Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (11): 2011003.doi: 10.3866/PKU.WHXB202011003
Special Issue: Energy and Materials Chemistry
• REVIEW • Previous Articles Next Articles
Yaokun Ye, Zongxiang Hu, Jiahua Liu, Weicheng Lin, Taowen Chen, Jiaxin Zheng(), Feng Pan(
)
Received:
2020-11-02
Accepted:
2020-12-10
Published:
2020-12-16
Contact:
Jiaxin Zheng,Feng Pan
E-mail:zhengjx@pkusz.edu.cn;panfeng@pkusz.edu.cn
About author:
Email: panfeng@pkusz.edu.cn (F.P.)Supported by:
Yaokun Ye, Zongxiang Hu, Jiahua Liu, Weicheng Lin, Taowen Chen, Jiaxin Zheng, Feng Pan. Research Progress of Theoretical Studies on Polarons in Cathode Materials of Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin. 2021, 37(11), 2011003. doi: 10.3866/PKU.WHXB202011003
Table 1
A comparison of general properties of large polaron and small polaron 26."
Large polaron | Small polaron |
Distortion > > Lattice parameter | Distortion ≈ Lattice parameter |
Shallow state (~10 meV below CBM) | In-gap state (Between VBM and CBM) |
Carrier mobility > > 1 (cm2·V−1·s−1) Decreasing mobility with increasing temperature | Carrier mobility < < 1 (cm2·V−1·s−1) Increasing mobility with increasing temperature |
1 |
Goodenough J. B. ; Kim Y. Chem. Mater. 2010, 22, 587.
doi: 10.1021/cm901452z |
2 |
Whittingham M. S. Chem. Rev. 2014, 114, 11414.
doi: 10.1021/cr5003003 |
3 | Huang K. L. ; Wang Z. X. ; Liu S. Q. Principle and Key Technology of Lithium Ion Battery Beijing: Chemical Industry Press, 2007, pp. 60- 288. |
黄可龙; 王兆翔; 刘素琴. 锂离子电池原理与关键技术, 北京: 化学工业出版社, 2007, 60- 288. | |
4 |
Goodenough J. B. Acc. Chem. Res. 2011, 46, 1053.
doi: 10.1021/ar2002705 |
5 |
Cheng X. B. ; Zhang R. ; Zhao C. Z. ; Zhang Q. Chem. Rev. 2017, 117, 10403.
doi: 10.1021/acs.chemrev.7b00115 |
6 |
Reimers J. N. ; Dahn J. R. J. Electrochem. Soc. 2019, 139, 2091.
doi: 10.1149/1.2221184 |
7 |
Saravanan K. ; Reddy M. V. ; Balaya P. ; Gong H. ; Chowdari B. V. R. ; Vittal J. J. J. Mater. Chem. 2009, 19, 605.
doi: 10.1039/b817242k |
8 |
Doherty C. M. ; Caruso R. A. ; Smarsly B. M. ; Adelhelm P. ; Drummond C. J. Chem. Mater. 2009, 21, 5300.
doi: 10.1021/cm9024167 |
9 | Hu J. T. ; Zheng J. X. ; Pan F. Acta Phys. -Chim. Sin. 2019, 35, 361. |
胡江涛; 郑家新; 潘锋. 物理化学学报, 2019, 35, 361.
doi: 10.3866/PKU.WHXB201805102 |
|
10 |
Xiao W. ; Xin C. ; Li S. ; Jie J. ; Gu Y. ; Zheng J. ; Pan F. J. Mater. Chem. A 2018, 6, 9893.
doi: 10.1039/c8ta01428k |
11 |
David W. I. F. ; Thackeray M. M. ; Picciotto L. A. ; Goodenough J. B. J. Solid State Chem. 1986, 67, 316.
doi: 10.1016/0022-4596(87)90369-0 |
12 |
Mishra S. K. ; Ceder G. Phys. Rev. B 1999, 59, 6120.
doi: 10.1103/PhysRevB.59.6120 |
13 |
Maxisch T. ; Zhou F. ; Ceder G. Phys. Rev. B 2006, 73, 104301.
doi: 10.1103/PhysRevB.73.104301 |
14 |
Kong F. ; Longo R. C. ; Park M. -S. ; Yoon J. ; Yeon D. -H. ; Park J. -H. ; Wang W. -H. ; Kc S. ; Doo S. -G. ; Cho K. J. Mater. Chem. A 2015, 3, 8489.
doi: 10.1039/c5ta01445j |
15 |
Zheng J. ; Teng G. ; Yang J. ; Xu M. ; Yao Q. ; Zhuo Z. ; Yang W. ; Liu Q. ; Pan F. J. Phys. Chem. Lett. 2018, 9, 6262.
doi: 10.1021/acs.jpclett.8b02725 |
16 |
Gu Y. ; Weng M. ; Teng G. ; Zeng H. ; Jie J. ; Xiao W. ; Zheng J. ; Pan F. Phys. Chem. Chem. Phys. 2019, 21, 4578.
doi: 10.1039/c8cp06083e |
17 |
Hoang K. J. Mater. Chem. 2014, 2, 18271.
doi: 10.1039/c4ta04116j |
18 |
Wang Z. ; Brock C. ; Matt A. ; Bevan K. H. Phys. Rev. B 2017, 96, 125150.
doi: 10.1103/PhysRevB.96.125150 |
19 |
Feng T. ; Li L. ; Shi Q. ; Dong S. ; Li B. ; Li K. ; Li G. Phys. Chem. Chem. Phys. 2020, 22, 2054.
doi: 10.1039/c9cp05768d |
20 |
Meng Y. S. ; Arroyo-de Dompablo M. E. Energy Environ. Sci. 2009, 2, 589.
doi: 10.1039/b901825e |
21 |
Meng Y. S. ; Elena Arroyo-de Dompablo M. Acc. Chem. Res. 2013, 46, 1171.
doi: 10.1021/ar2002396 |
22 |
Stoneham A. M. ; Gavartin J. ; Shluger A. L. ; Kimmel A. V. ; Ramo D. M. ; Rønnow H. M. ; Aeppli G. ; Renner C. J. Phys. Condens. Matter 2007, 19, 255208.
doi: 10.1088/0953-8984/19/25/255208 |
23 | Li Z. Z. Solid Theory 2nd ed. Beijing: Higher Education Press, 2017, pp. 343- 367. |
李正中. 固体理论, 第2版 北京: 高等教育出版社, 2017, 343- 367. | |
24 |
Geneste G. ; Amadon B. ; Torrent M. ; Dezanneau G. Phys. Rev. B 2017, 96, 134123.
doi: 10.1103/PhysRevB.96.134123 |
25 |
Deskins N. A. ; Dupuis M. Phys. Rev. B. 2007, 75, 195212.
doi: 10.1103/PhysRevB.75.195212 |
26 | Reticcioli, M.; Diebold, U.; Kresse, G.; Franchini, C. Small Polarons in Transition Metal Oxides. Springer: Cham, 2020; pp. 1035–1073. |
27 |
Lany S. ; Zunger A. Phys. Rev. B 2009, 80, 085202.
doi: 10.1103/PhysRevB.80.085202 |
28 |
Zheng J. ; Ye Y. ; Pan F. Natl. Sci. Rev. 2020, 7, 242.
doi: 10.1093/nsr/nwz178 |
29 |
Li S. ; Liu J. ; Liu B. Chem. Mater. 2017, 29, 2202.
doi: 10.1021/acs.chemmater.6b05022 |
30 |
Wang X. ; Xiao R. ; Li H. ; Chen L. J. Materiomics 2017, 3, 178.
doi: 10.1016/j.jmat.2017.02.002 |
31 |
Zuo C. ; Hu Z. ; Qi R. ; Liu J. ; Li Z. ; Lu J. ; Dong C. ; Yang K. ; Huang W. ; Chen C. ; et al Adv. Energy Mater. 2020, 10, 2000363.
doi: 10.1002/aenm.202000363 |
32 |
Setvin M. ; Franchini C. ; Hao X. ; Schmid M. ; Janotti A. ; Kaltak M. ; Van de Walle C. G. ; Kresse G. ; Diebold U. Phys. Rev. Lett. 2014, 113, 086402.
doi: 10.1103/PhysRevLett.113.086402 |
33 |
Sezen H. ; Buchholz M. ; Nefedov A. ; Natzeck C. ; Heissler S. ; Di Valentin C. ; Woll C. Sci. Rep. 2014, 4, 3808.
doi: 10.1038/srep03808 |
34 |
Yang S. ; Brant A. T. ; Giles N. C. ; Halliburton L. E. Phys. Rev. B 2013, 87, 125201.
doi: 10.1103/PhysRevB.87.125201 |
35 |
Guo C. ; Meng X. ; Fu H. ; Wang Q. ; Wang H. ; Tian Y. ; Peng J. ; Ma R. ; Weng Y. ; Meng S. ; et al Phys. Rev. Lett. 2020, 124, 206801.
doi: 10.1103/PhysRevLett.124.206801 |
36 |
Marianetti C. A. ; Kotliar G. ; Ceder G. Nat. Mater. 2004, 3, 627.
doi: 10.1038/nmat1178 |
37 |
Daheron L. ; Dedryvere R. ; Martinez H. ; Menetrier M. ; Denage C. ; Delmas C. ; Gonbeau D. Chem. Mater. 2008, 20, 583.
doi: 10.1021/cm702546s |
38 |
Park M. ; Zhang X. ; Chung M. ; Less G. B. ; Sastry A. M. J. Power Sources 2010, 195, 7904.
doi: 10.1016/j.jpowsour.2010.06.060 |
39 |
Padhi A. K. ; Nanjundaswamy K. S. ; Goodenough J. B. J. Electrochem. Soc. 1997, 144, 1188.
doi: 10.1149/1.1837571 |
40 |
Li H. ; Wang Z. ; Chen L. ; Huang X. Adv. Mater. 2009, 21, 4593.
doi: 10.1002/adma.200901710 |
41 |
Ouyang C. ; Shi S. ; Wang Z. ; Huang X. ; Chen L. Phys. Rev. B 2004, 69, 104303.
doi: 10.1103/PhysRevB.69.104303 |
42 |
Hoang K. ; Johannes M. Chem. Mater. 2011, 23, 3003.
doi: 10.1021/cm200725j |
43 |
Chung S. Y. ; Bloking J. T. ; Chiang Y. M. Nat. Mater. 2002, 1, 123.
doi: 10.1038/nmat732 |
44 |
Thackeray M. M. ; David W. I. F. ; Bruce P. G. ; Goodenough J. B. Mater. Res. Bull. 1983, 18, 461.
doi: 10.1016/0025-5408(83)90138-1 |
45 |
Iguchi E. ; Nakamura N. ; Aoki A. Philos. Mag. B 2009, 78, 65.
doi: 10.1080/13642819808206727 |
46 |
Marzec J. ; Swierczek K. ; Przewoznik J. ; Molenda J. ; Simon D. R. ; Kelder E. M. ; Schoonman J. Solid State Ion. 2002, 146, 225.
doi: 10.1016/s0167-2738(01)01022-0 |
47 |
Massarotti V. ; Capsoni D. ; Bini M. ; Chiodelli G. ; Azzoni C. B. ; Mozzati M. C. ; Paleari A. J. Solid State Chem. 1999, 147, 509.
doi: 10.1006/jssc.1999.8406 |
48 |
Ouyang C. ; Du Y. ; Shi S. ; Lei M. Phys. Lett. A 2009, 373, 2796.
doi: 10.1016/j.physleta.2009.05.071 |
49 |
Mandal S. ; Rojas R. M. ; Amarilla J. M. ; Calle P. ; Kosova N. V. ; Anufrienko V. F. ; Rojo J. M. Chem. Mater. 2002, 14, 1598.
doi: 10.1021/cm011219v |
50 |
Lazarraga M. G. ; Pascual L. ; Gadjov H. ; Kovacheva D. ; Petrov K. ; Amarilla J. M. ; Rojas R. M. ; Martin-Luengo M. A. ; Rojo J. M. J. Mater. Chem. 2004, 14, 1640.
doi: 10.1039/b314157h |
51 |
Pham H. ; Wang L. Phys. Chem. Chem. Phys. 2015, 17, 541.
doi: 10.1039/C4CP04209C |
52 |
Ong S. P. ; Mo Y. ; Ceder G. Phys. Rev. B 2012, 85, 081105.
doi: 10.1103/PhysRevB.85.081105 |
53 |
Liu Z. ; Balbuena P. B. ; Mukherjee P. P. J. Phys. Chem. C 2017, 121, 17169.
doi: 10.1021/acs.jpcc.7b06869 |
54 |
Liu T. ; Cui M. ; Dupuis M. J. Phys. Chem. C 2020, 124, 23038.
doi: 10.1021/acs.jpcc.0c07408 |
55 |
Johannes M. D. ; Hoang K. ; Allen J. L. ; Gaskell K. Phys. Rev. B 2012, 85, 115106.
doi: 10.1103/PhysRevB.85.115106 |
56 |
Zhou F. ; Marianetti C. A. ; Cococcioni M. ; Morgan D. ; Ceder G. Phys. Rev. B 2004, 69, 201101.
doi: 10.1103/PhysRevB.69.201101 |
57 |
Jain A. ; Hautier G. ; Ong S. P. ; Moore C. J. ; Fischer C. C. ; Persson K. A. ; Ceder G. Phys. Rev. B 2011, 84, 045115.
doi: 10.1103/PhysRevB.84.045115 |
58 |
Heyd J. ; Scuseria G. E. ; Ernzerhof M. J. Chem. Phys. 2003, 118, 8207.
doi: 10.1063/1.1564060 |
59 |
Weng M. ; Li S. ; Zheng J. ; Pan F. ; Wang L. W. J. Phys. Chem. Lett. 2018, 9, 281.
doi: 10.1021/acs.jpclett.7b03041 |
60 |
Sun J. ; Ruzsinszky A. ; Perdew J. P. Phys. Rev. Lett. 2015, 115, 036402.
doi: 10.1103/PhysRevLett.115.036402 |
[1] | Hangyu Lu, Ruilin Hou, Shiyong Chu, Haoshen Zhou, Shaohua Guo. Progress on Modification Strategies of Layered Lithium-Rich Cathode Materials for High Energy Lithium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(7): 2211057-0. |
[2] | Ru Wang, Zhikang Liu, Chao Yan, Long Qie, Yunhui Huang. Interface Strengthening of Composite Current Collectors for High-Safety Lithium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2203043-0. |
[3] | Yae Qi, Yongyao Xia. Electrolyte Regulation Strategies for Improving the Electrochemical Performance of Aqueous Zinc-Ion Battery Cathodes [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2205045-0. |
[4] | Siying Zhu, Huiyang Li, Zhongli Hu, Qiaobao Zhang, Jinbao Zhao, Li Zhang. Research Progresses on Structural Optimization and Interfacial Modification of Silicon Monoxide Anode for Lithium-Ion Battery [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2103052-. |
[5] | Yue Yang, Jiawei Zhu, Pengyan Wang, Haimi Liu, Weihao Zeng, Lei Chen, Zhixiang Chen, Shichun Mu. NH2-MIL-125 (Ti) Derived Flower-Like Fine TiO2 Nanoparticles Implanted in N-doped Porous Carbon as an Anode with High Activity and Long Cycle Life for Lithium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2106002-. |
[6] | Ying Mo, Kuikui Xiao, Jianfang Wu, Hui Liu, Aiping Hu, Peng Gao, Jilei Liu. Lithium-Ion Battery Separator: Functional Modification and Characterization [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2107030-. |
[7] | Xuewei Liu, Ying Niu, Ruixiong Cao, Xiaohong Chen, Hongyan Shang, Huaihe Song. Is there a Demand of Conducting Agent of Acetylene Black for Graphene-Wrapped Natural Spherical Graphite as Anode Material for Lithium-Ion Batteries? [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2012062-. |
[8] | Ting Cheng, Luzhao Sun, Zhirong Liu, Feng Ding, Zhongfan Liu. Roles of Transition Metal Substrates in Graphene Chemical Vapor Deposition Growth [J]. Acta Phys. -Chim. Sin., 2022, 38(1): 2012006-. |
[9] | Sidong Zhang, Yuan Liu, Muyao Qi, Anmin Cao. Localized Surface Doping for Improved Stability of High Energy Cathode Materials [J]. Acta Phys. -Chim. Sin., 2021, 37(11): 2011007-. |
[10] | Huifang An, Li Jiang, Feng Li, Ping Wu, Xiaoshu Zhu, Shaohua Wei, Yiming Zhou. Hydrogel-Derived Three-Dimensional Porous Si-CNT@G Nanocomposite with High-Performance Lithium Storage [J]. Acta Physico-Chimica Sinica, 2020, 36(7): 1905034-. |
[11] | Chao Li, Ming Shen, Bingwen Hu. Solid-State NMR and EPR Methods for Metal Ion Battery Research [J]. Acta Physico-Chimica Sinica, 2020, 36(4): 1902019-. |
[12] | Kun Liu, Yao Liu, Haifeng Zhu, Xiaoli Dong, Yonggang Wang, Congxiao Wang, Yongyao Xia. NaTiSi2O6/C Composite as a Novel Anode Material for Lithium-Ion Batteries [J]. Acta Physico-Chimica Sinica, 2020, 36(11): 1912030-. |
[13] | Zhenjie CHENG, Yayun MAO, Qingyu DONG, Feng JIN, Yanbin SHEN, Liwei CHEN. Fluoroethylene Carbonate as an Additive for Sodium-Ion Batteries: Effect on the Sodium Cathode [J]. Acta Physico-Chimica Sinica, 2019, 35(8): 868-875. |
[14] | Jiangtao HU, Jiaxin ZHENG, Feng PAN. Research Progress into the Structure and Performance of LiFePO4 Cathode Materials [J]. Acta Physico-Chimica Sinica, 2019, 35(4): 361-370. |
[15] | Fuzhen BI,Xiao ZHENG,Chiyung YAM. First-Principles Study of Mixed Cation Methylammonium-Formamidinium Hybrid Perovskite [J]. Acta Phys. -Chim. Sin., 2019, 35(1): 69-75. |
|