiO2 Nanoparticles Implanted in N-doped Porous Carbon as an Anode with High Activity and Long Cycle Life for Lithium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2106002-. |
[5] | Ying Mo, Kuikui Xiao, Jianfang Wu, Hui Liu, Aiping Hu, Peng Gao, Jilei Liu. Lithium-Ion Battery Separator: Functional Modification and Characterization [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2107030-. |
[6] | Siying Zhu, Huiyang Li, Zhongli Hu, Qiaobao Zhang, Jinbao Zhao, Li Zhang. Research Progresses on Structural Optimization and Interfacial Modification of Silicon Monoxide Anode for Lithium-Ion Battery [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2103052-. |
[7] | Xuewei Liu, Ying Niu, Ruixiong Cao, Xiaohong Chen, Hongyan Shang, Huaihe Song. Is there a Demand of Conducting Agent of Acetylene Black for Graphene-Wrapped Natural Spherical Graphite as Anode Material for Lithium-Ion Batteries? [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2012062-. |
[8] | Yao Chen, Haoyang Dong, Yuanyuan Li, Jinping Liu. Recent Advances in 3D Array Anode Materials for Sodium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2021, 37(12): 2007075-. |
[9] | Yaokun Ye, Zongxiang Hu, Jiahua Liu, Weicheng Lin, Taowen Chen, Jiaxin Zheng, Feng Pan. Research Progress of Theoretical Studies on Polarons in Cathode Materials of Lithium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2021, 37(11): 2011003-. |
[10] | Huifang An, Li Jiang, Feng Li, Ping Wu, Xiaoshu Zhu, Shaohua Wei, Yiming Zhou. Hydrogel-Derived Three-Dimensional Porous Si-CNT@G Nanocomposite with High-Performance Lithium Storage [J]. Acta Physico-Chimica Sinica, 2020, 36(7): 1905034-. |
[11] | Laiqiang Xu,Jiayang Li,Cheng Liu,Guoqiang Zou,Hongshuai Hou,Xiaobo Ji. Research Progress in Inorganic Solid-State Electrolytes for Sodium-Ion Batteries [J]. Acta Physico-Chimica Sinica, 2020, 36(5): 1905013-. |
[12] | Haixia Li,Jiwei Wang,Lifang Jiao,Zhanliang Tao,Jing Liang. Spherical Nano-SnSb/C Composite as a High-Performance Anode Material for Sodium Ion Batteries [J]. Acta Physico-Chimica Sinica, 2020, 36(5): 1904017-. |
[13] | Guifang Zeng,Yining Liu,Chunyan Gu,Kai Zhang,Yongling An,Chuanliang Wei,Jinkui Feng,Jiangfeng Ni. A Nonflammable Fluorinated Carbonate Electrolyte for Sodium-Ion Batteries [J]. Acta Physico-Chimica Sinica, 2020, 36(5): 1905006-. |
[14] | Wenli Pan,Wenhao Guan,Yinzhu Jiang. Research Advances in Polyanion-Type Cathodes for Sodium-Ion Batteries [J]. Acta Physico-Chimica Sinica, 2020, 36(5): 1905017-. |
[15] | Jing Deng,Tao Ma,Ziwei Chang,Weijing Zhao,Jun Yang. Determination of Three-Dimensional Structures of Protein Assemblies via Solid-State NMR [J]. Acta Physico-Chimica Sinica, 2020, 36(4): 1905019-. |
|