Acta Phys. -Chim. Sin. ›› 2023, Vol. 39 ›› Issue (7): 2211057.doi: 10.3866/PKU.WHXB202211057
• REVIEW • Previous Articles Next Articles
Hangyu Lu1,2, Ruilin Hou1,2, Shiyong Chu1,2, Haoshen Zhou2, Shaohua Guo1,2,*()
Received:
2022-11-30
Accepted:
2023-01-09
Published:
2023-03-06
Contact:
Shaohua Guo
E-mail:shguo@nju.edu.cn
Supported by:
Hangyu Lu, Ruilin Hou, Shiyong Chu, Haoshen Zhou, Shaohua Guo. Progress on Modification Strategies of Layered Lithium-Rich Cathode Materials for High Energy Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin. 2023, 39(7), 2211057. doi: 10.3866/PKU.WHXB202211057
Fig 2
(a) MO2 slabs and LiMO2 energy band structure; (b) Li1/3Mn2/3O2 slabs and Li2MnO3 energy band structure; (c) when the relationship between the charge interaction U in the d orbital and the charge transfer amplitude Δ is different, the energy band structure and changes in the redox reactions 54; (d) an atomic model of structural changes in materials during cycling 61."
Table 1
Typical examples of improving lithium-rich materials through the use of doping strategies."
Cathode material chemical formula | Elements | Working voltage range/V | Rate | First discharge capacity/(mAh∙g−1) | Capacity retention/% (cycle) | Reference |
Li1.14Ni0.136Co0.10Al0.03Mn0.544O2 | Al | 2.0–4.8 | 0.1C | 212 | 94.7 (100) | |
Li[Li0.2Mn0.56Ni0.16Co0.08]1−xTexO2 | Te | 2.5–4.6 | 0.5C | 271.6 | 84.3 (100) | |
Li1.2Ni0.13Co0.13Mn0.54−xCrxO2 | Cr | 2.0–4.8 | 0.1C | 230 | 93.7 (50) | |
Li1.13Ni0.3Mn0.57O2 | W | 2.0–4.8 | 0.05C | 284 | 66 (100) | |
Li1.2Mn0.54−xNbxNi0.13Co0.13O2−6xF6x | Nb, F | 2.0–4.8 | 0.1C | 269 | 94 (100, 1C) | |
Li1.2Mn0.52Ni0.13Co0.13Mn0.01Al0.01O2 | Mg, Al | 2.0–4.8 | 0.05C | 271.9 | 81 (100, 0.1C) | |
Li1.2Mn0.54Ni0.13Co0.13O2 | Sn, K | 2.0–4.6 | 0.05C | 278 | 70 (100) | |
Li1.2Mn0.54Ni0.13Co0.13−xYbxO2 | Yb | 2.0–4.8 | 0.1C | 295 | 87 (100, 0.2C) | |
Li1.18Mn0.52Co0.13Ni0.13La0.02Mg0.02O2 | Mg, La | 2.0–4.8 | 0.1C | 296 | 86.1 (150, 0.5C) | |
Li1.2Mn0.533Ni0.267O2 | Nd, Al | 2.0–4.8 | 0.1C | 243.1 | 82 (200, 1C) | |
Li1.1923Na0.0077Mn0.5668Ni0.1577Co0.0755O1.9938F0.0125 | Na, F | 2.0–4.8 | 0.02C | 296 | 85.7 (500, 5C) | |
Li1.2Mn0.56Ni0.16Co0.08O2 | W | 2.0–4.8 | 0.1C | 249.8 | 94.9 (200, 0.5C) | |
Li1.2Mn0.6Ni0.2O2 | Zn, Ti | 2.0–4.8 | 0.1C | 245.2 | 87.5 (150, 0.5C) |
Fig 4
(a) Cross section of Li1.098Mn0.533Ni0.113Co0.138O2, (b) Li vacancies, (c) in-situ spinel Li4Mn5O12 coating, (d) in situ nickel ion doping 29; (e) Li-rich cathode material with sustained release during charging Schematic diagram of the oxygen process; (f) the proposed surface modification has high oxophilic elements to make the surface oxygen evolution reaction energetically unfavorable; (g) the proposed dielectric coating is used to suppress the outward migration of oxygen anions; (h) spinel coating Layer and layered Li-rich materials have nearly the same oxygen arrangement, ensuring structural compatibility 93."
Fig 5
(a) Schematic illustration of the relationship between defects, Li+ ion diffusion and oxygen redox activity/kinetics in the Li-rich oxide cathode 99; (b) schematic illustration of the material particle microstructure; (c) schematic of the gas-solid interface reaction between Li-rich layered oxides and carbon dioxide 100; (d) illustration of the structural components of the three-in-one surface treatment sample 102."
Fig 6
Schematic illustrations of the crystal structures of O3-type (a) and O2-type (b) lithium layered oxides, the figures below show the TM migration paths on a magnified scale, red and yellow arrows indicate the interlayer and the intra-layer TM migrations, respectively, black arrows represent the electrostatic repulsion in the TM layer; (c) relative site energies of intermediate and final sites calculated along the migration paths of TM ions 107; (d) crystal structure of Li4/7[□1/7Mn6/7]O2 at c-axis and ab-axis angles; (e) cycle performance of Li4/7[□1/7Mn6/7]O2 after 500 cycles at a current density of 300 mA∙g−1 between 2 and 4.8 V 108."
Table 2
Examples of ion-exchange modified Li-rich materials."
Precursor (Na-based) | Product (Li-based) | Reference |
P2-Na2/3[NixMn1−x]O2 (0 < x < 0.3) | O2-Li2/3[NixMn1−x]O2 | |
P2-Na2/3[Fe1/3Mn2/3]O2 | O2-Li2/3[Fe1/3Mn2/3]O2 | |
P2-Na2/3[NixMn1−x]O2 (0.3 < x < 1/3) | T2-Li2/3[NixMn1−x]O2 | |
P2-Na2/3CoO2 | O2-LiCoO2 | |
P2-Na2/3[Mg1/3Mn2/3]O2 | O6-Li2/3[Fe1/3Mn2/3]O2 | |
P3-Na2/3[Ni1/3Mn2/3]O2 | O3-Li2/3[Ni1/3Mn2/3]O2 | |
O3-NaMnO2 | O3-LiMnO2 | |
O3-NaNi0.5Mn0.5O2 | O3-LiNi0.5Mn0.5O2 | |
P3-Na0.6[Li0.2Mn0.8]O2 | O3-Li0.6[Li0.2Mn0.8]O2 | |
P2-Na2/3[Li2/9Mn7/9]O2 | O2-Li2/3[Li2/9Mn7/9]O2 | |
P2/O3-Na0.9[Li0.3Mn0.7]O2 | O2/O3-Li0.9[Li0.3Mn0.7]O2 | |
P2-Na5/6Li1/4M3/4Ox (M = Mn0.675Co0.325) | O2-Li1.25Co0.25Mn0.50O2 | |
P1(—)-Na2Mn3O7 | O3-Li4/7[□1/7Mn6/7]O2 | |
O3-Na[Na1/3Ru2/3]O2 | O3-Li[Na1/3Ru2/3]O2 | |
P2-Na0.66[Li0.12Ni0.15Mn0.73]O2 | O2-Li0.66[Li0.12Ni0.15Mn0.73]O2 | |
P2-Na0.71[Li0.12Ni0.17Mn0.71]O2 | O2-Li1.12−yNi0.17Mn0.71O2 |
Fig 7
(a) Typical lithium-rich materials (T-LRM) and (b) high-entropy lithium-rich materials (E-LRM), the Mn—O bond length distribution in each MnO6 octahedron and the deviation of O–M–O (≈ 90°); (c) the energy barrier of manganese ion migration; (d) the distribution of O–O distances in octahedrons with complete lithium removal 126."
1 |
Adelhelm, P.Angew. Chem. Int. Ed.2018,57,6710.
doi: 10.1002/anie.201803221 |
2 |
Crabtree, G.Science2019,366,422.
doi: 10.1126/science.aax0704 |
3 |
Larcher, D.; Tarascon, J. M.Nat. Chem.2015,7,19.
doi: 10.1038/nchem.2085 |
4 |
Li, M.; Lu, J.; Chen, Z.; Amine, K.Adv. Mater.2018,30,1800561.
doi: 10.1002/adma.201800561 |
5 |
Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B.Mater. Res. Bull.1980,15,783.
doi: 10.1016/0025-5408(80)90012-4 |
6 | Ye, Y.; Hu, Z.; Liu, J.; Lin, W.; Chen, T.; Zheng, J.; Pan, F.Acta Phys.-Chim. Sin.2021,37,2011003. |
叶耀坤, 胡宗祥, 刘佳华, 林伟成, 陈涛文, 郑家新, 潘锋物理化学学报,2021,37,2011003.
doi: 10.3866/PKU.WHXB202011003 |
|
7 | Wu, F.; Li, Q.; Chen, L.; Wang, Z.; Chen, G.; Bao, L.; Lu, Y.; Chen, S.; Su, Y.Acta Phys.-Chim. Sin.2022,38,2007017. |
吴锋, 李晴, 陈来, 王紫润, 陈刚, 包丽颖, 卢赟, 陈实, 苏岳锋物理化学学报,2022,38,2007017.
doi: 10.3866/PKU.WHXB202007017 |
|
8 |
Liu, J.; Wang, J.; Ni, Y.; Zhang, K.; Cheng, F.; Chen, J.Mater. Today2021,43,132.
doi: 10.1016/j.mattod.2020.10.028 |
9 |
Li, M.; Lu, J.Science2020,367,979.
doi: 10.1126/science.aba9168 |
10 |
Boivin, E.; Guerrini, N.; House, R. A.; Lozano, J. G.; Jin, L.; Rees, G. J.; Somerville, J. W.; Kuss, C.; Roberts, M. R.; Bruce, P. G.Adv. Funct. Mater.2021,31,2003660.
doi: 10.1002/adfm.202003660 |
11 |
Gent, W. E.; Abate, I. I.; Yang, W.; Nazar, L. F.; Chueh, W. C.Joule2020,4,1369.
doi: 10.1016/j.joule.2020.05.004 |
12 |
He, W.; Guo, W.; Wu, H.; Lin, L.; Liu, Q.; Han, X.; Xie, Q.; Liu, P.; Zheng, H.; Wang, L.; et al.Adv. Mater.2021,33,2005937.
doi: 10.1002/adma.202005937 |
13 |
Lu, Z.; Beaulieu, L. Y.; Donaberger, R. A.; Thomas, C. L.; Dahn, J. R.J. Electrochem. Soc.2002,149,A778.
doi: 10.1149/1.1471541 |
14 |
Yabuuchi, N.; Nakayama, M.; Takeuchi, M.; Komaba, S.; Hashimoto, Y.; Mukai, T.; Shiiba, H.; Sato, K.; Kobayashi, Y.; Nakao, A.; et al.Nat. Commun.2016,7,13814.
doi: 10.1038/ncomms13814 |
15 |
Thackeray, M. M.; Kang, S.-H.; Johnson, C. S.; Vaughey, J. T.; Benedek, R.; Hackney, S. A.J. Mater. Chem.2007,17,3112.
doi: 10.1039/B702425H |
16 | Huang, W.; Wu, C. Y.; Zeng, Y. W.; Jin, C. H.; Zhang, Z.Acta Phys.-Chim. Sin.2016,32,2287. |
黄威, 邬春阳, 曾跃武, 金传洪, 张泽物理化学学报,2016,32,2287.
doi: 10.3866/PKU.WHXB201605164 |
|
17 |
Thackeray, M. M.; Johnson, C. S.; Vaughey, J. T.; Li, N.; Hackney, S. A.J. Mater. Chem.2005,15,2257.
doi: 10.1039/B417616M |
18 |
Pan, C.; Lee, Y. J.; Ammundsen, B.; Grey, C. P.Chem. Mater.2002,14,2289.
doi: 10.1021/cm011623u |
19 |
Jarvis, K. A.; Deng, Z.; Allard, L. F.; Manthiram, A.; Ferreira, P. J.Chem. Mater.2011,23,3614.
doi: 10.1021/cm200831c |
20 |
Lee, J.; Urban, A.; Li, X.; Su, D.; Hautier, G.; Ceder, G.Science2014,343,519.
doi: 10.1126/science.1246432 |
21 |
Van der Ven, A.; Bhattacharya, J.; Belak, A. A.Acc. Chem. Res.2013,46,1216.
doi: 10.1021/ar200329r |
22 |
Catti, M.Phys. Rev. B2000,61,1795.
doi: 10.1103/PhysRevB.61.1795 |
23 |
Kang, K.; Meng, Y. S.; Bréger, J.; Grey, C. P.; Ceder, G.Science2006,311,977.
doi: 10.1126/science.1122152 |
24 |
Van der Ven, A.Electrochem. Solid-State Lett.1999,3,301.
doi: 10.1149/1.1391130 |
25 |
Van der Ven, A.; Ceder, G.J. Power Sources2001,97–98,529.
doi: 10.1016/S0378-7753(01)00638-3 |
26 |
Wang, J.; He, X.; Paillard, E.; Laszczynski, N.; Li, J.; Passerini, S.Adv. Energy Mater.2016,6,1600906.
doi: 10.1002/aenm.201600906 |
27 |
Johnson, C. S.; Kim, J. S.; Lefief, C.; Li, N.; Vaughey, J. T.; Thackeray, M. M.Electrochem. Commun.2004,6,1085.
doi: 10.1016/j.elecom.2004.08.002 |
28 |
Li, J.; Liu, Z.; Wang, Y.; Wang, R.J. Alloys Compd.2020,834,155150.
doi: 10.1016/j.jallcom.2020.155150 |
29 |
Liu, P.; Zhang, H.; He, W.; Xiong, T.; Cheng, Y.; Xie, Q.; Ma, Y.; Zheng, H.; Wang, L.; Zhu, Z.-Z.; et al.J. Am. Chem. Soc.2019,141,10876.
doi: 10.1021/jacs.9b04974 |
30 |
Shunmugasundaram, R.; Senthil Arumugam, R.; Dahn, J. R.Chem. Mater.2015,27,757.
doi: 10.1021/cm504583y |
31 |
Hatsukade, T.; Schiele, A.; Hartmann, P.; Brezesinski, T.; Janek, J.ACS Appl. Mater. Interfaces2018,10,38892.
doi: 10.1021/acsami.8b13158 |
32 |
Yan, P.; Zheng, J.; Liu, J.; Wang, B.; Cheng, X.; Zhang, Y.; Sun, X.; Wang, C.; Zhang, J.-G.Nat. Energy2018,3,600.
doi: 10.1038/s41560-018-0191-3 |
33 |
Xiao, B.; Sun, X.Adv. Energy Mater.2018,8,1802057.
doi: 10.1002/aenm.201802057 |
34 |
Zhu, G.-L.; Zhao, C.-Z.; Huang, J.-Q.; He, C.; Zhang, J.; Chen, S.; Xu, L.; Yuan, H.; Zhang, Q.Small2019,15,1805389.
doi: 10.1002/smll.201805389 |
35 |
Li, X.; Tang, M.; Feng, X.; Hung, I.; Rose, A.; Chien, P.-H.; Gan, Z.; Hu, Y.-Y.Chem. Mater.2017,29,8282.
doi: 10.1021/acs.chemmater.7b02589 |
36 |
Wang, Z. Q.; Wu, M. S.; Xu, B.; Ouyang, C. Y.J. Alloys Compd.2016,658,818.
doi: 10.1016/j.jallcom.2015.11.013 |
37 |
Yu, X.; Lyu, Y.; Gu, L.; Wu, H.; Bak, S.-M.; Zhou, Y.; Amine, K.; Ehrlich, S. N.; Li, H.; Nam, K.-W.; et al.Adv. Energy Mater.2014,4,1300950.
doi: 10.1002/aenm.201300950 |
38 |
Gao, Y.; Wang, X.; Ma, J.; Wang, Z.; Chen, L.Chem. Mater.2015,27,3456.
doi: 10.1021/acs.chemmater.5b00875 |
39 |
Gu, M.; Genc, A.; Belharouak, I.; Wang, D.; Amine, K.; Thevuthasan, S.; Baer, D. R.; Zhang, J.-G.; Browning, N. D.; Liu, J.; et al.Chem. Mater.2013,25,2319.
doi: 10.1021/cm4009392 |
40 |
Yan, P.; Zheng, J.; Zheng, J.; Wang, Z.; Teng, G.; Kuppan, S.; Xiao, J.; Chen, G.; Pan, F.; Zhang, J.-G.; et al.Adv. Energy Mater.2016,6,1502455.
doi: 10.1002/aenm.201502455 |
41 |
Doan, T. N. L.; Yoo, K.; Hoang, T. K. A.; Chen, P.Front. Energy Res.2014,2,36.
doi: 10.3389/fenrg.2014.00036 |
42 |
Hoang, K.Phys. Rev. Appl.2015,3,024013.
doi: 10.1103/PhysRevApplied.3.024013 |
43 |
Lee, E.; Persson, K. A.Adv. Energy Mater.2014,4,1400498.
doi: 10.1002/aenm.201400498 |
44 |
Chen, H.; Islam, M. S.Chem. Mater.2016,28,6656.
doi: 10.1021/acs.chemmater.6b02870 |
45 |
Assat, G.; Foix, D.; Delacourt, C.; Iadecola, A.; Dedryvère, R.; Tarascon, J.-M.Nat. Commun.2017,8,2219.
doi: 10.1038/s41467-017-02291-9 |
46 |
Lee, S. H.; Moon, J.-S.; Lee, M.-S.; Yu, T.-H.; Kim, H.; Park, B. M.J. Power Sources2015,281,77.
doi: 10.1016/j.jpowsour.2015.01.158 |
47 |
Leifer, N.; Penki, T.; Nanda, R.; Grinblat, J.; Luski, S.; Aurbach, D.; Goobes, G.Phys. Chem. Chem. Phys.2020,22,9098.
doi: 10.1039/D0CP00400F |
48 |
Zheng, J.; Shi, W.; Gu, M.; Xiao, J.; Zuo, P.; Wang, C.; Zhang, J.-G.J. Electrochem. Soc.2013,160,A2212.
doi: 10.1149/2.090311jes |
49 |
Deng, Z. Q.; Manthiram, A.J. Phys. Chem. C2011,115,7097.
doi: 10.1021/jp200375d |
50 |
Shin, Y.; Ding, H.; Persson, K. A.Chem. Mater.2016,28,2081.
doi: 10.1021/acs.chemmater.5b04862 |
51 |
Wei, G.-Z.; Lu, X.; Ke, F.-S.; Huang, L.; Li, J.-T.; Wang, Z.-X.; Zhou, Z.-Y.; Sun, S.-G.Adv. Mater.2010,22,4364.
doi: 10.1002/adma.201001578 |
52 |
Hou, Y.; Chang, K.; Li, B.; Tang, H.; Wang, Z.; Zou, J.; Yuan, H.; Lu, Z.; Chang, Z.Nano Res.2018,11,2424.
doi: 10.1007/s12274-017-1864-0 |
53 |
Chen, L.; Su, Y.; Chen, S.; Li, N.; Bao, L.; Li, W.; Wang, Z.; Wang, M.; Wu, F.Adv. Mater.2014,26,6756.
doi: 10.1002/adma.201402541 |
54 |
Assat, G.; Tarascon, J.-M.Nat. Energy2018,3,373.
doi: 10.1038/s41560-018-0097-0 |
55 |
McCoy, D. E.; Feo, T.; Harvey, T. A.; Prum, R. O.Nat. Commun.2018,9,1.
doi: 10.1038/s41467-017-02088-w |
56 |
Hu, E.; Yu, X.; Lin, R.; Bi, X.; Lu, J.; Bak, S.; Nam, K.-W.; Xin, H. L.; Jaye, C.; Fischer, D. A.; et al.Nat. Energy2018,3,690.
doi: 10.1038/s41560-018-0207-z |
57 |
Li, B.; Yan, H.; Zuo, Y.; Xia, D.Chem. Mater.2017,29,2811.
doi: 10.1021/acs.chemmater.6b04743 |
58 |
Sharifi-Asl, S.; Lu, J.; Amine, K.; Shahbazian-Yassar, R.Adv. Energy Mater.2019,9,1900551.
doi: 10.1002/aenm.201900551 |
59 |
Mohanty, D.; Huq, A.; Payzant, E. A.; Sefat, A. S.; Li, J.; Abraham, D. P.; Wo od, D. L., Ⅲ; Daniel, C.Chem. Mater.2013,25,4064.
doi: 10.1021/cm402278q |
60 |
Xu, B.; Fell, C. R.; Chi, M.; Meng, Y. S.Energy Environ. Sci.2011,4,2223.
doi: 10.1039/C1EE01131F |
61 |
Zheng, J.; Xu, P.; Gu, M.; Xiao, J.; Browning, N. D.; Yan, P.; Wang, C.; Zhang, J.-G.Chem. Mater.2015,27,1381.
doi: 10.1021/cm5045978 |
62 |
Zuo, Y.; Li, B.; Jiang, N.; Chu, W.; Zhang, H.; Zou, R.; Xia, D.Adv. Mater.2018,30,1707255.
doi: 10.1002/adma.201707255 |
63 |
Ben Yahia, M.; Vergnet, J.; Saubanère, M.; Doublet, M.-L.Nat. Mater.2019,18,496.
doi: 10.1038/s41563-019-0318-3 |
64 |
Liu, S.; Liu, Z.; Shen, X.; Wang, X.; Liao, S.-C.; Yu, R.; Wang, Z.; Hu, Z.; Chen, C.-T.; Yu, X.; et al.Adv. Energy Mater.2019,9,1901530.
doi: 10.1002/aenm.201901530 |
65 |
Mo, Y.; Guo, L.; Cao, B.; Wang, Y.; Zhang, L.; Jia, X.; Chen, Y.Energy Storage Mater.2019,18,260.
doi: 10.1016/j.ensm.2018.09.003 |
66 |
He, T.; Lu, Y.; Su, Y.; Bao, L.; Tan, J.; Chen, L.; Zhang, Q.; Li, W.; Chen, S.; Wu, F.ChemSusChem2018,11,1639.
doi: 10.1002/cssc.201702451 |
67 |
Zhang, L.; He, W.; Peng, D.-L.; Xie, Q.; Xie, R.-J.ChemElectroChem2019,6,1542.
doi: 10.1002/celc.201801895 |
68 |
You, Y.; Celio, H.; Li, J.; Dolocan, A.; Manthiram, A.Angew. Chem. Int. Ed.2018,57,6480.
doi: 10.1002/anie.201801533 |
69 |
Choi, A.; Lim, J.; Kim, H.-J.; Jung, S. C.; Lim, H.-W.; Kim, H.; Kwon, M.-S.; Han, Y. K.; Oh, S. M.; Lee, K. T.Adv. Energy Mater.2018,8,1702514.
doi: 10.1002/aenm.201702514 |
70 |
Li, Q.; Li, G.; Fu, C.; Luo, D.; Fan, J.; Li, L.ACS Appl. Mater. Interfaces2014,6,10330.
doi: 10.1021/am5017649 |
71 |
He, W.; Liu, P.; Zhou, Y.; Zheng, H.; Zheng, Z.; Liu, B.; Yuan, J.; Zhang, Q.; Wang, L.; Luo, Q.; et al.Sustain. Mater.Technol.2020,25,e00171.
doi: 10.1016/j.susmat.2020.e00171 |
72 |
An, J.; Shi, L.; Chen, G.; Li, M.; Liu, H.; Yuan, S.; Chen, S.; Zhang, D.J. Mater. Chem. A2017,5,19738.
doi: 10.1039/C7TA05971J |
73 |
Yan, H.; Li, B.; Yu, Z.; Chu, W.; Xia, D.J. Phys. Chem. C.2017,121,7155.
doi: 10.1021/acs.jpcc.7b01168 |
74 |
Li, L.; Song, B. H.; Chang, Y. L.; Xia, H.; Yang, J. R.; Lee, K. S.; Lu, L.J. Power Sources2015,283,162.
doi: 10.1016/j.jpowsour.2015.02.085 |
75 |
Jin, X.; Xu, Q.; Liu, H.; Yuan, X.; Xia, Y.Electrochim. Acta2014,136,19.
doi: 10.1016/j.electacta.2014.05.043 |
76 |
Meng, J.; Wang, Z.; Xu, L.; Xu, H.; Zhang, S.; Yan, Q.J. Electrochem. Soc.2017,164,A2594.
doi: 10.1149/2.1141712jes |
77 |
Ramesha, R. N.; Laisa, C. P.; Ramesha, K.Electrochim. Acta2017,249,377.
doi: 10.1016/j.electacta.2017.08.039 |
78 |
Huang, J.; Liu, H.; Hu, T.; Meng, Y. S.; Luo, J.J. Power Sources2018,375,21.
doi: 10.1016/j.jpowsour.2017.11.048 |
79 |
Ming, L.; Zhang, B.; Cao, Y.; Zhang, J.-F.; Wang, C.-H.; Wang, X.-W.; Li, H.Front. Chem.2018,6,76.
doi: 10.3389/fchem.2018.00076 |
80 |
Liang, Y.; Li, S.; Xie, J.; Yang, L.; Li, W.; Li, C.; Ai, L.; Fu, X.; Cui, X.; Shangguan, X.New, J. Chem.2019,43,12004.
doi: 10.1039/C9NJ01539F |
81 |
Li, B.; Wang, X.; Gao, Y.; Wang, B.; Qiu, J.; Cheng, X.; Dai, D.J. Materiomics2019,5,149.
doi: 10.1016/j.jmat.2019.01.005 |
82 |
Bao, L.; Yang, Z.; Chen, L.; Su, Y.; Lu, Y.; Li, W.; Yuan, F.; Dong, J.; Fang, Y.; Ji, Z.; et al.ChemSusChem2019,12,2294.
doi: 10.1002/cssc.201900226 |
83 |
Li, M.; Wang, H.; Zhao, L.; Zhou, Y.; Zhang, F.; He, D.J. Alloy. Compd.2019,782,451.
doi: 10.1016/j.jallcom.2018.12.072 |
84 |
Jiang, W.; Zhang, C.; Feng, Y.; Wei, B.; Chen, L.; Zhang, R.; Ivey, D. G.; Wang, P.; Wei, W.Energy Storage Mater.2020,32,37.
doi: 10.1016/j.ensm.2020.07.035 |
85 |
Zheng, H.; Zhang, C.; Zhang, Y.; Lin, L.; Liu, P.; Wang, L.; Wei, Q.; Lin, J.; Sa, B.; Xie, Q.; et al.Adv. Funct. Mater.2021,31,2100783.
doi: 10.1002/adfm.202100783 |
86 |
Meng, J.; Xu, L.; Ma, Q.; Yang, M.; Fang, Y.; Wan, G.; Li, R.; Yuan, J.; Zhang, X.; Yu, H.; et al.Adv. Funct. Mater.2022,32,2113013.
doi: 10.1002/adfm.202113013 |
87 |
Cheng, W.; Ding, J.; Liu, Z.; Zhang, J.; Liu, Q.; Wang, X.; Wang, L.; Sun, Z.; Cheng, Y.; Xu, Z.; et al.Chem. Eng. J. (Lausanne)2023,451,138678.
doi: 10.1016/j.cej.2022.138678 |
88 |
Li, N.; An, R.; Su, Y.; Wu, F.; Bao, L.; Chen, L.; Zheng, Y.; Shou, H.; Chen, S.J. Mater. Chem. A2013,1,9760.
doi: 10.1039/C3TA11665D |
89 |
Li, X.; Zhang, K.; Mitlin, D.; Yang, Z.; Wang, M.; Tang, Y.; Jiang, F.; Du, Y.; Zheng, J.Chem. Mater.2018,30,2566.
doi: 10.1021/acs.chemmater.7b04861 |
90 |
Wang, T.; Zhang, C.; Li, S.; Shen, X.; Zhou, L.; Huang, Q.; Liang, C.; Wang, Z.; Wang, X.; Wei, W.ACS Appl. Mater. Interfaces2021,13,12159.
doi: 10.1021/acsami.1c01351 |
91 |
Song, J. H.; Kapylou, A.; Choi, H. S.; Yu, B. Y.; Matulevich, E.; Kang, S. H.J. Power Sources2016,313,65.
doi: 10.1016/j.jpowsour.2016.02.058 |
92 |
Si, M.; Wang, D.; Zhao, R.; Pan, D.; Zhang, C.; Yu, C.; Lu, X.; Zhao, H.; Bai, Y.Adv. Sci.2020,7,1902538.
doi: 10.1002/advs.201902538 |
93 |
Zhang, W.; Sun, Y.; Deng, H.; Ma, J.; Zeng, Y.; Zhu, Z.; Lv, Z.; Xia, H.; Ge, X.; Cao, S.; et al.Adv. Mater.2020,32,2000496.
doi: 10.1002/adma.202000496 |
94 |
Kim, S. Y.; Park, C. S.; Hosseini, S.; Lampert, J.; Kim, Y. J.; Nazar, L. F.Adv. Energy Mater.2021,11,2100552.
doi: 10.1002/aenm.202100552 |
95 |
Yan, P.; Zheng, J.; Tang, Z.-K.; Devaraj, A.; Chen, G.; Amine, K.; Zhang, J.-G.; Liu, L.-M.; Wang, C.Nat. Nanotechnol.2019,14,602.
doi: 10.1038/s41565-019-0428-8 |
96 |
Zhao, E.; Li, Q.; Meng, F.; Liu, J.; Wang, J.; He, L.; Jiang, Z.; Zhang, Q.; Yu, X.; Gu, L.; et al.Angew. Chem. Int. Ed.2019,58,4323.
doi: 10.1002/anie.201900444 |
97 |
Guo, H.; Wei, Z.; Jia, K.; Qiu, B.; Yin, C.; Meng, F.; Zhang, Q.; Gu, L.; Han, S.; Liu, Y.; et al.Energy Storage Mater.2019,16,220.
doi: 10.1016/j.ensm.2018.05.022 |
98 |
Koga, H.; Croguennec, L.; Ménétrier, M.; Douhil, K.; Belin, S.; Bourgeois, L.; Suard, E.; Weill, F.; Delmas, C.J. Electrochem. Soc.2013,160,A786.
doi: 10.1149/2.038306jes |
99 |
Jiang, W.; Yin, C.; Xia, Y.; Qiu, B.; Guo, H.; Cui, H.; Hu, F.; Liu, Z.ACS Appl. Mater. Interfaces2019,11,14023.
doi: 10.1021/acsami.8b21201 |
100 |
Qiu, B.; Zhang, M.; Wu, L.; Wang, J.; Xia, Y.; Qian, D.; Liu, H.; Hy, S.; Chen, Y.; An, K.; et al.Nat. Commun.2016,7,12108.
doi: 10.1038/ncomms12108 |
101 |
Erickson, E. M.; Sclar, H.; Schipper, F.; Liu, J.; Tian, R.; Ghanty, C.; Burstein, L.; Leifer, N.; Grinblat, J.; Talianker, M.; et al.Adv. Energy Mater.2017,7,1700708.
doi: 10.1002/aenm.201700708 |
102 |
Ding, X.; Luo, D.; Cui, J.; Xie, H.; Ren, Q.; Lin, Z.Angew. Chem. Int. Ed.2020,59,7778.
doi: 10.1002/anie.202000628 |
103 |
Pimenta, V.; Sathiya, M.; Batuk, D.; Abakumov, A. M.; Giaume, D.; Cassaignon, S.; Larcher, D.; Tarascon, J.-M. Chem. Mater.2017,29,9923.
doi: 10.1021/acs.chemmater.7b03230 |
104 |
Cao, X.; Qiao, Y.; Jia, M.; He, P.; Zhou, H.Adv. Energy Mater.2022,12,2003972.
doi: 10.1002/aenm.202003972 |
105 |
Paulsen, J. M.; Donaberger, R. A.; Dahn, J. R.Chem. Mater.2000,12,2257.
doi: 10.1021/cm990810d |
106 |
Paulsen, J. M.; Dahn, J. R.Solid State Ionics1999,126,3.
doi: 10.1016/S0167-2738(99)00147-2 |
107 |
Eum, D.; Kim, B.; Kim, S. J.; Park, H.; Wu, J.; Cho, S.-P.; Yoon, G.; Lee, M. H.; Jung, S.-K.; Yang, W.; et al.Nat. Mater.2020,19,419.
doi: 10.1038/s41563-019-0572-4 |
108 |
Cao, X.; Li, H.; Qiao, Y.; He, P.; Qian, Y.; Yue, X.; Jia, M.; Cabana, J.; Zhou, H.Joule2022,6,1290.
doi: 10.1016/j.joule.2022.05.006 |
109 |
Liu, Z.; Xu, X.; Ji, S.; Zeng, L.; Zhang, D.; Liu, J.Chem. Eur. J.2020,26,7747.
doi: 10.1002/chem.201905131 |
110 |
Paulsen, J. M.; Dahn, J. R.J. Electrochem. Soc.2000,147,2478.
doi: 10.1149/1.1393556 |
111 |
Paulsen, J. M.; Larcher, D.; Dahn, J. R.J. Electrochem. Soc.2000,147,2862.
doi: 10.1149/1.1393617 |
112 |
Lu, Z.; Dahn, J. R.J. Electrochem. Soc.2001,148,A237.
doi: 10.1149/1.1350016 |
113 |
Delmas, C.; Braconnier, J.-J.; Hagenmuller, P.Mater. Res. Bull.1982,17,117.
doi: 10.1016/0025-5408(82)90192-1 |
114 |
Lu, Z.; Dahn, J. R.Chem. Mater.2001,13,2078.
doi: 10.1021/cm000885d |
115 |
Armstrong, A. R.; Bruce, P. G.Nature1996,381,499.
doi: 10.1038/381499a0 |
116 |
Cao, X.; Li, H.; Qiao, Y.; Jia, M.; Li, X.; Cabana, J.; Zhou, H.Adv. Mater.2021,33,2004280.
doi: 10.1002/adma.202004280 |
117 |
Cao, X.; Sun, J.; Chang, Z.; Wang, P.; Yue, X.; Okagaki, J.; He, P.; Yoo, E.; Zhou, H.Adv. Funct. Mater.2022,32,2205199.
doi: 10.1002/adfm.202205199 |
118 |
Cao, X.; Li, H.; Qiao, Y.; Chang, Z.; Wang, P.; Li, C.; Yue, X.; He, P.; Cabana, J.; Zhou, H.ACS Energy Lett.2022,7,2349.
doi: 10.1021/acsenergylett.2c01072 |
119 |
Cao, X.; Li, H.; Qiao, Y.; Jia, M.; He, P.; Cabana, J.; Zhou, H.Energy Storage Mater.2021,38,1.
doi: 10.1016/j.ensm.2021.02.047 |
120 |
Kawai, K.; Shi, X.-M.; Takenaka, N.; Jang, J. de Boisse, B. M.; Tsuchimoto, A.; Asakura, D.; Kikkawa, J.; Nakayama, M.; Okubo, M.; et al.Energy Environ. Sci.2022,15,2591.
doi: 10.1039/D1EE03503G |
121 |
Deng, Y.-P.; Fu, F.; Wu, Z.-G.; Yin, Z.-W.; Zhang, T.; Li, J.-T.; Huang, L.; Sun, S.-G.J. Mater. Chem. A2016,4,257.
doi: 10.1039/C5TA06945A |
122 |
Liu, J.; Wang, J.; Ni, Y.; Zhang, Y.; Luo, J.; Cheng, F.; Chen, J.Small Methods2019,3,1900350.
doi: 10.1002/smtd.201900350 |
123 |
Zhu, Z.; Yu, D.; Yang, Y.; Su, C.; Huang, Y.; Dong, Y.; Waluyo, I.; Wang, B.; Hunt, A.; Yao, X.Nat. Energy2019,4,1049.
doi: 10.1038/s41560-019-0508-x |
124 |
Qing, R.-P.; Shi, J.-L.; Xiao, D.-D.; Zhang, X.-D.; Yin, Y.-X.; Zhai, Y.-B.; Gu, L.; Guo, Y.-G.Adv. Energy Mater.2016,6,1501914.
doi: 10.1002/aenm.201501914 |
125 |
Zhu, Z.; Yu, D.; Shi, Z.; Gao, R.; Xiao, X.; Waluyo, I.; Ge, M.; Dong, Y.; Xue, W.; Xu, G.; et al.Energy Environ. Sci.2020,13,1865.
doi: 10.1039/D0EE00231C |
126 |
Song, J.; Ning, F.; Zuo, Y.; Li, A.; Wang, H.; Zhang, K.; Yang, T.; Yang, Y.; Gao, C.; Xiao, W.; et al.Adv. Mater.2023,
doi: 10.1002/adma.202208726 |
[1] | Lianlian Ji, Xianpeng Wang, Yingying Zhang, Xueli Shen, Di Xue, Lu Wang, Zi Wang, Wenchong Wang, Lizhen Huang, Lifeng Chi. In situ and Ex situ Investigation of the Organic-Organic Interface Effect [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2304002-. |
[2] | Xinxuan Duan, Marshet Getaye Sendeku, Daoming Zhang, Daojin Zhou, Lijun Xu, Xueqing Gao, Aibing Chen, Yun Kuang, Xiaoming Sun. Tungsten-Doped NiFe-Layered Double Hydroxides as Efficient Oxygen Evolution Catalysts [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303055-. |
[3] | Yongtao Wen, Jing Li, Xiaofeng Gao, Congcong Tian, Hao Zhu, Guomu Yu, Xiaoli Zhang, Hyesung Park, Fuzhi Huang. Two-Step Sequential Blade-Coating Large-Area FA-Based Perovskite Thin Film via a Controlled PbI2 Microstructure [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2203048-0. |
[4] | Ru Wang, Zhikang Liu, Chao Yan, Long Qie, Yunhui Huang. Interface Strengthening of Composite Current Collectors for High-Safety Lithium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2203043-0. |
[5] | Zhen Liu, Xiangfu Meng, Wanmiao Gu, Jun Zha, Nan Yan, Qing You, Nan Xia, Hui Wang, Zhikun Wu. Introducing Novel, Multiple Cd Coordination Modes into Gold Nanoclusters by Combined Doping for Enhancing Electrocatalytic Performance [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2212064-. |
[6] | Rongchen Shen, Lei Hao, Qing Chen, Qiaoqing Zheng, Peng Zhang, Xin Li. P-Doped g-C3N4 Nanosheets with Highly Dispersed Co0.2Ni1.6Fe0.2P Cocatalyst for Efficient Photocatalytic Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2110014-. |
[7] | Yue Yang, Jiawei Zhu, Pengyan Wang, Haimi Liu, Weihao Zeng, Lei Chen, Zhixiang Chen, Shichun Mu. NH2-MIL-125 (Ti) Derived Flower-Like Fine TiO2 Nanoparticles Implanted in N-doped Porous Carbon as an Anode with High Activity and Long Cycle Life for Lithium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2106002-. |
[8] | Ying Mo, Kuikui Xiao, Jianfang Wu, Hui Liu, Aiping Hu, Peng Gao, Jilei Liu. Lithium-Ion Battery Separator: Functional Modification and Characterization [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2107030-. |
[9] | Siying Zhu, Huiyang Li, Zhongli Hu, Qiaobao Zhang, Jinbao Zhao, Li Zhang. Research Progresses on Structural Optimization and Interfacial Modification of Silicon Monoxide Anode for Lithium-Ion Battery [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2103052-. |
[10] | Ying Liu, Xiaofang Liu, Lin Xia, Chaojie Huang, Zhaoxuan Wu, Hui Wang, Yuhan Sun. Methanol Synthesis by COx Hydrogenation over Cu/ZnO/Al2O3 Catalyst via Hydrotalcite-Like Precursors: the Role of CO in the Reactant Mixture [J]. Acta Phys. -Chim. Sin., 2022, 38(3): 2002017-. |
[11] | Xuewei Liu, Ying Niu, Ruixiong Cao, Xiaohong Chen, Hongyan Shang, Huaihe Song. Is there a Demand of Conducting Agent of Acetylene Black for Graphene-Wrapped Natural Spherical Graphite as Anode Material for Lithium-Ion Batteries? [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2012062-. |
[12] | Lai-Peng Ma, Wencai Ren, Hui-Ming Cheng. Progress in Surface Charge Transfer Doping of Graphene [J]. Acta Phys. -Chim. Sin., 2022, 38(1): 2012080-. |
[13] | Yajie Shu, Shimin Liang, Jiayong Xiao, Zhiling Tu, Haibao Huang. Phosphate- and Mn-Modified Mesoporous TiO2 for Efficient Catalytic Oxidation of Toluene in VUV-PCO System [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2010001-. |
[14] | Chao Zheng, Aqiang Liu, Chenghao Bi, Jianjun Tian. SCN-doped CsPbI3 for Improving Stability and Photodetection Performance of Colloidal Quantum Dots [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2007084-. |
[15] | Peiliang Lü, Caiyun Gao, Xiuhong Sun, Mingliang Sun, Zhipeng Shao, Shuping Pang. Synthesis of Cs-Rich CH(NH2)2)xCs1−xPbI3 Perovskite Films Using Additives with Low Sublimation Temperature [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2009036-. |
|