Acta Phys. -Chim. Sin. ›› 2022, Vol. 38 ›› Issue (6): 2103052.doi: 10.3866/PKU.WHXB202103052
Special Issue: Surface and Interface Engineering for Electrochemical Energy Storage and Conversion
• REVIEW • Previous Articles Next Articles
Siying Zhu1, Huiyang Li1, Zhongli Hu1, Qiaobao Zhang2,*(), Jinbao Zhao1, Li Zhang1,*()
Received:
2021-03-24
Accepted:
2021-04-25
Published:
2021-04-29
Contact:
Qiaobao Zhang,Li Zhang
E-mail:zhangqiaobao@xmu.edu.cn;zhangli81@xmu.edu.cn
About author:
Li Zhang, Email: zhangli81@xmu.edu.cn (L.Z.)Supported by:
Siying Zhu, Huiyang Li, Zhongli Hu, Qiaobao Zhang, Jinbao Zhao, Li Zhang. Research Progresses on Structural Optimization and Interfacial Modification of Silicon Monoxide Anode for Lithium-Ion Battery[J]. Acta Phys. -Chim. Sin. 2022, 38(6), 2103052. doi: 10.3866/PKU.WHXB202103052
Fig 1
(a) Experimental/simulated ABED from SiO local structures and atomic models of amorphous Si, silicon suboxide and amorphous SiO2; (b) the model of amorphous SiO; (c) fractions of the five atomic coordinates existing in amorphous SiO: the Si–Si4 is from the Si clusters; the Si–O4 is from the SiO2 matrix; the Si–(Si3O), Si–(Si2O2), and Si–(SiO3) are from the Si/SiO2 interfaces 32. Adapted with permission from Ref. 32, Copyright 2016, Springer."
Fig 3
(a) Schematic Illustration of SiO Anode during repeated lithiation-delithiation cycles; (b) Li diffusivity and capacity values of different matrix components in SiO anode during lithiation; (c) crystal structures of Li15Si4, Li2Si2O5, Li6Si2O7, Li4SiO4, and Li2O, the yellow, blue, and red balls represent the Li, Si, and O atoms, respectively 37."
Fig 4
(a) Schematic illustration of the concept and preparation of m-SiO; (b) XRD patterns of SiO, d-SiO, and m-SiO; (c) SEM images of m3-SiO and m10-SiO; (d) bright field, high-resolution TEM images, and SAED patterns of SiO and d-SiO, bright field and dark field TEM images of m10-SiO; (e) voltage profiles of d-SiO, m3-SiO, and m10-SiO electrodes for the first cycle; (f) the comparisons of the cyclabilities for the SiO, m3-SiO and m10-SiO electrodes 39. Adapted with permission from Ref. 39, Copyright 2013, Elsevier."
Fig 5
(a, b) SEM, (c) TEM and (d) HRTEM images of the SiO@F-doped C composite obtained by annealing the mixture of SiO and PTFE with a mass ratio of 5:3 at 650 ℃; (e) charge-discharge profiles of the annealed SiO and (f) SiO@F-doped C obtained by annealing the mixture of SiO and PTFE with a mass ratio of 5:3 at 650 ℃ in the first three cycles at 100 mA·g-1; (g) cycling performance profiles of the annealed SiO and SiO@F-doped C obtained by annealing the mixture of SiO and PTFE with a mass ratio of 5:3 at 650 ℃ at 400 mA·g-1; (h) rate capability of the annealed SiO and SiO@F-doped C 44. Adapted with permission from Ref. 44, Copyright 2018, Elsevier."
Table 1
Electrochemical performances of SiO materials modified by downsizing."
Sample | Initial discharge/charge specific capacity (mAh·g-1) | ICE (%) | Cycling performance (mAh·g-1) | Current density | Particle size | Year | Ref. |
SiO/Graphite | 951.1/770.4 | 81 | 762.0 (50 cycles) | 0.1C | – | 2007 | 38 |
SiO/C | 1050/800 | 76 | 710 (100 cycles) | – | 0.5–3 μm | 2007 | 40 |
SiO/Graphite | 1556/693 | 44.5 | 688 (30 cycles) | – | 5–20 μm | 2008 | 41 |
SiO/CNF | 2027/724 | 35.7 | 675 (200 cycles) | 0.1C | 0.1–1 μm | 2011 | 42 |
SiO | 1779/1002 | 56.3 | 1000 (50 cycles) | 100 mA·g-1 | < 10 μm | 2013 | 39 |
F-doped SiO@C | 1518/1050 | 70 | 975 (100 cycles) | 400 mA·g-1 | 2018 | 44 |
Fig 6
(a) SEM image of a coating layer of Ag on the surface of SiO via a galvanic displacement reaction; (b) SEM image of the etching of SiO particles in a chemical etchant of HF/H2O2; (c) SEM image of porous SiO obtained after the removal of the Ag catalyst in a strong nitric acid; (d) graphs of the chemical etching process at three different Ag deposition and chemical etching times; (e) schematic illustration of the synthetic route for preparing the porous SiO using Ag catalytic etching; (f, g) SEM image of porous SiO carbon-coated by a thermal decomposition of acetylene gas; (h) electrochemical performances of c-porous SiO anodes at 0.1C rate 47. Adapted with permission from Ref. 47, Copyright 2012, Elsevier."
Fig 7
(a) Characterization of the mp-SiO@N-doped C rods: SEM images (Ⅰ–Ⅲ), EDS hierarchical image (Ⅳ), and TEM images (V, VI), (b) cyclic voltammetry curves at 0.2 mV·s-1; (c) charge-discharge profiles in the first three cycles at 400 mA·g-1 of the mp-SiO@N-doped C rods; (d) cycling performance profiles of different samples at 400 mA·g-1 and (e) rate capability of the annealed SiO, SiO@N-doped C rods and mp-SiO@N-doped C rods 49. Adapted with permission from Ref. 49, Copyright 2017, Elsevier."
Table 2
Electrochemical performances of SiO materials modified with porous structure."
Sample | Initial discharge/charge specific capacity/(mAh·g-1) | ICE (%) | Cycling performance (mAh·g-1) | Current density | Particle size | Pore size | Year | Ref. |
p-SiO | 2250/1350 | 60 | – | 0.1C | – | – | 2012 | 46 |
p-SiO@C | 1990/1520 | 76.4 | 1490 (50 cycles) | 0.1C | – | – | 2013 | 47 |
p-SiO | 2653/1709 | 64.4 | 1242 (100 cycles) | 0.2C | < 20 μm | 75.2 nm | 2013 | 48 |
mp-SiO@N-doped C | 1202/790 | 65.7 | 806 (250 cycles) | 400 mA·g-1 | < 400 nm | v | 2018 | 49 |
p-SiO@C | – | 87 | 839.6 (110 cycles) | 500 mA·g-1 | ~60 μm | 6.67 nm | 2020 | 50 |
p-SiO@C | ~1600/~1000 | 62 | 900 (200 cycles) | 1000 mA·g-1 | – | 2–15 nm | 2020 | 51 |
Fig 8
(a) Schematic illustration of preparation of SiO@C; (b) SEM images and TEM images of SiO@C-L (left), SiO@C-M (middle), and SiO@C-H (right); (c) top: Cycling performance at 0.1C and rate performance of SiO@C-L (green line), SiO@C-M (red line), SiO@C-H (blue line), and bare SiO (black line); bottom: long-term cycling performance of SiO@C-L 66. Adapted with permission from Ref. 66, Copyright 2018, Elsevier."
Fig 9
(a) Schematic chart of the fabrication for SiO/NPC; (b) schematic of nitrogen atoms and phosphorus atoms replacing carbon atoms; (c) cross-sectional SEM images of the fresh electrodes and the electrode after 200 cycles for SiO (left), SiO/NC (middle) and SiO/NPC (right); (d) electrochemical performance profiles of the SiO, H-SiO, SiO/NC and SiO/NPC 71. Adapted with permission from Ref. 71, Copyright 2020, Elsevier."
Fig 10
(a) Scheme of the synthetic process of the SiOx/C (SC) composite from bamboo charcoal; (b) TEM images (top), HRTEM image (middle left) of the SC composite, elemental mapping images of SC-3 (middle right) and SEM images of the SC-3 composite (bottom); (c) electrochemical performance profiles of different samples at a current density of 200 mA·g-1; (d) cycling performance of SC-3 at a current density of 1000 mA·g-1, inset: SEM images of the SC-3 electrode fabricated on copper foil before (Ⅰ, Ⅱ) and after (Ⅲ, Ⅳ) cycling for 300 cycles at a current density of 200 mA·g-1 74. Adapted with permission from Ref. 74, Copyright 2020, Elsevier."
Table 3
Electrochemical performances of carbon-coating SiO materials synthesized by wet chemical method."
Sample | Carbon precursor | Synthesis method | Initial discharge/charge specific capacity (mAh·g-1) | ICE (%) | Cycling Performance (mAh·g-1) | Current density | Particle size | Coating thickness | Conductive property | Year | Ref. |
NC-SiO | EMI-DCA ion liquid | High-temperature carbonization | 2024/1496 | 73.9 | 955 (100 cycles) | 1C | – | 20–30 nm | – | 2013 | 70 |
SCG-5 | Aniline, Graphite | In situ polymerization, Annealing | 801/545 | 68 | 432 (500 cycles) | 0.8C | 1–10 μm | – | – | 2017 | 64 |
SiO@C | Sodium dodecyl benzene sulfonate | Electrostatic force adsorption, Calcination | 2205/1142 | 51.8 | 1085 (100 cycles) | 0.1C | 6 μm | 7 nm | R = 329 Ω·sq-1 | 2018 | 66 |
TC-SiO | Tetrabutyl titanate, Coal tar pitch | Calcination | 1741/1252 | 71.9 | 674.5 (100 cycles) | 0.14 A·g-1 | 5–10 μm | 4 nm | Rct = 31.3 Ω | 2018 | 65 |
SiO/NC | Melamine, Citric acid | Magnetic stirring, Sinter | 1280/920 | 71 | 834 (150 cycles) | 1000 mA·g-1 | – | 15–20 nm | Rct = 64.28 Ω | 2019 | 68 |
SiO/NPC | Melamine, Phosphoric acid, Gelatin | Magnetic stirring, Sinter | 1698/1223 | 72 | 847 (200 cycles) | 1000 mA·g-1 | – | 25–30 nm | Rct = 33 Ω | 2020 | 71 |
SiO/C | Glucose | Ball-milling, Calcination | 1751/1259 | 71.9 | 850 (100 cycles) | 200 mA·g-1 | – | – | – | 2020 | 72 |
SiO/C/G | Asphalt, Graphite | Ball-milling, Spray drying, Pyrolysis | 1509/963 | 63.8 | 950 (100 cycles) | 100 mA·g-1 | 15 μm | ~10 nm | – | 2020 | 73 |
SC-3 | Bamboo charcoal | Ball-milling, Calcination, Aluminothermic reduction | 2308/1260 | 56.3 | 1100 (300 cycles) | 200 mA·g-1 | – | – | – | 2020 | 74 |
Fig 11
(a) SEM (top) and TEM (bottom) images of sample SiO/1D-C/α-C; (b) TEM images of samples S-600 and S-900; (c) related mechanism of pristine SiO and SiO/1D-C/α-C electrodes during cycling and SEM images of the surface morphology in pristine SiO, S-600, S-900 and SiO/1D-C/α-C electrodes after cycling tests; (d) schematic diagram of the carbon deposition mechanism via FBCVD; (e) initial charge/discharge profiles and (f) cycling performances of pristine SiO, S-600, S-900 and SiO/1D-C/α-C at 0.1 A·g-1 79. Adapted with permission from Ref. 79, Copyright 2020, Elsevier."
Fig 12
(a) Schematic diagram showing preparation process of the d-SiO/C@NCNBs; (b) microstructure and elemental composition of the d-SiO/C@NCNBs; (c) SEM images of the d-SiO/C@NCNBs sample; (d) cycle performances and rate performances of d-SiO/C and d-SiO/C@NCNBs 80. Adapted with permission from Ref. 80, Copyright 2020, Elsevier."
Table 4
Electrochemical performances of carbon-coating SiO materials synthesized by dry chemical method."
Sample | Carbon precursor | Synthesis method | Initial discharge/ charge specific capacity (mAh·g-1) | ICE(%) | Cycling performance (mAh·g-1) | Current density | Particle size | Coating thickness | Conductive property | Year | Ref. |
d-SiO@vG | CH4 | CVD | – | – | 1600 (100 cycles) | – | – | – | R = 200 Ω·sq-1 | 2017 | 75 |
SiO/CNT/C | C2H2, Asphalt | CVD | 1259/1083 | 86 | 821.7 (200 cycles) | 1 A·g-1 | 10–20 μm | – | Rct = 82.6 Ω | 2019 | 76 |
SiO/C | CH4 | FTCVD | 1463/1200 | 82 | 501 (300 cycles) | 1.2 A·g-1 | 6–7 μm | 50 nm | Rct = 53.39 Ω | 2019 | 77 |
SiO/Graphite/C | Graphite, CH4 | FTCVD | 930/800 | 86 | 799.1 (100 cycles) | 200 mA·g-1 | 12 μm | – | Rct = 14.55 Ω | 2019 | 78 |
SiO/1D-C/α-C | C2H2 | FBCVD | 1445/1012 | 70 | 893.6 (120 cycles) | 0.1 A·g-1 | – | 100 nm | Rct = 170 Ω | 2020 | 79 |
d-SiO/C @NCNB | C2H2, Hydroquinone, HCHO | CVD, Heat-treatment, Carbonization | 1375/1004 | 73 | 1043 (100 cycles) | 0.1C | 5–18 μm | – | – | 2020 | 80 |
SiO/G/CNT | Graphite, CH4 | Ball-milling, CVD | 789/513 | 65 | 495 (100 cycles) | 230 mA·g-1 | 3 μm | – | Rct = 44.16 Ω | 2011 | 81 |
Si/SiOx/C-3 | Graphite | Ball-milling | 882/649 | 73.6 | 726 (500 cycles) | 0.1 A·g-1 | – | – | – | 2017 | 82 |
SiOx@NC | m-Phenylenediamine, Hexamethylenetetr amine, Pluronic F127 | Ball-milling, Grinding, Annealing | 1309/774 | 59.1 | 709 (100 cycles) | 200 mA·g-1 | 200–300 nm | 40 nm | – | 2020 | 83 |
Table 5
Comparison of wet and dry chemical carbon coating."
Carbon precursor | Synthesis methods | Advantages | Disadvantages | |
Wet chemical carbon coating | Organic solvents, ionic liquid | Stirring under heating, calcination | Abundant and cheap carbon sources; Simple and low-cost process; Various fabricating methods | The structure of carbon coat unlikely to be controlled due to the reactions in solvents; Consequent calcination after wet reaction increasing the whole cost; Toxic liquids produced from the reaction causing environmental pollution |
Dry chemical carbon coating | C2H2, CH4, asphalt, graphite | CVD, ball-milling | Technology being mature and available for large-scale manufacturing; easy to control the reaction and manipulate the carbon-coating structure; forthright process and mild conditions for solid reactions | High-cost and severe danger due to gas reactions; Toxic gases produced from the reaction causing expensive disposal and environmental pollution |
Fig 14
(a) TEM images, dark-field STEM-HAADF image of Sn/SiO (1:2, w/w) powder and EDS mapping of O, Si, and Sn in the rectangular area; (b) ex situ XPS analysis of the phase evolution associated with Sn and Li2O during the charging process of the Sn/SiO electrode, high-resolution XPS spectra of Sn 3d and O 1s; (c) electrochemical performances of SiO and Sn/SiO anode materials; (d) the dQ/dV plots of the charging process; separated dealloying (< 0.9 V) and inverse conversion reaction (0.9–2.5 V) capacity as a function of lithiated capacity 92. Adapted with permission from Ref. 92, Copyright 2019, John Wiley and Sons."
Table 6
Electrochemical performances of metal-doped SiO materials."
Sample | Initial discharge/charge specific capacity (mAh·g-1) | ICE (%) | Cycling performance (mAh·g-1) | Current density | Particle size | Year | Ref. |
SiAl0.2O | 2225/1500 | 67.4 | 800 (100 cycles) | 200 mA·g-1 | – | 2010 | 86 |
SiO/SnCoC | 1480/1030 | 69.6 | 900 (100 cycles) | C/3 | ~2.5 μm | 2012 | 88 |
SiO/SnFeC | 1427/961 | 67 | 538 (100 cycles) | C/3 | ~9 μm | 2013 | 89 |
SiO/ZrO2@C | 1737.3/1156.8 | 66.58 | 930 (100 cycles) | 80 mA·g-1 | 200–500 nm | 2017 | 90 |
SiO/nano-Sn | 2066/1863.8 | 90.2 | 900 (100 cycles) | 200 mA·g-1 | – | 2018 | 92 |
Fig 15
(a) Schematic of the synthesis process of the SiO@TiO2 nanoparticles; (b) characterization of ST-3: TEM images (Ⅰ, Ⅱ), SEM image (Ⅲ) and the corresponding mapping images of elemental Si, Ti and O; (c) schematic of charge/discharge mechanism of the SiO@TiO2; (d) electrochemical performances of different samples; (e) SEM and TEM images of ST-3 electrode before (left) and after 200 cycles (right) 99. Adapted with permission from Ref. 99, Copyright 2019, Elsevier."
Table 7
Electrochemical performances of SiO materials modified by metal oxide coating."
Sample | Initial discharge/charge specific capacity (mAh·g-1) | ICE (%) | Cycling performance (mAh·g-1) | Current density | Particle size | Coating thickness | Conductive property | Year | Ref. |
SiO/TiO2 | 1757/1265 | 72 | – | – | 6 μm | – | Rct = 63.69 Ω | 2012 | 97 |
SiO/ Fe2O3 | 2773/1893 | 68 | 1335 (50 cycles) | 160 mA·g-1 | – | – | – | 2013 | 93 |
SiO/TiO2 | 1654/1292 | 78.1 | 730 (100 cycles) | 100 mA·g-1 | – | 50–150 nm | R = 12 Ω | 2019 | 98 |
SiO/a-TiO2 | 1920/1524 | 79.4 | 901 (200 cycles) | 200 mA·g-1 | 160 nm | 20–30 nm | Rct = 391 Ω | 2019 | 99 |
Fig 16
(a) Schematic of the preparation of the SiO@C/TiO2 nanospheres via the sol-gel method; (b) SEM images of P-SiO, N-SiO, SiO@C and SiO@C/TiO2 composite; (c) electrochemical performances of different samples; (d) cross-section SEM image of N-SiO (left), SiO@C (middle), SiO@C/TiO2 (right) before (top) and after 100 cycles (bottom) 105. Adapted with permission from Ref. 105, Copyright 2020, Elsevier."
Table 8
Electrochemical performances of SiO materials modified by multiple coating."
Sample | Initial discharge/charge specific capacity (mAh·g-1) | ICE (%) | Cycling performance (mAh·g-1) | Current density | Particle size | Coating thickness | Conductive property | Year | Ref. |
SiO/Cu/EG | 2400/1177 | 49 | 836 (100 cycles) | 200 mA·g-1 | – | – | – | 2017 | 102 |
bm-SiO/Ni/rGO | 1636.4/1021.7 | 62.4 | 720 (100 cycles) | 100 mA·g-1 | ~200 nm | ~5 nm | Rct = 72.4 Ω | 2018 | 103 |
SiO@C/BaTiO3/CNT | 952/771 | 81 | 711.7 (100 cycles) | 0.1 A·g-1 | 8 μm | – | Rct =59.5 Ω | 2019 | 104 |
SiO@C/TiO2 | 1590/1542 | 97 | 1565 (100 cycles) | 0.1 A·g-1 | 400 nm | 50 nm | – | 2020 | 105 |
1 |
Kim M. G. ; Cho J. Adv. Funct. Mater. 2009, 19 (10), 1497.
doi: 10.1002/adfm.200801095 |
2 | Li H. ; Lv Y. C. J. Electrochem 2015, 21 (5), 412. |
李泓; 吕迎春. 电化学,, 2015, 21 (5), 412.
doi: 10.13208/j.electrochem.150750 |
|
3 |
Cui Q. ; Zhong Y. ; Pan L. ; Zhang H. ; Yang Y. ; Liu D. ; Teng F. ; Bando Y. ; Yao J. ; Wang X. Adv. Sci. 2018, 5 (7), 2198.
doi: 10.1002/advs.201700902 |
4 | Chen D. Q. ; Li Q. L. ; Yang Y. ; Zhao J. B. J. Electrochem 2016, 22 (5), 489. |
陈丁琼; 李秋丽; 杨阳; 赵金保. 电化学, 2016, 22 (5), 489.
doi: 10.13208/j.electrochem.160543 |
|
5 | Lu H. ; Li J. Y. ; Liu B. N. ; Chu G. ; Xu Q. ; Li G. ; Luo F. ; Zheng J. Y. ; Yin Y. X. ; Guo Y. G. Energy Storage Sci. Technol. 2017, 5, 864. |
陆浩; 李金熠; 刘柏男; 褚赓; 徐泉; 李阁; 罗飞; 郑杰允; 殷雅侠; 郭玉国. 储能科学与技术, 2017, 5, 864.
doi: 10.12028/j.issn.2095-4239.2017.0096 |
|
6 |
Li J. Y. ; Xu Q. ; Li G. ; Yin Y. X. ; Wan L.-J. ; Guo Y. G. Mater. Chem. Front. 2017, 1 (9), 1691.
doi: 10.1039/c6qm00302h |
7 |
Liu D. ; Liu Z. ; Li X. ; Xie W. ; Wang Q. ; Liu Q. ; Fu Y. ; He D. Small 2017, 13 (45), 1702000.
doi: 10.1002/smll.201702000 |
8 | An H. F. ; Jiang L. ; Li F. ; Wu P. ; Zhu X. S. ; Wei S. H. ; Zhou Y. M. Acta Phys. -Chim. Sin. 2020, 36 (7), 1905034. |
安惠芳; 姜莉; 李峰; 吴平; 朱晓舒; 魏少华; 周益明. 物理化学学报, 2020, 36 (7), 1905034.
doi: 10.3866/PKU.WHXB201905034 |
|
9 |
Ma D. ; Cao Z. ; Hu A. Nano-Micro Lett. 2014, 6 (4), 347.
doi: 10.1007/s40820-014-0008-2 |
10 |
Ren W. F. ; Zhou Y. ; Li J. T. ; Huang L. ; Sun S. G. Curr. Opin. Electrochem. 2019, 18, 46.
doi: 10.1016/j.coelec.2019.09.006 |
11 |
Liang B. ; Liu Y. ; Xu Y. J. Power Sources 2014, 267, 469.
doi: 10.1016/j.jpowsour.2014.05.096 |
12 |
Ko M. ; Chae S. ; Cho J. Chemelectrochem 2015, 2 (11), 1645.
doi: 10.1002/celc.201500254 |
13 |
Beaulieu L. ; Hatchard T. ; Bonakdarpour A. ; Fleischauer M. ; Dahn J. J. Electrochem. Soc. 2003, 150 (11), A1457.
doi: 10.1149/1.1613668 |
14 |
Huang S. ; Ren J. ; Liu R. ; Yue M. ; Huang Y. ; Yuan G. Int. J. Energy Res. 2018, 42 (3), 919.
doi: 10.1002/er.3826 |
15 |
Shin J. ; Kim T. H. ; Lee Y. ; Cho E. Energy Storage Mater. 2020, 25, 764.
doi: 10.1016/j.ensm.2019.09.009 |
16 |
Hu Z. ; Zhao L. ; Jiang T. ; Liu J. ; Rashid A. ; Sun P. ; Wang G. ; Yan C. ; Zhang L. Adv. Funct. Mater. 2019, 29 (45), 1906548.
doi: 10.1002/adfm.201906548 |
17 |
Luo F. ; Chu G. ; Xia X. ; Liu B. ; Zheng J. ; Li J. ; Li H. ; Gu C. ; Chen L. Nanoscale 2015, 7 (17), 7651.
doi: 10.1039/C5NR00045A |
18 |
Wu H. ; Cui Y. Nano Today 2012, 7 (5), 414.
doi: 10.1016/j.nantod.2012.08.004 |
19 |
Zhu X. ; Yang D. ; Li J. ; Su F. J. Nanosci. Nanotechnol. 2015, 15 (1), 15.
doi: 10.1166/jnn.2015.9712 |
20 | Mabery C. F. Am. Chem. J. 1887, 9, 11. |
21 | Lu, H. Research of Silicon-based Anode Materials for High-Energy-Density Lithium Ion Battery. Ph. D., Chinese Academy of Science, Beijing, 2019. |
陆浩. 高能量密度锂离子电池硅基负极材料研究[D]. 北京: 中国科学院大学(中国科学院物理研究所), 2019. | |
22 |
Ko M. ; Oh P. ; Chae S. ; Cho W. ; Cho J. Small 2015, 11 (33), 4058.
doi: 10.1002/smll.201500474 |
23 |
Ryu J. ; Hong D. ; Lee H. W. ; Park S. Nano Res. 2017, 10 (12), 3970.
doi: 10.1007/s12274-017-1692-2 |
24 |
Zhang L. ; Zhang L. ; Chai L. ; Xue P. ; Hao W. ; Zheng H. J. Mater. Chem. A 2014, 2 (44), 19036.
doi: 10.1039/C4TA04320K |
25 |
Zhu X. ; Zhang F. ; Zhang L. ; Zhang L. ; Song Y. ; Jiang T. ; Sayed S. ; Lu C. ; Wang X. ; Sun J. ; et al Adv. Funct. Mater. 2018, 28 (11), 1705015.
doi: 10.1002/adfm.201705015 |
26 |
Zhang L. ; Zhang L. ; Zhang J. ; Hao W. ; Zheng H. J. Mater. Chem. A 2015, 3 (30), 15432.
doi: 10.1039/C5TA03750F |
27 |
Philipp H. R. J. Phys. Chem. Solids 1971, 32 (8), 1935.
doi: 10.1016/S0022-3697(71)80159-2 |
28 |
Brady G. W. J. Phys. Chem. 1959, 63 (7), 1119.
doi: 10.1021/j150577a020 |
29 |
Temkin R. J. J. Non-Cryst. Solids 1975, 17 (2), 215.
doi: 10.1016/0022-3093(75)90052-6 |
30 |
Hohl A. ; Wieder T. ; van Aken P. A. ; Weirich T. E. ; Denninger G. ; Vidal M. ; Oswald S. ; Deneke C. ; Mayer J. ; Fuess H. J. Non-Cryst. Solids 2003, 320 (1), 255.
doi: 10.1016/S0022-3093(03)00031-0 |
31 |
Schulmeister K. ; Mader W. J. Non-Cryst. Solids 2003, 320 (1), 143.
doi: 10.1016/S0022-3093(03)00029-2 |
32 |
Hirata A. ; Kohara S. ; Asada T. ; Arao M. ; Yogi C. ; Imai H. ; Tan Y. ; Fujita T. ; Chen M. Nat. Commun. 2016, 7 (1), 11591.
doi: 10.1038/ncomms11591 |
33 |
Liu Z. ; Yu Q. ; Zhao Y. ; He R. ; Xu M. ; Feng S. ; Li S. ; Zhou L. ; Mai L. Chem. Soc. Rev. 2019, 48 (1), 285.
doi: 10.1039/C8CS00441B |
34 |
Miyachi M. ; Yamamoto H. ; Kawai H. ; Ohta T. ; Shirakata M. J. Electrochem. Soc. 2005, 152 (10), A2089.
doi: 10.1149/1.2013210 |
35 |
Yu B. C. ; Hwa Y. ; Park C. M. ; Sohn H. J. J. Mater. Chem. A 2013, 1 (15), 4820.
doi: 10.1039/C3TA00045A |
36 |
Jung S. C. ; Kim H. J. ; Kim J. H. ; Han Y. K. J. Phys. Chem. C 2016, 120 (2), 886.
doi: 10.1021/acs.jpcc.5b10589 |
37 |
Kim J. H. ; Park C. M. ; Kim H. ; Kim Y. J. ; Sohn H. J. J. Electroanal. Chem. 2011, 661 (1), 245.
doi: 10.1016/j.jelechem.2011.08.010 |
38 |
Yang X. ; Wen Z. ; Xu X. ; Lin B. ; Huang S. J. Power Sources 2007, 164 (2), 880.
doi: 10.1016/j.jpowsour.2006.11.010 |
39 |
Hwa Y. ; Park C. M. ; Sohn H. J. J. Power Sources 2013, 222, 129.
doi: 10.1016/j.jpowsour.2012.08.060 |
40 |
Kim J. H. ; Sohn H. J. ; Kim H. ; Jeong G. ; Choi W. J. Power Sources 2007, 170 (2), 456.
doi: 10.1016/j.jpowsour.2007.03.081 |
41 |
Doh C. H. ; Park C. W. ; Shin H. M. ; Kim D. H. ; Chung Y. D. ; Moon S. I. ; Jin B. S. ; Kim H. S. ; Veluchamy A. J. Power Sources 2008, 179 (1), 367.
doi: 10.1016/j.jpowsour.2007.12.074 |
42 |
Si Q. ; Hanai K. ; Ichikawa T. ; Phillipps M. B. ; Hirano A. ; Imanishi N. ; Yamamoto O. ; Takeda Y. J. Power Sources 2011, 196 (22), 9774.
doi: 10.1016/j.jpowsour.2011.08.005 |
43 |
Hou X. ; Wang J. ; Zhang M. ; Liu X. ; Shao Z. ; Li W. ; Hu S. RSC Adv. 2014, 4, 34615.
doi: 10.1039/C4RA03475A |
44 |
Guo L. ; He H. ; Ren Y. ; Wang C. ; Li M. Chem. Eng. J. 2018, 335, 32.
doi: 10.1016/j.cej.2017.10.145 |
45 |
An W. ; Gao B. ; Mei S. ; Xiang B. ; Fu J. ; Wang L. ; Zhang Q. ; Chu P. K. ; Huo K. Nat. Commun. 2019, 10 (1), 1447.
doi: 10.1038/s41467-019-09510-5 |
46 |
Lee J. I. ; Lee K. T. ; Cho J. ; Kim J. ; Choi N. S. ; Park S. Angew. Chem. Int. Ed. 2012, 51 (11), 2767.
doi: 10.1002/anie.201108915 |
47 |
Lee J. I. ; Park S. Nano Energy 2013, 2 (1), 146.
doi: 10.1016/j.nanoen.2012.08.009 |
48 |
Yu B. C. ; Hwa Y. ; Kim J. H. ; Sohn H. J. Electrochim. Acta 2014, 117, 426.
doi: 10.1016/j.electacta.2013.11.158 |
49 |
Huang X. ; Li M. Appl. Surf. Sci. 2018, 439, 336.
doi: 10.1016/j.apsusc.2017.12.184 |
50 |
Ge J. ; Tang Q. ; Shen H. ; Zhou F. ; Zhou H. ; Yang W. ; Xu B. ; Cong X. Ceram. Int. 2020, 46 (8), 12507.
doi: 10.1016/j.ceramint.2020.02.013 |
51 |
Park D. ; Kim H. S. ; Seo H. ; Kim K. ; Kim J. H. Electrochim. Acta 2020, 357, 136862.
doi: 10.1016/j.electacta.2020.136862 |
52 |
Zhang J. ; Zhang L. ; Xue P. ; Zhang L. ; Zhang X. ; Hao W. ; Tian J. ; Shen M. ; Zheng H. J. Mater. Chem. A 2015, 3 (15), 7810.
doi: 10.1039/C5TA00457H |
53 |
Zhang L. ; Hao W. ; Wang H. ; Zhang L. ; Feng X. ; Zhang Y. ; Chen W. ; Pang H. ; Zheng H. J. Mater. Chem. A 2013, 1 (26), 7601.
doi: 10.1039/C3TA11034F |
54 |
Zhang Y. ; Li K. ; Ji P. ; Chen D. ; Zeng J. ; Sun Y. ; Zhang P. ; Zhao J. J. Mater. Sci. 2017, 52 (7), 3630.
doi: 10.1007/s10853-016-0503-6 |
55 |
Hirose T. ; Takahashi K. ; Matsuno T. ; Osawa Y. ; Furuya M. ; Sakai R. ; Matsui C. ; Koide H. J. Electrochem. Soc. 2020, 167 (12), 120523.
doi: 10.1149/1945-7111/abaf77 |
56 |
Lin Z. ; Li J. ; Huang Q. ; Xu K. ; Fan W. ; Yu L. ; Xia Q. ; Li W. J. Phys. Chem. C 2019, 123 (20), 12902.
doi: 10.1021/acs.jpcc.9b02509 |
57 |
Lu H. ; Wang J. Y. ; Liu B. N. ; Chu G. ; Zhou G. ; Luo F. ; Zheng J. Y. ; Yu X. Q. ; Li H. Chin. Phys. B 2019, 28 (6), 8.
doi: 10.1088/1674-1056/28/6/068201 |
58 |
Jiang B. ; Zeng S. ; Wang H. ; Liu D. ; Qian J. ; Cao Y. ; Yang H. ; Ai X. ACS Appl. Mater. Interfaces 2016, 8 (46), 31611.
doi: 10.1021/acsami.6b09775 |
59 |
Cao Z. ; Xia B. ; Xie X. ; Zhao J. Electrochim. Acta 2019, 313, 311.
doi: 10.1016/j.electacta.2019.05.045 |
60 |
Ke C. Z. ; Liu F. ; Zheng Z. M. ; Zhang H. H. ; Cai M. T. ; Li M. ; Yan Q. Z. ; Chen H. X. ; Zhang Q. B. Rare Met. 2021, 40, 1347.
doi: 10.1007/s12598-021-01716-1 |
61 |
Li Q. ; Chen D. ; Li K. ; Wang J. ; Zhao J. Electrochim. Acta 2016, 202, 140.
doi: 10.1016/j.electacta.2016.04.019 |
62 |
Yang Y. ; Li J. ; Chen D. ; Fu T. ; Sun D. ; Zhao J. ChemElectroChem 2016, 3 (5), 757.
doi: 10.1002/celc.201600012 |
63 | Sun Y. Z. ; Chen D. Q. ; Peng Y. Y. ; Zhang Y. Y. ; Zhao J. B. J. Xiamen Univ. Nat. Sci. 2018, 57 (4), 463. |
孙亚洲; 陈丁琼; 彭月盈; 张义永; 赵金保. 厦门大学学报, 2018, 57 (4), 463.
doi: 10.6043/j.issn.0438-0479.201711015 |
|
64 |
Zhang Q. ; Lin N. ; Xu T. ; Shen K. ; Li T. ; Han Y. ; Zhou J. ; Qian Y. RSC Adv. 2017, 7 (63), 39762.
doi: 10.1039/c7ra05829b |
65 |
Dou F. ; Shi L. ; Song P. ; Chen G. ; An J. ; Liu H. ; Zhang D. Chem. Eng. J. 2018, 338, 488.
doi: 10.1016/j.cej.2018.01.048 |
66 |
Han J. ; Chen G. ; Yan T. ; Liu H. ; Shi L. ; An Z. ; Zhang J. ; Zhang D. Chem. Eng. J. 2018, 347, 273.
doi: 10.1016/j.cej.2018.04.100 |
67 |
Wang H. ; Maiyalagan T. ; Wang X. ACS Catal. 2012, 2 (5), 781.
doi: 10.1021/cs200652y |
68 |
Liao X. ; Peng M. ; Liang K. J. Electroanal. Chem. 2019, 841, 79.
doi: 10.1016/j.jelechem.2019.04.040 |
69 |
Zeng Y. ; Huang Y. ; Liu N. ; Wang X. ; Zhang Y. ; Guo Y. ; Wu H. H. ; Chen H. ; Tang X. ; Zhang Q. J. Energy Chem. 2021, 54, 727.
doi: 10.1016/j.jechem.2020.06.022 |
70 |
Lee D. J. ; Ryou M. H. ; Lee J. N. ; Kim B. G. ; Lee Y. M. ; Kim H. W. ; Kong B. S. ; Park J. K. ; Choi J. W. Electrochem. Commun. 2013, 34, 98.
doi: 10.1016/j.elecom.2013.05.029 |
71 |
Peng M. ; Qiu Y. ; Zhang M. ; Xu Y. ; Yi L. ; Liang K. Appl. Surf. Sci. 2020, 507, 145060.
doi: 10.1016/j.apsusc.2019.145060 |
72 |
Wu Z. L. ; Ji S. B. ; Liu L. K. ; Xie T. ; Tan L. ; Tang H. ; Sun R. G. Rare Met. 2020, 40, 1110.
doi: 10.1007/s12598-020-01445-x |
73 |
Hu L. ; Xia W. ; Tang R. ; Hu R. ; Ouyang L. ; Sun T. ; Wang H. Front. Chem. 2020, 8, 388.
doi: 10.3389/fchem.2020.00388 |
74 |
Kuang S. ; Xu D. ; Chen W. ; Huang X. ; Sun L. ; Cai X. ; Yu X. Appl. Surf. Sci. 2020, 521, 146497.
doi: 10.1016/j.apsusc.2020.146497 |
75 |
Shi L. ; Pang C. ; Chen S. ; Wang M. ; Wang K. ; Tan Z. ; Gao P. ; Ren J. ; Huang Y. ; Peng H. ; et al Nano Lett. 2017, 17 (6), 3681.
doi: 10.1021/acs.nanolett.7b00906 |
76 |
Li J. ; Wang L. ; Liu F. ; Liu W. ; Luo C. ; Liao Y. ; Li X. ; Qu M. ; Wan Q. ; Peng G. ChemistrySelect 2019, 4 (10), 2918.
doi: 10.1002/slct.201900337 |
77 |
Xia M. ; Zhou Z. ; Su Y. ; Li Y. ; Wu Y. ; Zhou N. ; Zhang H. ; Xiong X. Appl. Surf. Sci. 2019, 467-468, 298.
doi: 10.1016/j.apsusc.2018.10.156 |
78 |
Xia M. ; Li Y. ; Zhou Z. ; Wu Y. ; Zhou N. ; Zhang H. ; Xiong X. Ceram. Int. 2019, 45 (2), 1950.
doi: 10.1016/j.ceramint.2018.10.088 |
79 |
Shi H. ; Zhang H. ; Li X. ; Du Y. ; Hou G. ; Xiang M. ; Lv P. ; Zhu Q. Carbon 2020, 168, 113.
doi: 10.1016/j.carbon.2020.06.053 |
80 |
Zeng S. Z. ; Niu Y. ; Zou J. ; Zeng X. ; Zhu H. ; Huang J. ; Wang L. ; Kong L. B. ; Han P. J. Power Sources 2020, 466, 228234.
doi: 10.1016/j.jpowsour.2020.228234 |
81 |
Ren Y. ; Ding J. ; Yuan N. ; Jia S. ; Qu M. ; Yu Z. J. Solid State Electr. 2011, 16 (4), 1453.
doi: 10.1007/s10008-011-1525-2 |
82 |
Qian L. ; Lan J. L. ; Xue M. ; Yu Y. ; Yang X. RSC Adv. 2017, 7 (58), 36697.
doi: 10.1039/c7ra06671f |
83 |
Hu G. ; Zhong K. ; Yu R. ; Liu Z. ; Zhang Y. ; Wu J. ; Zhou L. ; Mai L. J. Mater. Chem. A 2020, 8 (26), 13285.
doi: 10.1039/d0ta00540a |
84 |
Zhang Q. ; Chen H. ; Luo L. ; Zhao B. ; Luo H. ; Han X. ; Wang J. ; Wang C. ; Yang Y. ; Zhu T. ; et al Energy Environ. Sci. 2018, 11 (3), 669.
doi: 10.1039/C8EE00239H |
85 |
Miyachi M. ; Yamamoto H. ; Kawai H. J. Electrochem. Soc. 2007, 154 (4), A376.
doi: 10.1149/1.2455963 |
86 |
Jeong G. ; Kim Y. U. ; Krachkovskiy S. A. ; Lee C. K. Chem. Mater. 2010, 22 (19), 5570.
doi: 10.1021/cm101747w |
87 | http://www.sony.net/SonyInfo/News/Press/200502/05-006E/ (accessed on February 24 2021) |
88 |
Liu B. ; Abouimrane A. ; Ren Y. ; Balasubramanian M. ; Wang D. ; Fang Z. Z. ; Amine K. Chem. Mater. 2012, 24 (24), 4653.
doi: 10.1021/cm3017853 |
89 |
Liu B. ; Abouimrane A. ; Brown D. E. ; Zhang X. ; Ren Y. ; Fang Z. Z. ; Amine K. J. Mater. Chem. A 2013, 1 (13), 4376.
doi: 10.1039/c3ta00101f |
90 |
Cheng F. ; Wang G. ; Sun Z. ; Yu Y. ; Huang F. ; Gong C. ; Liu H. ; Zheng G. ; Qin C. ; Wen S. Ceram. Int. 2017, 43 (5), 4309.
doi: 10.1016/j.ceramint.2016.12.074 |
91 |
Poizot P. ; Laruelle S. ; Grugeon S. ; Dupont L. ; Tarascon J. M. Nature 2000, 407 (6803), 496.
doi: 10.1038/35035045 |
92 |
Fu R. ; Wu Y. ; Fan C. ; Long Z. ; Shao G. ; Liu Z. ChemSusChem 2019, 12 (14), 3377.
doi: 10.1002/cssc.201900541 |
93 |
Zhou M. ; Gordin M. L. ; Chen S. ; Xu T. ; Song J. ; Lv D. ; Wang D. Electrochem. Commun. 2013, 28, 79.
doi: 10.1016/j.elecom.2012.12.013 |
94 |
Sakuda A. ; Hayashi A. ; Tatsumisago M. J. Power Sources 2010, 195 (2), 599.
doi: 10.1016/j.jpowsour.2009.07.037 |
95 |
Kannan A. M. ; Rabenberg L. ; Manthiram A. Electrochem. Solid-State Lett. 2003, 6 (1), A16.
doi: 10.1149/1.1526782 |
96 |
Zheng J. M. ; Li J. ; Zhang Z. R. ; Guo X. J. ; Yang Y. Solid State Ionics 2008, 179 (27), 1794.
doi: 10.1016/j.ssi.2008.01.091 |
97 |
Jeong G. ; Kim J. H. ; Kim Y. U. ; Kim Y. J. J. Mater. Chem. 2012, 22 (16), 7999.
doi: 10.1039/c2jm15677f |
98 |
Zhou N. ; Wu Y. ; Zhou Q. ; Li Y. ; Liu S. ; Zhang H. ; Zhou Z. ; Xia M. Appl. Surf. Sci. 2019, 486, 292.
doi: 10.1016/j.apsusc.2019.05.025 |
99 |
Xu D. ; Chen W. ; Luo Y. ; Wei H. ; Yang C. ; Cai X. ; Fang Y. ; Yu X. Appl. Surf. Sci. 2019, 479, 980.
doi: 10.1016/j.apsusc.2019.02.156 |
100 |
Cai X. ; Liu W. ; Yang S. ; Zhang S. ; Gao Q. ; Yu X. ; Li J. ; Wang H. ; Fang Y. ACS Adv. Mater. Interfaces 2019, 6 (10), 1801800.
doi: 10.1002/admi.201801800 |
101 |
Zheng Z. ; Wu H. H. ; Chen H. ; Cheng Y. ; Zhang Q. ; Xie Q. ; Wang L. ; Zhang K. ; Wang M. S. ; Peng D. L., et al. Nanoscale 2018, 10 (47), 22203.
doi: 10.1039/C8NR07207H |
102 |
Zhang J. ; Zhang J. ; Bao T. ; Xie X. ; Xia B. J. Power Sources 2017, 348, 16.
doi: 10.1016/j.jpowsour.2017.02.076 |
103 |
Liu Y. ; Huang J. ; Zhang X. ; Wu J. ; Baker A. ; Zhang H. ; Chang S. ; Zhang X. J. Alloys Compd. 2018, 749, 236.
doi: 10.1016/j.jallcom.2018.03.229 |
104 |
Xia M. ; Li Y. R. ; Xiong X. ; Hu W. ; Tang Y. W. ; Zhou N. ; Zhou Z. ; Zhang H. B. J. Alloys Compd. 2019, 800, 116.
doi: 10.1016/j.jallcom.2019.05.365 |
105 |
Liu L. ; Li X. ; He G. ; Zhang G. ; Su G. ; Fang C. J. Alloys Compd. 2020, 836, 155407.
doi: 10.1016/j.jallcom.2020.155407 |
[1] | Hangyu Lu, Ruilin Hou, Shiyong Chu, Haoshen Zhou, Shaohua Guo. Progress on Modification Strategies of Layered Lithium-Rich Cathode Materials for High Energy Lithium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(7): 2211057-0. |
[2] | Ru Wang, Zhikang Liu, Chao Yan, Long Qie, Yunhui Huang. Interface Strengthening of Composite Current Collectors for High-Safety Lithium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2203043-0. |
[3] | Zhenfei Gao, Qingquan Song, Zhihua Xiao, Zhaolong Li, Tao Li, Jiajun Luo, Shanshan Wang, Wanli Zhou, Lanying Li, Junrong Yu, Jin Zhang. Submicron-Sized, High Crystalline Graphene-Reinforced Meta-Aramid Fibers with Enhanced Tensile Strength [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2307046-. |
[4] | Yue Yang, Jiawei Zhu, Pengyan Wang, Haimi Liu, Weihao Zeng, Lei Chen, Zhixiang Chen, Shichun Mu. NH2-MIL-125 (Ti) Derived Flower-Like Fine TiO2 Nanoparticles Implanted in N-doped Porous Carbon as an Anode with High Activity and Long Cycle Life for Lithium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2106002-. |
[5] | Ying Mo, Kuikui Xiao, Jianfang Wu, Hui Liu, Aiping Hu, Peng Gao, Jilei Liu. Lithium-Ion Battery Separator: Functional Modification and Characterization [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2107030-. |
[6] | Xuewei Liu, Ying Niu, Ruixiong Cao, Xiaohong Chen, Hongyan Shang, Huaihe Song. Is there a Demand of Conducting Agent of Acetylene Black for Graphene-Wrapped Natural Spherical Graphite as Anode Material for Lithium-Ion Batteries? [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2012062-. |
[7] | Yaokun Ye, Zongxiang Hu, Jiahua Liu, Weicheng Lin, Taowen Chen, Jiaxin Zheng, Feng Pan. Research Progress of Theoretical Studies on Polarons in Cathode Materials of Lithium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2021, 37(11): 2011003-. |
[8] | Huifang An, Li Jiang, Feng Li, Ping Wu, Xiaoshu Zhu, Shaohua Wei, Yiming Zhou. Hydrogel-Derived Three-Dimensional Porous Si-CNT@G Nanocomposite with High-Performance Lithium Storage [J]. Acta Physico-Chimica Sinica, 2020, 36(7): 1905034-. |
[9] | Chao Li, Ming Shen, Bingwen Hu. Solid-State NMR and EPR Methods for Metal Ion Battery Research [J]. Acta Physico-Chimica Sinica, 2020, 36(4): 1902019-. |
[10] | Kun Liu, Yao Liu, Haifeng Zhu, Xiaoli Dong, Yonggang Wang, Congxiao Wang, Yongyao Xia. NaTiSi2O6/C Composite as a Novel Anode Material for Lithium-Ion Batteries [J]. Acta Physico-Chimica Sinica, 2020, 36(11): 1912030-. |
[11] | Lei. HE,Jun-Min. XU,Yong-Jian. WANG,Chang-Jin. ZHANG. LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1605-1613. |
[12] | Ai-Hua TIAN,Wei WEI,Peng QU,Qiu-Ping XIA,Qi SHEN. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance [J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1621-1627. |
[13] | You-Hao LIAO,Wei-Shan LI. Research Progresses on Gel Polymer Separators for Lithium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1533-1547. |
[14] | Guang-Kai JU,Zhan-Liang TAO,Jun CHEN. Controllable Preparation and Electrochemical Performance of Self-assembled Microspheres of α-MnO2 Nanotubes [J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1421-1428. |
[15] | Yong-Ping GAN,Pei-Pei LIN,Hui HUANG,Yang XIA,Chu LIANG,Jun ZHANG,Yi-Shun WANG,Jian-Feng HAN,Cai-Hong ZHOU,Wen-Kui ZHANG. The Effects of Surfactants on Al2O3-Modified Li-rich Layered Metal Oxide Cathode Materials for Advanced Li-ion Batteries [J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1189-1196. |
|