Acta Phys. -Chim. Sin. ›› 2022, Vol. 38 ›› Issue (6): 2106002.doi: 10.3866/PKU.WHXB202106002
Special Issue: Surface and Interface Engineering for Electrochemical Energy Storage and Conversion
• ARTICLE • Previous Articles Next Articles
Yue Yang1,2, Jiawei Zhu1, Pengyan Wang1, Haimi Liu1, Weihao Zeng1, Lei Chen1, Zhixiang Chen1, Shichun Mu1,2,*()
Received:
2021-06-02
Accepted:
2021-08-09
Published:
2021-08-19
Contact:
Shichun Mu
E-mail:msc@whut.edu.cn
About author:
Shichun Mu, Email: msc@whut.edu.cnSupported by:
Yue Yang, Jiawei Zhu, Pengyan Wang, Haimi Liu, Weihao Zeng, Lei Chen, Zhixiang Chen, Shichun Mu. NH2-MIL-125 (Ti) Derived Flower-Like Fine TiO2 Nanoparticles Implanted in N-doped Porous Carbon as an Anode with High Activity and Long Cycle Life for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin. 2022, 38(6), 2106002. doi: 10.3866/PKU.WHXB202106002
1 |
Tarascon J. M. ; Armand M Nature 2001, 414 (6861), 359.
doi: 10.1038/35104644 |
2 |
Whittingham M. S Chem. Rev 2004, 104 (10), 4271.
doi: 10.1021/cr020731c |
3 |
Goodenough J. B. ; Park K. S J. Am. Chem. Soc. 2013, 135 (4), 1167.
doi: 10.1021/ja3091438 |
4 |
Zhang J. ; He T. ; Zhang W. ; Sheng J. Z. ; Amiinu I. S. ; Kou Z. K. ; Yang J. L. ; Mai L. Q. ; Mu S. C Adv. Energy Mater. 2017, 7 (5), 1602092.
doi: 10.1002/aenm.201602092 |
5 |
Yang J. ; Kang X. ; He D. ; Zheng A. ; Pan M. ; Mu S J. Mater. Chem. A 2015, 3 (32), 16567.
doi: 10.1039/c5ta03874j |
6 |
Liu H. ; Zeng W. ; Yang Y. ; Chen J. ; Mu S J. Mater. Chem. A 2020, 9 (2), 1260.
doi: 10.1039/d0ta10179f |
7 |
Yoo E. ; Kim J. ; Hosono E. ; Zhou H. ; Kudo T. ; Honma I Nano Lett. 2008, 8 (8), 2277.
doi: 10.1021/nl800957b |
8 |
Reddy M. V. ; Rao G. V. S. ; Chowdari B. V. R Chem. Rev. 2013, 113 (7), 5364.
doi: 10.1021/cr3001884 |
9 |
Zhu G. N. ; Wang Y. G. ; Xia Y. Y Energy Environ. Sci. 2012, 5 (5), 6652.
doi: 10.1039/c2ee03410g |
10 |
Kim K. T. ; Ali G. ; Chung K. Y. ; Yoon C. S. ; Yashiro H. ; Sun Y. K. ; Lu J. ; Amine K. ; Myung S. T Nano Lett. 2014, 14 (2), 416.
doi: 10.1021/nl402747x |
11 |
Wang Z. Y. ; Lou X. W Adv. Mater. 2012, 24 (30), 4124.
doi: 10.1002/adma.201104546 |
12 |
Wu L. M. ; Buchholz D. ; Bresser D. ; Chagas L.G. ; Passerini S J. Power Sources 2014, 251, 379.
doi: 10.1016/j.jpowsour.2013.11.083 |
13 |
Wang D. H. ; Choi D. W. ; Li J. ; Yang Z. G. ; Nie Z. M. ; Kou R. ; Hu D. H. ; Wang C. M. ; Saraf L. V. ; Zhang J. G. ; et al Acs Nano 2009, 3 (4), 907.
doi: 10.1021/nn900150y |
14 |
Wang Z. Y. ; Zhou L. ; Lou X. W Adv. Mater. 2012, 24 (14), 1903.
doi: 10.1002/adma.201200469 |
15 |
Chen J. S. ; Tan Y. L. ; Li C. M. ; Cheah Y. L. ; Luan D. Y. ; Madhavi S. ; Boey F. Y. C. ; Archer L. A. ; Lou X. W J. Am. Chem. Soc. 2010, 132 (17), 6124.
doi: 10.1021/ja100102y |
16 |
Chen D. H. ; Huang F. Z. ; Cheng Y. B. ; Caruso R. A Adv. Mater. 2009, 21 (21), 2206.
doi: 10.1002/adma.200802603 |
17 |
Hu Y. S. ; Kienle L. ; Guo Y. G. ; Maier J Adv. Mater. 2006, 18 (11), 1421.
doi: 10.1002/adma.200502723 |
18 |
Armstrong A. R. ; Armstrong G. ; Canales J. ; Garcia R. ; Bruce P. G Adv. Mater. 2005, 17 (7), 862.
doi: 10.1002/adma.200400795 |
19 |
Qiu B. C. ; Xing M. Y. ; Zhang J. L J. Am. Chem. Soc. 2014, 136 (16), 5852.
doi: 10.1021/ja500873u |
20 |
Liu L. C. ; Corma A Chem. Rev. 2018, 118 (10), 4981.
doi: 10.1021/acs.chemrev.7b00776 |
21 |
Chen D. ; Lu R. ; Pu Z. ; Zhu J. ; Li H. W. ; Liu F. ; Hu S. ; Luo X. ; Wu J. ; Zhao Y. ; et al Appl. Catal. B-Environ. 2020, 279 (15), 119396.
doi: 10.1016/j.apcatb.2020.119396 |
22 |
Yuan S. ; Pu Z. H. ; Zhou H. ; Yu J. ; Amiinu I. S. ; Zhu J. W. ; Liang Q. R. ; Yang J. L. ; He D. P. ; Hu Z. Y. ; et al Nano Energy 2019, 59, 472.
doi: 10.1016/j.nanoen.2019.02.062 |
23 |
Li H. ; Wang K. C. ; Sun Y. J. ; Lollar C. T. ; Li J. L. ; Zhou H. C Mater. Today 2018, 21 (2), 108.
doi: 10.1016/j.mattod.2017.07.006 |
24 |
Dhakshinamoorthy A. ; Asiri A. M. ; Garcia H Angew. Chem. Int. Ed. 2016, 55 (18), 5414.
doi: 10.1002/anie.201505581 |
25 |
Xu X. ; Cao R. ; Jeong S. ; Cho J Nano Lett. 2012, 12 (9), 4988.
doi: 10.1021/nl302618s |
26 |
Zou F. ; Hu X. L. ; Li Z. ; Qie L. ; Hu C. C. ; Zeng R. ; Jiang Y. ; Huang Y. H Adv. Mater. 2014, 26 (38), 6622.
doi: 10.1002/adma.201402322 |
27 |
Zhang G. H. ; Hou S. C. ; Zhang H. ; Zeng W. ; Yan F. L. ; Li C. C. ; Duan H. G Adv. Mater. 2015, 27 (14), 2400.
doi: 10.1002/adma.201405222 |
28 |
Wu R. B. ; Qian X. K. ; Yu F. ; Liu H. ; Zhou K. ; Wei J. ; Huang Y. Z J. Mater. Chem. A 2013, 1 (37), 11126.
doi: 10.1039/c3ta12621h |
29 |
Wang Q. F. ; Zou R. Q. ; Xia W. ; Ma J. ; Qiu B. ; Mahmood A. ; Zhao R. ; Yang Y. Y. C. ; Xia D. G. ; Xu Q Small 2015, 11 (21), 2511.
doi: 10.1002/smll.201403579 |
30 |
Liu J. ; Wu C. ; Xiao D. D. ; Kopold P. ; Gu L. ; van Aken P. A. ; Maier J. ; Yu Y Small 2016, 12 (17), 2354.
doi: 10.1002/smll.201503821 |
31 |
Cao X. H. ; Zheng B. ; Rui X. H. ; Shi W. H. ; Yan Q. Y. ; Zhang H Angew. Chem. Int. Ed. 2014, 53 (5), 1404.
doi: 10.1002/anie.201308013 |
32 |
Li C. ; Chen T. Q. ; Xu W. J. ; Lou X. B. ; Pan L. K. ; Chen Q. ; Hu B. W J. Mater. Chem. A 2015, 3 (10), 5585.
doi: 10.1039/c4ta06914e |
33 |
Li Z. Q. ; Yin L. W Energy Storage Mater. 2018, 14, 367.
doi: 10.1016/j.ensm.2018.06.002 |
34 |
Li H. ; Liang M. ; Sun W. W. ; Wang Y Adv. Funct. Mater. 2016, 26 (7), 1098.
doi: 10.1002/adfm.201504312 |
35 |
Fan S. ; Huang S. Z. ; Chen Y. X. ; Shang Y. ; Wang Y. ; Kong D. Z. ; Pam M. E. ; Shi L. L. ; Lim Y. W. ; Shi Y. M. ; et al Energy Storage Mater. 2019, 23, 17.
doi: 10.1016/j.ensm.2019.05.043 |
36 |
Ji D. ; Zhou H. ; Tong Y. L. ; Wang J. P. ; Zhu M. Z. ; Chen T. H. ; Yuan A. H Chem. Eng. J. 2017, 313, 1623.
doi: 10.1016/j.cej.2016.11.063 |
37 |
Li C. ; Liu L. ; Kang J. ; Xiao Y. ; Feng Y. ; Cao F. F. ; Zhang H Energy Storage Mater. 2020, 31, 115.
doi: 10.1016/j.ensm.2020.06.005 |
38 |
Banerjee A. ; Aravindan V. ; Bhatnagar S. ; Mhamane D. ; Madhavi S. ; Ogale S. Nano Energy 2013, 2 (5), 890.
doi: 10.1016/j.nanoen.2013.03.006 |
39 |
Wu F. ; Srot V. ; Chen S. ; Zhang M. ; van Aken P. A. ; Wang Y. ; Maier J. ; Yu Y ACS Nano 2021, 15 (1), 1509.
doi: 10.1021/acsnano.0c08918 |
40 |
Zhou X. F. ; Chen L. L. ; Zhang W. H. ; Wang J. W. ; Liu Z. J. ; Zeng S. F. ; Xu R. ; Wu Y. ; Ye S.F. ; Feng Y. Z. ; et al Nano Lett. 2019, 19 (8), 4965.
doi: 10.1021/acs.nanolett.9b01127 |
41 |
Wu Y. ; Liu Z. ; Zhong X. W. ; Cheng X. L. ; Fan Z. J. ; Yu Y Small 2018, 14 (12), 1703472.
doi: 10.1002/smll.201703472 |
42 |
Wang P. ; Zhang G. ; Cheng J. ; You Y. ; Li Y. K. ; Ding C. ; Gu J. J. ; Zheng X. S. ; Zhang C. F. ; Cao F. F ACS Appl. Mater. Interfaces 2017, 9, 7.
doi: 10.1021/acsami.6b15982 |
43 | Xu B. Y. ; Zhang Y. ; Pi Y. C. ; Shao Q. ; Huang X. Q Acta Phys. -Chim. Sin. 2021, 37 (7), 2009074. |
徐冰妍; 张应; 皮业灿; 邵琪; 黄小青; 物理化学学报, 2021, 37 (7), 2009074.
doi: 10.3866/PKU.WHXB202009074 |
|
44 |
Fang Y. J. ; Zhang J. X. ; Zhong F. P. ; Feng X. M. ; Chen W. H. ; Ai X. P. ; Yang H. X. ; Cao Y. L CCS Chem 2020, 2, 2428.
doi: 10.31635/ccschem.020.202000520 |
45 | Gao Z. Q. ; Wang C. Y. ; Li J. J. ; Zhu Y. T. ; Zhang Z. C. ; Hu W. P Acta Phys. -Chim. Sin. 2021, 37 (7), 2010025. |
高增强; 王聪勇; 李俊俊; 朱亚廷; 张志成; 胡文平; 物理化学学报, 2021, 37 (7), 2010025.
doi: 10.3866/PKU.WHXB202010025 |
|
46 |
Yang Y. ; Zhu J. W. ; Wang P. Y. ; Zeng W. H. ; Liu H. M. ; Zhang C. T. ; Chen Z. X. ; Liu D. ; Xiao J. S. ; Mu S. C J. Alloy. Compd. 2021, 876 (25), 160135.
doi: 10.1016/j.jallcom.2021.160135 |
47 |
Fan M. ; Yang Z. ; Lin Z. ; Xiong X Nanoscale 2021, 13, 2368.
doi: 10.1039/d0nr07659g |
48 |
Wang F. ; He X. X. ; Sun L. M. ; Chen J. Q. ; Wang X. J. ; Xu J. H. ; Han X. G J. Mater. Chem. A 2018, 6 (5), 2091.
doi: 10.1039/c7ta09166d |
49 |
Xing Y. L. ; Wang S. B. ; Fang B. Z. ; Song G. ; Wilkinson D. P. ; Zhang S. C J. Power Sources 2018, 385, 10.
doi: 10.1016/j.jpowsour.2018.02.077 |
50 |
Ren M. M. ; Xu H. ; Li F. ; Liu W. L. ; Gao C. L. ; Su L. W. ; Li G. D. ; Hei J. P J. Power Sources 2017, 353, 237.
doi: 10.1016/j.jpowsour.2017.04.015 |
51 |
Xu H. ; Wang W. ; Qin L. ; Yu G. ; Ren L. ; Jiang Y. ; Chen J ACS Appl. Mater. Interfaces 2020, 12 (39), 43813.
doi: 10.1021/acsami.0c13142 |
[1] | Qiuying Xia, Yu Cai, Wei Liu, Jinshi Wang, Chuanzhi Wu, Feng Zan, Jing Xu, Hui Xia. Direct Recycling of All-Solid-State Thin Film Lithium Batteries with Lithium Anode Failure [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2212051-0. |
[2] | Shenglong Tang, Chunlei Wang, Xiangjun Pu, Xiangkui Gu, Zhongxue Chen. Unravelling Zn2+ Intercalation Mechanism in TiX2 (X = S, Se) Anodes for Aqueous Zn-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2212037-0. |
[3] | Hangyu Lu, Ruilin Hou, Shiyong Chu, Haoshen Zhou, Shaohua Guo. Progress on Modification Strategies of Layered Lithium-Rich Cathode Materials for High Energy Lithium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(7): 2211057-0. |
[4] | Ru Wang, Zhikang Liu, Chao Yan, Long Qie, Yunhui Huang. Interface Strengthening of Composite Current Collectors for High-Safety Lithium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2203043-0. |
[5] | Hao-Tian Teng, Wen-Tao Wang, Xiao-Feng Han, Xiang Hao, Ruizhi Yang, Jing-Hua Tian. Recent Development and Perspectives of Flexible Zinc-Air Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2107017-0. |
[6] | Yingying Zhu, Yong Wang, Miao Xu, Yongmin Wu, Weiping Tang, Di Zhu, Yu-Shi He, Zi-Feng Ma, Linsen Li. Tracking Pressure Changes and Morphology Evolution of Lithium Metal Anodes [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2110040-0. |
[7] | Ying Mo, Kuikui Xiao, Jianfang Wu, Hui Liu, Aiping Hu, Peng Gao, Jilei Liu. Lithium-Ion Battery Separator: Functional Modification and Characterization [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2107030-. |
[8] | Siying Zhu, Huiyang Li, Zhongli Hu, Qiaobao Zhang, Jinbao Zhao, Li Zhang. Research Progresses on Structural Optimization and Interfacial Modification of Silicon Monoxide Anode for Lithium-Ion Battery [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2103052-. |
[9] | Wei Zhang, Haichen Liang, Kerun Zhu, Yong Tian, Yao Liu, Jiayin Chen, Wei Li. Three-Dimensional Macro-/Mesoporous C-TiC Nanocomposites for Dendrite-Free Lithium Metal Anode [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2105024-. |
[10] | Yuecheng Xiong, Fei Yu, Jie Ma. Research Progress in Chlorine Ion Removal Electrodes for Desalination by Capacitive Deionization [J]. Acta Phys. -Chim. Sin., 2022, 38(5): 2006037-. |
[11] | Xuewei Liu, Ying Niu, Ruixiong Cao, Xiaohong Chen, Hongyan Shang, Huaihe Song. Is there a Demand of Conducting Agent of Acetylene Black for Graphene-Wrapped Natural Spherical Graphite as Anode Material for Lithium-Ion Batteries? [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2012062-. |
[12] | Ying Li, Xueqi Lai, Jinpeng Qu, Qinzhi Lai, Tingfeng Yi. Research Progress in Regulation Strategies of High-Performance Antimony-Based Anode Materials for Sodium Ion Batteries [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2204049-. |
[13] | Yun Fan, Guodan Chen, Xiuan Xi, Jun Li, Qi Wang, Jingli Luo, Xianzhu Fu. Co-Generation of Ethylene and Electricity from Ethane by CeO2/RP-PSCFM@CoFe Anode Materials in Proton Conductive Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009107-. |
[14] | Zibo Zhang, Wei Deng, Xufeng Zhou, Zhaoping Liu. LiC6 Heterogeneous Interface for Stable Lithium Plating and Stripping [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2008092-. |
[15] | Zhida Wang, Yuancheng Feng, Songtao Lu, Rui Wang, Wei Qin, Xiaohong Wu. Improvement in Performance of Three-Dimensional SnLi/Carbon Paper Anode in Lean Electrolyte with In Situ Fluorinated Protection Layer [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2008082-. |
|