Acta Phys. -Chim. Sin. ›› 2023, Vol. 39 ›› Issue (2): 2205045.doi: 10.3866/PKU.WHXB202205045
• REVIEW • Previous Articles Next Articles
Received:
2022-05-18
Accepted:
2022-06-14
Published:
2022-06-17
Contact:
Yongyao Xia
E-mail:yyxial@fudan.edu.cn
About author:
Yongyao Xia, Email: yyxial@fudan.edu.cn; Tel.: +86-21-31249130Supported by:
Yae Qi, Yongyao Xia. Electrolyte Regulation Strategies for Improving the Electrochemical Performance of Aqueous Zinc-Ion Battery Cathodes[J]. Acta Phys. -Chim. Sin. 2023, 39(2), 2205045. doi: 10.3866/PKU.WHXB202205045
Fig 2
(a) CV curve of Zn electrode in1 mol∙L?1 ZnCl2 electrolyte 46. The potential profiles of CuHCF (solid line) and Zn foil (dashed line) at 1C in (b) 20 mmol∙L?1 Zn(ClO4)2 and (c) 20 mmol∙L?1 Zn(NO3)2 47. (d) CV curves of Zn electrodes in the different electrolytes (1 mol∙L?1 ZnSO4 and Zn(CF3SO3)2) 46. (e) Cycle life of the V3O7∙H2O cathodes at 0.5 A∙g?1 with different electrolytes 50. (f) Rate capability of Zn//V2O5 in the two electrolytes. (g) ESP mapping of the different anions (SO42?, NO3?, Cl?, I?, CF3SO3?) 51."
Table 1
The characteristic of different zinc salt in aqueous electrolyte."
Electrolyte | Ionic conductivity/(mS?cm?1) | pH | Cost | Feature and function | Ref. |
2 mol?L?1 ZnSO4 | 56.9 | 4.9 | Low | High stability, the most common electrolyte | |
2 mol?L?1 Zn(CF3SO3)2 | 58.6 | 3.6 | High | Large volume, high capacity and fast reaction kinetics | |
4 mol?L?1 Zn(TFSI)2 | 90 | 3.5 | High | Weak solvation,can suppress side reaction and improve coulombic efficiency | |
2 mol?kg?1 ZnCl2 | 84.2 | 4.2 | High | Low decomposition voltage, high solubility, common WiSE | |
2 mol?kg?1 Zn(CH3COO)2 | 10.9 | 5.7 | Low | pH near neutral, friendly to Zn electrode | |
2 mol?kg?1 Zn(NO3)2 | 115.6 | Low | NO3? processes strong oxidation | ||
1 mol?kg?1 Zn(ClO4)2 | 48 | 4.9 | Low | Chaotropic salt, excellent electrochemical performance at low-temperature |
Fig 3
The cycle performance of Zn//MnO2 battery. (a) 2 mol∙L?1 ZnSO4 electrolyte (The inset is the first 30 cycles). (b) The mole ratio of Zn2+/Mn2+ in the electrolyte and the corresponding capacity loss during cycling. (c) 2 mol∙L?1 ZnSO4 and 0.1 mol∙L?1 MnSO4/2 mol∙L?1 ZnSO4) 58. (d) The discharge profiles of Zn//MnO2 cell in the electrolytes with Mn2+ free or added at 60 mA∙g?1 61. (e) Cycling life of MnO2/C with different concentrations of MnSO4 additive at 0.3 A∙g?1 62."
Fig 4
(a) Cycle performance of NaV3O8∙1.5H2O (NVO) electrode in 1 mol∙L?1 ZnSO4 (The insets are optical photographs of NVO electrodes in the two electrolytes for different periods). (b) Cycle performance of NVO electrode in the two electrolytes 48. (c) Schematic of Mg2+ addictive functional mechanism and (d) cycle performance of Zn//MgxV2O5∙nH2O battery with different electrolytes 67. (e) SEM images of Zn anodes after cycle with or without Na2SO4. (f) Schematic illustration of Na2SO4 additive for inhibiting dissolution of cathode and growth of Zn dendrites 48."
Fig 5
(a) Schematic of charge storage mechanism of Zn//MnO2 battery in 1 mol∙L?1 ZnSO4/1 mol∙L?1 MnSO4 electrolyte. Discharge step at different cycles (b) in 1 mol∙L?1 ZnSO4/1 mol∙L?1 MnSO4 electrolyte and (c) with various concentration of H2SO4 68. (d) Schematic illustration of storage mechanism of Zn//MnO2. (e) Discharge profiles of Zn//MnO2 cells before and after add Mn(H2PO4)2 70. (f) The second charge/discharge curves of ZIBs (1 mol∙L?1 Zn(CF3SO3)2 and 1 mol∙L?1 Zn(CF3SO3)2/1 mol∙L?1 Al(CF3SO3)3) 71. (g) Charge/discharge curves of Co3O4 cathode (1 mol∙L?1 KOH, 2 mol∙L?1 ZnSO4 + 0.2 mol∙L?1 CoSO4) 73."
Fig 6
(a) Illustration of the development of the Li+ solvation sheath in diluted and WiSE 79. (b) The representative Zn2+ solvation structures in the three concentrations of 1 mol∙kg?1 Zn(TFSI)2 with LiTFSI (5 mol∙kg?1, 10 mol∙kg?1 and 20 mol∙kg?1) 80. (c) Schematic of the structure evolution of water and electrolyte, and the design of low-temperature solution 81."
Fig 7
(a) Comparison of CV curves of the Fc/C anode and Zn3[Fe(CN)6]2 cathode in ZnCl2 electrolytes with different concentration 93. (b) The 15th cycle charge/discharge profiles of Zn//V2O5 cells at 0.1 A∙g?1 with different electrolytes 90. (c) CV curves of Zn electrodes and (d) first charge/discharge profiles of Zn//VOPO4 batteries in the two electrolytes 95."
Fig 9
(a) Illustration of the dynamic structural evolution for V2O5 cathode in dilute electrolyte or WiSE. (b) The total irreversible capacity loss during the cycle at 50 mA∙g?1 in different electrolyte (1 mol∙L?1 ZnSO4 or 30 mol∙kg?1 ZnCl2) 101. Ex-situ XRD patterns of the Ca0.20V2O5∙0.80H2O cathode in (c) 1 mol∙L?1 and (d) 30 mol∙kg?1 ZnCl2 electrolyte of the first discharge/charge and 2nd discharge profiles 97."
Table 2
The affection of solute regulation on electrochemical performance of cathode materials."
Type | Electrolytes | Cathodes | Potential window | Capacity/(mAh?g?1) | Cycle performance | Ref. |
Zinc salt | 3 mol?L?1 ZnSO4 | V5+-rich V6O13 | 0.2–1.4 | 520 at 0.5 A?g?1 | 85% (1000/2 A?g?1) | |
3 mol?L?1 Zn(CF3SO3)2 | (NH4)xV2O5?nH2O | 0.3–1.6 | 372 at 0.1 A?g?1 | 80% (2000/5 A?g?1) | ||
4 mol?L?1 Zn(TFSI)2 | P(4VC86-stat-SS14) | 0.25–2.0 | 324 at 1C | 83% (48000/30C) | ||
1 mol?kg?1 Zn(ClO4)2 | VO2 | 0.2–1.4 | 240 at 0.5 A?g?1 | 500/2 A?g?1 | ||
1 mol?kg?1 ZnCl2 | Ca0.2V2O5?0.80H2O | 0.25–2.0 | 296 at 0.05 A?g?1 | 8.4% (150/0.05 A?g?1) | ||
0.5 mol?L?1 Zn(CH3COO)2 | Na3V2(PO4)3 | 0.8–1.7 | 97 at 0.05 A?g?1 | 74% (100/0.05 A?g?1) | ||
Additives | 1 mol?L?1 ZnSO4/1 mol?L?1 Na2SO4 | NaV3O8?1.5H2O | 0.3–1.25 | 380 at 0.1 A?g?1 | 82% (1000/4 A?g?1) | |
0.5 mol?L?1 ZnSO4/0.25 mol?L?1 K2SO4 | ZnHCF | 0.8–2.1 | 69.1 at 2C | 74.1% (500/20C) | ||
3 mol?L?1 ZnSO4/0.5 mol?L?1 Na2SO4 | Na0.56V2O5 | 0.4–1.5 | 317 at 0.1 A?g?1 | 87% (1000/1 A?g?1) | ||
1 mol?L?1 ZnSO4/1 mol?L?1 MgSO4 | MgxV2O5?nH2O | 0.2–1.4 | 374 at 0.1 A?g?1 | 90.3% (200/1 A?g?1) | ||
2 mol?L?1 ZnSO4/0.2 mol?L?1 CoSO4 | Co(III)rich-Co3O4 | 0.8–2.2 | 205 at 0.5 A?g?1 | 92% (5000/4 A?g?1) | ||
1 mol?L?1 Zn(CF3SO3)2/ 0.025 mol?L?1 Zn(H2PO4)2 | V2O5 | 0.2–1.6 | 203 at 0.1 A?g?1 | 88.1% (1000/0.8 A?g?1) | ||
1 mol?L?1 ZnSO4/0.1 mol?L?1 MnSO4 | ZnMn2O4 | 0.6–1.9 | 172 at 0.1 A?g?1 | 79% (1000/2 A?g?1) | ||
1 mol?L?1 ZnSO4/1 mol?L?1 MnSO4/ 0.1 mol?L?1 H2SO4 | MnO2 | 0.8–2.2 | 570 | 92% (1800/0.03 A?cm?2) | ||
1 mol?L?1 ZnSO4/1 mol?L?1 urea (1 : 3) | Na0.1MnO2?0.5H2O | 1.0–1.8 | 270 at 0.1C | 100 mAh?g?1 (5000/10C) | ||
2 mol?L?1 ZnSO4/0.1 mol?L?1 MnSO4/ 0.5 mol?L?1 Na2SO4 | Na0.55Mn2O4?1.5H2O | 0.8–1.9 | 367.5 at 0.65C | 70% (10000/6.5C) | ||
WiSE | 21 mol?kg?1 LiTFSI/1 mol?kg?1 Zn(CF3SO3)2 | LiMn2O4 | 0.8–2.1 | 66 at 0.2C | 80% (4000/4C) | |
13 mol?kg?1 ZnCl2/0.8 mol?kg?1 H3PO4 | VOPO4?xH2O | 170 at 0.1 A?g?1 | 90 mAh?g?1 (500/2 A?g?1) | |||
1 mol?L?1 HCl/20 mol?kg?1 ZnCl2 | K2NiFe(CN)6 | 0.2–1.6 | 62.6 at 0.5 A?g?1 | 76.1% (400/1 A?g?1) | ||
30 mol?kg?1 ZnCl2 | Ca0.2V2O5?0.80H2O | 0.25–2.0 | 496 at 0.05 A?g?1 | 51.1% (100/0.2C) | ||
30 mol?kg?1 ZnCl2 | MoO3 | 0.2–1.8 | 349 at 0.1 A?g?1 | 73% (100/0.1 A?g?1) | ||
15 mol?kg?1 NaClO4/1 mol?kg?1 Zn(CF3SO3)2 | C-NaVPO4F | 0.6–1.8 | 87.4 at 0.1 A?g?1 | 89.3% (4000/1 A?g?1) | ||
2 mol?L?1 Zn(OTf)2/8 mol?kg?1 LiOTf | VO2 | 0.3–1.3 | 260 at 0.1 A?g?1 | 89.7% (10000/10 A?g?1) | ||
67% (w) Malt /2 mol?kg?1 ZnSO4 | NH4V4O10 | 0.4–1.4 | 400 at 0.05 A?g?1 | 100% (4000 /5A?g?1) |
Fig 11
The schematic of the function with different electrolytes on the V2O5 cathodes and Zn anodes during electrochemical reactions: (a, c) Zn(CF3SO3)2-H2O, (b, d) Zn(CF3SO3)2-TEP-H2O (adapted from Ref. 38). (e) Cycle performance and (f) charge/discharge profiles of Zn//Li3V2(PO4)3 cell at the 200th cycle with different electrolytes at 2C 122. The SEM images of H11Al2V6O23.2 electrode at fully charged state in different electrolytes: (g) H2O-Zn(ClO4)2, (h) PC/ H2O-Zn(ClO4)2) 32."
Table 3
The roles in ZIBs and physical parameters of common organic solvent."
Organic agent | (H2O : organic) | Roles | Freezing point (℃) | Boiling point (℃) | Flash point (℃) | Dielectric constant | Viscosity (mPa?s) | Ref. |
ACN | 3 : 1 | Shielding free water, building stable phase interface and suppressing HER and Zn dendrites. | ?45.7 | 81.6 | 5.6 | 37.5 | 0.441 | |
DMSO | 4.3 : 1 | Reconstruct Zn2+-sheath, forming SEI in situ, inhibiting decomposition of H2O. | 19 | 189 | 89 | 47.2 | 1.996 | |
Diethyl ether | 98 : 2 | Acting electrostatic shield layer, leading to uniform deposition. | ?116.2 | 34.5 | ?45 | 4.2 | 0.233 | |
Methyl alcohol | 1 : 1 | Reducing water activity, weaken Zn2+ solvation structure. | ?98 | 64.8 | 11 | 33 | 0.545 | |
Ethyl alcohol | 5 : 95 | Suppressing dissolution of cathode, Zn dendrite and HER. | ?114 | 78.3 | 21 | 25.7 | 1.074 | |
Ethylene glycol | 3 : 2 | Hydrogen bonding of EG-H2O, excellent performance at low temperature | ?12.9 | 197.3 | 111 | 37 | 16.1 | |
Glycerol | 1 : 1 | Glycerol has strong binding interaction with Zn metal, take part in Zn2+ solvation sheath structure. | 18.2 | 290 | 177 | 19.9 | 800 | |
DME | 3 : 2 | Forming organic/inorganic hybrid ZnF2-ZnS-rich interphase in situ. | ?58 | 85 | ?2 | 5.5 | ||
TEP | 1 : 1 | Occupying Zn2+-solvation sheath, SEI in situ. | ?56.5 | 215 | 117 | 13.2 | 1.46 | |
PC | 4 : 1 | Have a good stability at high voltage | ?48.8 | 242 | 132 | 65 | 1.2 |
1 |
Choi J. W. ; Aurbach D. Nat. Rev. Mater. 2016, 1 (4), 16013.
doi: 10.1038/natrevmats.2016.13 |
2 |
Dunn B. ; Kamath H. ; Tarascon J. M. Science 2011, 334 (6058), 928.
doi: 10.1126/science.1212741 |
3 |
Luo J. Y. ; Xia Y. Y. Adv. Funct. Mater. 2007, 17 (18), 3877.
doi: 10.1002/adfm.200700638 |
4 |
Yan L. ; Qi Y. E. ; Dong X. L. ; Wang Y. G. ; Xia Y. Y. eScience 2021, 1, 212.
doi: 10.1016/j.esci.2021.12.002 |
5 | Li H. ; Liu S. Y. ; Yuan T. C. ; Wang B. ; Sheng P. ; Xu L. ; Zhao G. Y. ; Bai H. T. ; Chen X. ; Chen Z. X. ; Cao Y. L. Acta Phys. -Chim. Sin. 2020, 36 (5), 1905027. |
李慧; 刘双宇; 袁天赐; 王博; 盛鹏; 徐丽; 赵广耀; 白会涛; 陈新; 陈重学; 曹余良. 物理化学学报, 2020, 36 (5), 1905027.
doi: 10.3866/PKU.WHXB201905027 |
|
6 |
Jiang L. W. ; Lu Y. X. ; Zhao C. L. ; Liu L. L. ; Zhang J. N. ; Zhang Q. Q. ; Shen X. ; Zhao J. M. ; Yu X. Q. ; Li H. ; et al Nano Energy 2019, 4 (6), 495.
doi: 10.1038/s41560-019-0388-0 |
7 |
Lang J. H. ; Jiang C. L. ; Fang Y. ; Shi L. ; Miao S. J. ; Tang Y. B. Adv. Energy Mater. 2019, 9 (29), 1901099.
doi: 10.1002/aenm.201901099 |
8 |
Xu Y. N. ; Deng X. W. ; Li Q. D. ; Zhang G. B. ; Xiong F. Y. ; Tan S. S. ; Wei Q. L. ; Lu J. ; Li J. T. ; An Q. Y. ; et al Chem 2019, 5 (5), 1194.
doi: 10.1016/j.chempr.2019.02.014 |
9 |
Chen H. D. ; Huang J. J. ; Tian S. H. ; Liu L. ; Qin T. F. ; Song L. ; Liu Y. P. ; Zhang Y. N. ; Wu X. G. ; Lei S. L. ; et al Adv. Sci. 2021, 8 (14), 2004924.
doi: 10.1002/advs.202004924 |
10 |
Kim D. J. ; Yoo D. J. ; Otley M. T. ; Prokofjevs A. ; Pezzato C. ; Owczarek M. ; Lee S. J. ; Choi J. W. ; Stoddart J. F. Nat. Energy 2019, 4 (1), 51.
doi: 10.1038/s41560-018-0291-0 |
11 |
Zhao Z. Q. ; Fan X. Y. ; Ding J. ; Hu W. B. ; Zhong C. ; Lu J. ACS Energy Lett. 2019, 4 (9), 2259.
doi: 10.1021/acsenergylett.9b01541 |
12 |
Hao J. N. ; Li X. L. ; Zeng X. H. ; Li D. ; Mao J. F. ; Guo Z. P. Energy Environ. Sci. 2020, 13 (11), 3917.
doi: 10.1039/d0ee02162h |
13 |
Song J. H. ; Xu K. ; Liu N. ; Reed D. ; Li X. L. Mater. Today 2021, 45, 191.
doi: 10.1016/j.mattod.2020.12.003 |
14 |
Wang D. H. ; Li H. F. ; Liu Z. X. ; Tang Z. J. ; Liang G. J. ; Mo F. N. ; Yang Q. ; Ma L. T. ; Zhi C. Y. Small 2018, 14 (51), 1803978.
doi: 10.1002/smll.201803978 |
15 |
McLarnon F. R. ; Cairns E. J. J. Electrochem. Soc. 1991, 138 (2), 645.
doi: 10.1149/1.2085653 |
16 |
Yan J. ; Wang J. ; Liu H. ; Bakenov Z. ; Gosselink D. ; Chen P. J. Power Sources 2012, 216, 222.
doi: 10.1016/j.jpowsour.2012.05.063 |
17 |
Yesibolati N. ; Umirov N. ; Koishybay A. ; Omarova M. ; Kurmanbayeva I. ; Zhang Y. G. ; Zhao Y. ; Bakenov Z. Electrochim. Acta 2015, 152, 505.
doi: 10.1016/j.electacta.2014.11.168 |
18 |
Shoji T. ; Hishinuma M. ; Yamamoto T. J. Appl. Electrochem. 1988, 18 (4), 521.
doi: 10.1007/BF01022245 |
19 |
Xu C. J. ; Li B. H. ; Du H. D. ; Kang F. Y. Angew. Chem. Int. Ed. 2012, 51 (4), 933.
doi: 10.1002/anie.201106307 |
20 |
Wang D. H. ; Wang L. F. ; Liang G. J. ; Li H. F. ; Liu Z. X. ; Tang Z. J. ; Liang J. B. ; Zhi C. Y. ACS Nano 2019, 13 (9), 10643.
doi: 10.1021/acsnano.9b04916 |
21 |
Alfaruqi M. H. ; Mathew V. ; Gim J. ; Kim S. J. ; Song J. J. ; Baboo J. P. ; Choi S. H. ; Kim J. Chem. Mater. 2015, 27 (10), 3609.
doi: 10.1021/cm504717p |
22 |
Huang J. H. ; Wang Z. ; Hou M. Y. ; Dong X. L. ; Liu Y. ; Wang Y. G. ; Xia Y. Y. Nat. Commun. 2018, 9, 2906.
doi: 10.1038/s41467-018-04949-4 |
23 |
Huang M. ; Meng J. S. ; Huang Z. H. ; Wang X. P. ; Mai L. Q. J. Mater. Chem. A. 2020, 8 (14), 6631.
doi: 10.1039/c9ta13497b |
24 |
Ma L. T. ; Chen S. M. ; Long C. B. ; Li X. L. ; Zhao Y. W. ; Liu Z. X. ; Huang Z. D. ; Dong B. B. ; Zapien J. A. ; Zhi C. Y. Adv. Energy Mater. 2019, 9 (45), 1902446.
doi: 10.1002/aenm.201902446 |
25 |
Wang Z. Q. ; Zhou M. ; Qin L. P. ; Chen M. H. ; Chen Z. X. ; Guo S. ; Wang L. B. ; Fang G. Z. ; Liang S. Q. eScience 2022, 2, 209.
doi: 10.1016/j.esci.2022.03.002 |
26 |
He P. G. ; Liu J. H. ; Zhao X. D. ; Ding Z. P. ; Gao P. ; Fan L. Z. J. Mater. Chem. A. 2020, 8 (20), 10370.
doi: 10.1039/d0ta03165h |
27 | Heng Y. L. ; Gu Z. Y. ; Guo J. Z. ; Wu X. L. Acta Phys. -Chim. Sin. 2021, 37 (3), 2005013. |
衡永丽; 谷振一; 郭晋芝; 吴兴隆. 物理化学学报, 2021, 37 (3), 2005013.
doi: 10.3866/PKU.WHXB202005013 |
|
28 |
Sun T. J. ; Zheng S. B. ; Du H. H. ; Tao Z. L. Nano-Micro Lett. 2021, 13 (1), 204.
doi: 10.1007/s40820-021-00733-0 |
29 |
Guo S. ; Qin L. P. ; Zhang T. S. ; Zhou M. ; Zhou J. ; Fang G. Z. ; Liang S. Q. Energy Storage Mater. 2021, 34, 545.
doi: 10.1016/j.ensm.2020.10.019 |
30 |
Poyraz A. S. ; Laughlin J. ; Zec Z. Electrochim. Acta 2019, 305, 423.
doi: 10.1016/j.electacta.2019.03.093 |
31 |
Wang L. L. ; Huang K. W. ; Chen J. T. ; Zheng J. R. Sci. Adv. 2019, 5 (10), eaax4279.
doi: 10.1126/sciadv.aax4279 |
32 |
Yang G. Z. ; Li Q. ; Ma K. X. ; Hong C. ; Wang C. X. J. Mater. Chem. A. 2020, 8 (16), 8084.
doi: 10.1039/d0ta00615g |
33 |
Yang K. ; Hu Y. Y. ; Li L. Y. ; Cui L. L. ; He L. ; Wang S. J. ; Zhao J. W. ; Song Y. F. Nano Energy 2020, 74, 104851.
doi: 10.1016/j.nanoen.2020.104851 |
34 |
Qi Y. E. ; Huang J. H. ; Yan L. ; Cao Y. J. ; Xu J. ; Bin D. ; Liao M. C. ; Xia Y. Y. Chem. Eng. J. 2022, 442, 136349.
doi: 10.1016/j.cej.2022.136349 |
35 | Huang J. T. ; Zhuo J. ; Liang S. Q. Acta Phys. -Chim. Sin. 2021, 37 (3), 2005020. |
黄江涛; 周江; 梁叔全. 物理化学学报, 2021, 37 (3), 2005020.
doi: 10.3866/PKU.WHXB202005020 |
|
36 |
Zhang N. ; Chen X. Y. ; Yu M. ; Niu Z. Q. ; Cheng F. Y. ; Chen J. Chem. Soc. Rev. 2020, 49 (13), 4203.
doi: 10.1039/c9cs00349e |
37 |
Zhang T. S. ; Tang Y. ; Guo S. ; Cao X. X. ; Pan A. Q. ; Fang G. Z. ; Zhou J. ; Liang S. Q. Energy Environ. Sci. 2020, 13 (12), 4625.
doi: 10.1039/d0ee02620d |
38 |
Liu S. L. ; Mao J. F. ; Pang W. K. ; Vongsvivut J. ; Zeng X. H. ; Thomsen L. ; Wang Y. Y. ; Liu J. W. ; Li D. ; Guo Z. P. Adv. Funct. Mater. 2021, 31 (38), 2104281.
doi: 10.1002/adfm.202104281 |
39 |
Sun Y. M. ; Ji X. L. Chem. Rev. 2021, 121 (11), 6654.
doi: 10.1021/acs.chemrev.1c00191 |
40 |
Chen S. G. ; Zhang M. F. ; Zou P. M. ; Sun B. Y. ; Tao S. W. Energy Environ. Sci. 2022, 15 (5), 1805.
doi: 10.1039/d2ee00004k |
41 |
Manalastas W. ; Kumar S. ; Verma W. ; Zhang L. P. ; Yuan D. ; Srinivasan M. ChemSusChem 2019, 12 (2), 379.
doi: 10.1002/cssc.201801523 |
42 |
Wang D. H. ; Li Q. ; Zhao Y. W. ; Hong H. ; Li H. F. ; Huang Z. D. ; Liang G. J. ; Yang Q. ; Zhi C. Y. Adv. Energy Mater. 2022, 12 (9), 2102707.
doi: 10.1002/aenm.202102707 |
43 |
Li M. ; Li Z. L. ; Wang X. P. ; Meng J. S. ; Liu X. ; Wu B. K. ; Han C. H. ; Mai L. Q. Energy Environ. Sci. 2021, 14 (7), 3796.
doi: 10.1039/d1ee00030f |
44 |
Liu C. X. ; Xie X. S. ; Lu B. G. ; Zhou J. ; Liang S. Q. ACS Energy Lett. 2021, 6 (3), 1015.
doi: 10.1021/acsenergylett.0c02684 |
45 |
Wang C. ; Pei Z. X. ; Meng Q. Q. ; Zhang C. M. ; Sui X. ; Yuan Z. W. ; Wang S. J. ; Chen Y. Angew. Chem. Int. Ed. 2021, 60 (2), 990.
doi: 10.1002/anie.202012030 |
46 |
Zhang N. ; Cheng F. Y. ; Liu Y. C. ; Zhao Q. ; Lei K. X. ; Chen C. C. ; Liu X. S. ; Chen J. J. Am. Chem. Soc. 2016, 138 (39), 12894.
doi: 10.1021/jacs.6b05958 |
47 |
Kasiri G. ; Trócoli R. ; Hashemi A. B. ; La Mantia F. Electrochim. Acta 2016, 222, 74.
doi: 10.1016/j.electacta.2016.10.155 |
48 |
Wan F. ; Zhang L. L. ; Dai X. ; Wang X. Y. ; Niu Z. Q. ; Chen J. Nat. Commun. 2018, 9, 1656.
doi: 10.1038/s41467-018-04060-8 |
49 |
Xu L. ; Zhang Y. ; Zheng J. ; Jiang H. ; Hu T. ; Meng C. Mater. Today Energy 2020, 18, 100509.
doi: 10.1016/j.mtener.2020.100509 |
50 |
Wang P. J. ; Shi X. D. ; Wu Z. X. ; Guo S. ; Zhou J. ; Liang S. Q. Carbon Energy 2020, 2 (2), 294.
doi: 10.1002/cey2.39 |
51 |
Zhang Q. ; Xia K. X. ; Ma Y. L. ; Lu Y. ; Li L. ; Liang J. ; Chou S. L. ; Chen J. ACS Energy Lett. 2021, 6 (8), 2704.
doi: 10.1021/acsenergylett.1c01054 |
52 |
Yang G. S. ; Huang J. L. ; Wan X. H. ; Liu B. B. ; Zhu Y. C. ; Wang J. W. ; Fontaine O. ; Luo S. Q. ; Hiralal P. ; Guo Y. Z. ; et al EcoMat 2022, 4 (2), e12165.
doi: 10.1002/eom2.12165 |
53 |
Sun Y. L. ; Ma H. Y. ; Zhang X. Q. ; Liu B. ; Liu L. Y. ; Zhang X. ; Feng J. Z. ; Zhang Q. N. ; Ding Y. X. ; Yang B. J. ; et al Adv. Funct. Mater. 2021, 31 (28), 2101277.
doi: 10.1002/adfm.202101277 |
54 |
Wang L. J. ; Zhang Y. ; Hu H.L. ; Shi H. Y. ; Song Y. ; Guo D. ; Liu X. X. ; Sun X. Q. ACS Appl. Mater. Interfaces 2019, 11 (45), 42000.
doi: 10.1021/acsami.9b10905 |
55 |
Patil N. ; de la Cruz C. ; Ciurduc D. ; Mavrandonakis A. ; Palma J. ; Marcilla R. Adv. Energy Mater. 2021, 11 (26), 2100939.
doi: 10.1002/aenm.202100939 |
56 |
Wu D. ; Housel L. M. ; Kim S. J. ; Sadique N. ; Quilty C. D. ; Wu L. J. ; Tappero R. ; Nicholas S. L. ; Ehrlich S. ; Zhu Y. M. ; et al Energy Environ. Sci. 2020, 13 (11), 4322.
doi: 10.1039/D0EE02168G |
57 |
Lee B. ; Yoon C. S. ; Lee H. R. ; Chung K. Y. ; Cho B. W. ; Oh S. H. Sci. Rep. 2014, 4, 6066.
doi: 10.1038/srep06066 |
58 |
Pan H. L. ; Shao Y. Y. ; Yan P. F. ; Cheng Y. W. ; Han K. S. ; Nie Z. M. ; Wang C. M. ; Yang J. H. ; Li X. L. ; Bhattacharya P. ; et al Nat. Energy 2016, 1, 16039.
doi: 10.1038/NENERGY.2016.39 |
59 |
Zhang N. ; Cheng F. Y. ; Liu J. X. ; Wang L. B. ; Long X. H. ; Liu X. S. ; Li F. J. ; Chen J. Nat. Commun. 2017, 8, 405.
doi: 10.1038/s41467-017-00467-x |
60 |
Zhang T. S. ; Tang Y. ; Fang G. Z. ; Zhang C. Y. ; Zhang H. L. ; Guo X. ; Cao X. X. ; Zhou J. ; Pan A. Q. ; Liang S. Q. Adv. Funct. Mater. 2020, 30 (30), 2002711.
doi: 10.1002/adfm.202002711 |
61 |
Chamoun M. ; Brant W. R. ; Tai C. W. ; Karlsson G. ; Noréus D. Energy Storage Mater. 2018, 15, 351.
doi: 10.1016/j.ensm.2018.06.019 |
62 |
Li G. Z. ; Huang Z. X. ; Chen J. B. ; Yao F. ; Liu J. P. ; Li O. L. ; Sun S. H. ; Shi Z. C. J. Mater. Chem. A 2020, 8 (4), 1975.
doi: 10.1039/c9ta11985j |
63 |
Li J. W. ; McColl K. ; Lu X. K. ; Sathasivam S. ; Dong H. B. ; Kang L. Q. ; Li Z. N. ; Zhao S. Y. ; Kafizas A. G. ; Wang R. ; et al Adv. Energy Mater. 2020, 10 (15), 2000058.
doi: 10.1002/aenm.202000058 |
64 |
Liu Y. Y. ; Li Q. ; Ma K. X. ; Yang G. Z. ; Wang C. X. ACS Nano 2019, 13 (10), 12081.
doi: 10.1021/acsnano.9b06484 |
65 |
Ming F. W. ; Liang H. F. ; Lei Y. J. ; Kandambeth S. ; Eddaoudi M. ; Alshareef H. N. ACS Energy Lett. 2018, 3 (10), 2602.
doi: 10.1021/acsenergylett.8b0142 |
66 |
Gao P. ; Ru Q. ; Yan H. L. ; Cheng S. K. ; Liu Y. ; Hou X. H. ; Wei L. ; Ling F. C. C. ChemElectroChem 2020, 7 (1), 283.
doi: 10.1002/celc.201901851 |
67 |
Zhang Y. M. ; Li H. N. ; Huang S. Z. ; Fan S. ; Sun L. N. ; Tian B. B. ; Chen F. M. ; Wang Y. ; Shi Y. M. ; Yang H. Y. Nano-Micro Lett. 2020, 12 (1), 60.
doi: 10.1007/s40820-020-0385-7 |
68 |
Chao D. L. ; Zhou W. H. ; Ye C. ; Zhang Q. H. ; Chen Y. G. ; Gu L. ; Davey K. ; Qiao S. Z. Angew. Chem. Int. Ed. 2019, 58 (23), 7823.
doi: 10.1002/anie.201904174 |
69 |
Shi H. Y. ; Song Y. ; Qin Z. M. ; Li C. C. ; Guo Di. ; Liu X. X. ; Sun X. Q. Angew. Chem. Int. Ed. 2019, 58 (45), 16057.
doi: 10.1002/anie.201908853 |
70 |
Liu Y. Z. ; Qin Z. M. ; Yang X. P. ; Liu J. ; Liu X. X. ; Sun X. Q. ACS Energy Lett. 2022, 7, 1814.
doi: 10.1021/acsenergylett.2c00777 |
71 |
Li N. ; Li G. Q. ; Li C. J. ; Yang H. C. ; Qin G. W. ; Sun X. D. ; Li F. ; Cheng H. M. ACS Appl. Mater. Interfaces 2020, 12 (12), 13790.
doi: 10.1021/acsami.9b20531 |
72 |
Wu C. ; Gu S. C. ; Zhang Q. H. ; Bai Y. ; Li M. ; Yuan Y. F. ; Wang H. L. ; Liu X. Y. ; Yuan Y. X. ; Zhu N. ; et al Nat. Commun. 2019, 10, 73.
doi: 10.1038/s41467-018-07980-7 |
73 |
Ma L. T. ; Chen S. M. ; Li H. F. ; Ruan Z. H. ; Tang Z. J. ; Liu Z. X. ; Wang Z. F. ; Huang Y. ; Pei Z. X. ; Zapien J. A. ; et al Energy Environ. Sci. 2018, 11 (9), 2521.
doi: 10.1039/c8ee01415a |
74 |
Hou Z. G. ; Zhang X. Q. ; Li X. N. ; Zhu Y. C. ; Liang J. W. ; Qian Y. T. J. Mater. Chem. A 2017, 5 (2), 730.
doi: 10.1039/c6ta08736a |
75 |
Xu Y. T. ; Zhu J. J. ; Feng J. Z. ; Wang Y. ; Wu X. X. ; Ma P. J. ; Zhang X. ; Wang G. Z. ; Yan X. B. Energy Storage Mater. 2021, 38, 299.
doi: 10.1016/j.ensm.2021.03.019 |
76 |
Hou Z. G. ; Dong M. F. ; Xiong Y. L. ; Zhang X. Q. ; Ao H. S. ; Liu M. K. ; Zhu Y. C. ; Qian Y. T. Small 2020, 16 (26), 2001228.
doi: 10.1002/smll.202001228 |
77 |
Zeng X. H. ; Mao J. F. ; Hao J. N. ; Liu J. T. ; Liu S. L. ; Wang Z. J. ; Wang Y. Y. ; Zhang S. L. ; Zheng T. ; Liu J. W. ; et al Adv. Mater. 2021, 33 (11), 2007416.
doi: 10.1002/adma.202007416 |
78 |
Yamada Y. ; Furukawa K. ; Sodeyama K. ; Kikuchi K. ; Yaegashi M. ; Tateyama Y. ; Yamada A. J. Am. Chem. Soc. 2014, 136 (13), 5039.
doi: 10.1021/ja412807w |
79 |
Suo L. M. ; Borodin O. ; Gao T. ; Olguin M. ; Ho J. ; Fan X. L. ; Luo C. ; Wang C. S. ; Xu K. Science 2015, 350 (6263), 938.
doi: 10.1126/science.aab1595 |
80 |
Wang F. ; Borodin O. ; Gao T. ; Fan X.L. ; Sun W. ; Han F. D. ; Faraone A. ; Dura J. A. ; Xu K. ; Wang C. S. Nat. Mater. 2018, 17 (6), 543.
doi: 10.1038/s41563-018-0063-z |
81 |
Zhang Q. ; Ma Y. L. ; Lu Y. ; Li L. ; Wan F. ; Zhang K. ; Chen J. Nat. Commun. 2020, 11 (1), 4463.
doi: 10.1038/s41467-020-18284-0 |
82 |
Cai S. Y. ; Chu X. Y. ; Liu C. ; Lai H. W. ; Chen H. ; Jiang Y. Q. ; Guo F. ; Xu Z. K. ; Wang C. S. ; Gao C. Adv. Mater. 2021, 33 (13), 2007470.
doi: 10.1002/adma.202007470 |
83 |
Ejigu A. ; Fevre L. W. L ; Dryfe R. A.W. ACS Appl. Mater. Interfaces 2021, 13 (12), 14112.
doi: 10.1021/acsami.0c20622 |
84 |
Chen S. G. ; Lan R. ; Humphreys J. ; Tao S. W. Energy Storage Mater. 2020, 28, 205.
doi: 10.1016/j.ensm.2020.03.011 |
85 |
Liu S. C. ; He J. F. ; Liu D. S. ; Ye M. H. ; Zhang Y. F. ; Qin Y. L. ; Li C. C. Energy Storage Mater. 2022, 49, 93.
doi: 10.1016/j.ensm.2022.03.038 |
86 |
Li W. ; Wang K. L. ; Zhou M. ; Zhan H. C. ; Cheng S. J. ; Jiang K. ACS Appl. Mater. Interfaces 2018, 10 (26), 22059.
doi: 10.1021/acsami.8b04085 |
87 |
Suo L. M. ; Borodin O. ; Sun W. ; Fan X. L. ; Yang C. Y. ; Wang F. ; Gao T. ; Ma Z. H. ; Schroeder M. ; Cresce A. ; et al Angew. Chem. Int. Ed. 2016, 55 (25), 7136.
doi: 10.1002/anie.201602397 |
88 |
Gambou-Bosca A. ; Belanger D. J. Power Sources 2016, 326, 595.
doi: 10.1016/j.jpowsour.2016.04.088 |
89 |
Kühnel R. S ; Reber D. ; Remhof A. ; Figi R. ; Bleiner D. ; Battaglia C. Chem. Commun. 2016, 52 (68), 10435.
doi: 10.1039/c6cc03969c |
90 |
Hu P. ; Yan M. Y. ; Zhu T. ; Wang X. P. ; Wei X. J. ; Li J. T. ; Zhou L. ; Li Z. H. ; Chen L. N. ; Mai L. Q. ACS Appl. Mater. Interfaces 2017, 9 (49), 42717.
doi: 10.1021/acsami.7b13110 |
91 |
Yamada Y. ; Usui K. ; Sodeyama K. ; Ko S. ; Tateyama Y. ; Yamada A. Nat. Energy 2016, 1, 16129.
doi: 10.1038/NENERGY.2016.129 |
92 |
Yang C. Y. ; Suo L. M. ; Borodin O. ; Wang F. ; Sun W. ; Gao T. ; Fan X. L. ; Hou S. Y. ; Ma Z. H. ; Amine K. ; et al Proc. Natl. Acad. Sci. USA 2017, 114 (24), 6197.
doi: 10.1073/pnas.1703937114 |
93 |
Wu X. Y. ; Xu Y. K. ; Zhang C. ; Leonard D. P. ; Markir A. ; Lu J. ; Ji X. L. J. Am. Chem. Soc. 2019, 141 (15), 6338.
doi: 10.1021/jacs.9b00617 |
94 |
Zhao J. W. ; Li Y. Q. ; Peng X. ; Dong S. M. ; Ma J. ; Cui G. L. ; Chen L. Q. Electrochem. Commun. 2016, 69, 6.
doi: 10.1016/j.elecom.2016.05.014 |
95 |
Wan F. ; Zhang Y. ; Zhang L. L. ; Liu D. B. ; Wang C. D. ; Song L. ; Niu Z. Q. ; Chen J. Angew. Chem. Int. Ed. 2019, 58 (21), 7062.
doi: 10.1002/anie.201902679 |
96 |
Zhang L. Y. ; Chen L. ; Zhou X. F. ; Liu Z. P. Adv. Energy Mater. 2015, 5 (2), 1400930.
doi: 10.1002/aenm.201400930 |
97 |
Zhang L. ; Rodríguez-Pérez I. A. ; Jiang H. ; Zhang C. ; Leonard D. P. ; Guo Q. B. ; Wang W. F. ; Han S. M. ; Wang L. M. ; Ji X. L. Adv. Funct. Mater. 2019, 29 (30), 1902653.
doi: 10.1002/adfm.201902653 |
98 |
Bin D. ; Wang Y. R. ; Tamirat A. G. ; Zhu P. ; Yang B. B. ; Wang J. ; Huang J. H. ; Xia Y. Y. ACS Sustain. Chem. Eng. 2021, 9 (8), 3223.
doi: 10.1021/acssuschemeng.0c08651 |
99 |
Li L. P. ; Liu S. L. ; Liu W. C. ; Ba D. L. ; Liu W. L. ; Gui Q. Y. ; Chen Y. ; Hu Z. Q. ; Li Y. Y. ; Liu J. P. Nano-Micro Lett. 2021, 13 (1), 34.
doi: 10.1007/s40820-020-00554-7 |
100 |
Yang B. B. ; Qin T. ; Du Y. Y. ; Zhang Y. L. ; Wang J. ; Chen T. T. ; Ge M. ; Bin D. ; Ge C. W. ; Lu H. B. Chem. Commun. 2022, 58 (10), 1550.
doi: 10.1039/d1cc06325a |
101 |
Tang X. Y. ; Wang P. ; Bai M. ; Wang Z. Q. ; Wang H. L. ; Zhang M. ; Ma Y. Adv. Sci. 2021, 8 (23), 2102053.
doi: 10.1002/advs.202102053 |
102 |
Wang L. ; Yan S. ; Quilty C. D. ; Kuang J. ; Dunkin M. R. ; Ehrlich S. N. ; Ma L. ; Takeuchi K. J. ; Takeuchi E. S. ; Marschilok A. C. Adv. Mater. Interfaces 2021, 8 (9), 2002080.
doi: 10.1002/admi.202002080 |
103 |
Chen W. Y. ; Guo S. ; Qin L. P. ; Li L. Y. ; Cao X. X. ; Zhou J. ; Luo Z. G. ; Fang G. Z. ; Liang S. Q. Adv. Funct. Mater. 2022, 32 (20), 2112609.
doi: 10.1002/adfm.202112609 |
104 |
Liu X. ; Luo Y. ; Ma H. ; Zhang S. J. ; Che P. H. ; Zhang M. Y. ; Gao J. ; Xu J. Angew. Chem. Int. Ed. 2021, 60 (48), 18103.
doi: 10.1002/anie.202113265 |
105 |
Chang N. N. ; Li T. Y. ; Li R. ; Wang S. N. ; Yin Y. B. ; Zhang H. M. ; Li X. F. Energy Environ. Sci. 2020, 13 (10), 3527.
doi: 10.1039/d0ee01538e |
106 |
Li G. L. ; Yang Z. ; Jiang Y. ; Jin C. H. ; Huang W. ; Ding X. L. ; Huang Y. H. Nano Energy 2016, 25, 211.
doi: 10.1016/j.nanoen.2016.04.051 |
107 |
Soundharrajan V. ; Sambandam B. ; Kim S. ; Islam S. ; Jo J. ; Kim S. ; Mathew V. ; Sun Y. K. ; Kim J. Energy Storage Mater. 2020, 28, 407.
doi: 10.1016/j.ensm.2019.12.021 |
108 |
Shi J. Q. ; Xia K. X. ; Liu L. J. ; Liu C. ; Zhang Q. ; Li L. ; Zhou X. Z. ; Liang J. ; Tao Z. L. Electrochim. Acta 2020, 358, 136937.
doi: 10.1016/j.electacta.2020.136937 |
109 |
Cao L. S. ; Li D. ; Hu E. Y. ; Xu J. J. ; Deng T. ; Ma L. ; Wang Y. ; Yang X. Q. ; Wang C. S. J. Am. Chem. Soc. 2020, 142 (51), 21404.
doi: 10.1021/jacs.0c09794 |
110 |
Nian Q. S. ; Wang J. Y. ; Liu S. ; Sun T. J. ; Zheng S. B. ; Zhang Y. ; Tao Z. L. ; Chen J. Angew. Chem. Int. Ed. 2019, 58 (47), 16994.
doi: 10.1002/anie.201908913 |
111 |
Xu W. N. ; Zhao K. N. ; Huo W. C. ; Wang Y. Z. ; Yao G. ; Gu X. ; Cheng H. W. ; Mai L. Q. ; Hu C. G. ; Wang X. D. Nano Energy 2019, 62, 275.
doi: 10.1016/j.nanoen.2019.05.042 |
112 |
Hao J. N. ; Yuan L. B. ; Ye C. ; Chao D. L. ; Davey K. ; Guo Z. P. ; Qiao S. Z. Angew. Chem. Int. Ed. 2021, 60 (13), 7366.
doi: 10.1002/anie.202016531 |
113 |
Huang Z. D. ; Wang T. R. ; Li X. L. ; Cui H. L. ; Liang G. J. ; Yang Q. ; Chen Z. ; Chen A. ; Guo Y. ; Fan J. ; et al Adv. Mater. 2022, 34 (4), 2106180.
doi: 10.1002/adma.202106180 |
114 |
Zhang Y. J. ; Zhu M. ; Wu K. ; Yu F. F. ; Wang G. Y. ; Xu G. ; Wu M. H. ; Liu H. K. ; Dou S. X. ; Wu C. J. Mater. Chem. A 2021, 9 (7), 4253.
doi: 10.1039/d0ta11668h |
115 |
Wang N. ; Yang Y. ; Qiu Q. ; Dong X. L. ; Wang Y. G. ; Xia Y. Y. ChemSusChem 2020, 13 (20), 5556.
doi: 10.1002/cssc.202001750 |
116 |
Sun Y. P. ; Xu Z. ; Xu X. W. ; Nie Y. ; Tu T. ; Zhou A. J. ; Zhang J. ; Qiu L. C. ; Chen F. ; Xie J. ; et al Energy Storage Mater. 2022, 48, 192.
doi: 10.1016/j.ensm.2022.03.023 |
117 |
Ma G. Q. ; Miao L. S. ; Dong Y. ; Yuan W. T. ; Nie X. Y. ; Di S. L. ; Wang Y. Y. ; Wang L. B. ; Zhang N. Energy Storage Mater. 2022, 47, 203.
doi: 10.1016/j.ensm.2022.02.019 |
118 |
Wu S. L. ; Su B. Z. ; Sun M. Z. ; Gu S. ; Lu Z. G. ; Zhang K. L. ; Yu D. Y. W. ; Huang B. L. ; Wang P. F. ; Lee C. S. ; et al Adv. Mater. 2021, 33 (41), 2102390.
doi: 10.1002/adma.202102390 |
119 |
Naveed A. ; Yang H. J. ; Yang J. ; Nuli Y. N. ; Wang J. L. Angew. Chem. Int. Ed. 2019, 58 (9), 2760.
doi: 10.1002/anie.201813223 |
120 |
Chen Y. ; Guo S. ; Qin L. P. ; Wan Q. W. ; Pan Y. C. ; Zhou M. ; Long M. Q. ; Fang G. Z. ; Liang S. Q. Batteries Supercaps 2022, 5 (5), e202200001.
doi: 10.1002/batt.202200001 |
121 |
Wang F. ; Blanc L. E. ; Li Q. ; Faraone A. ; Ji X. ; Chen-Mayer H. H. ; Paul R. L. ; Dura J. A. ; Hu E. Y. ; Xu K. ; et al Adv. Energy Mater. 2021, 11 (41), 2102016.
doi: 10.1002/aenm.202102016 |
122 |
Li C. C. ; Wu W. L. ; Shi H. Y. ; Qin Z. M. ; Yang D. ; Yang X. P. ; Song Y. ; Guo D. ; Liu X. X. ; Sun X. Q. Chem. Commun. 2021, 57 (51), 6253.
doi: 10.1039/d1cc00584g |
123 |
Ming F. W. ; Zhu Y. P. ; Huang G. ; Emwas A. H. ; Liang H. F. ; Cui Y. ; Alshareef H. N. J. Am. Chem. Soc. 2022, 144 (16), 7160.
doi: 10.1021/jacs.1c12764 |
124 |
Liu Z. X. ; Luo X. B. ; Qin L. P. ; Fang G. Z. ; Liang S. Q. Adv. Power. Mater. 2022, 1 (2), 100011.
doi: 10.1016/j.apmate.2021.10.002 |
[1] | Guoyong Xue, Jing Li, Junchao Chen, Daiqian Chen, Chenji Hu, Lingfei Tang, Bowen Chen, Ruowei Yi, Yanbin Shen, Liwei Chen. A Single-Ion Polymer Superionic Conductor [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2205012-0. |
[2] | Shuai Chen, Chuang Yu, Qiyue Luo, Chaochao Wei, Liping Li, Guangshe Li, Shijie Cheng, Jia Xie. Research Progress of Lithium Metal Halide Solid Electrolytes [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2210032-0. |
[3] | Qu Zhuoyan, Zhang Xiaoyin, Xiao Ru, Sun Zhenhua, Li Feng. Application of Organosulfur Compounds in Lithium-Sulfur Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2301019-0. |
[4] | Liu Yuankai, Yu Tao, Guo Shaohua, Zhou Haoshen. Designing High-Performance Sulfide-Based All-Solid-State Lithium Batteries: From Laboratory to Practical Application [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2301027-0. |
[5] | Linfeng Peng, Chuang Yu, Chaochao Wei, Cong Liao, Shuai Chen, Long Zhang, Shijie Cheng, Jia Xie. Recent Progress on Lithium Argyrodite Solid-State Electrolytes [J]. Acta Phys. -Chim. Sin., 2023, 39(7): 2211034-0. |
[6] | Hangyu Lu, Ruilin Hou, Shiyong Chu, Haoshen Zhou, Shaohua Guo. Progress on Modification Strategies of Layered Lithium-Rich Cathode Materials for High Energy Lithium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(7): 2211057-0. |
[7] | Huan Liu, Yu Ma, Bin Cao, Qizhen Zhu, Bin Xu. Recent Progress of MXenes in Aqueous Zinc-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(5): 2210027-0. |
[8] | Youwen Rong, Jiaqi Sang, Li Che, Dunfeng Gao, Guoxiong Wang. Designing Electrolytes for Aqueous Electrocatalytic CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2023, 39(5): 2212027-0. |
[9] | Chenyang Chen, Yongzhi Zhao, Yuanyuan Li, Jinping Liu. Research Progress of High-Voltage/Wide-Temperature-Range Aqueous Alkali Metal-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(5): 2211005-0. |
[10] | Jingwen Zhang, Hualong Ma, Jun Ma, Meixue Hu, Qihao Li, Sheng Chen, Tianshu Ning, Chuangxin Ge, Xi Liu, Li Xiao, Lin Zhuang, Yixiao Zhang, Liwei Chen. Cone Shaped Surface Array Structure on an Alkaline Polymer Electrolyte Membrane Improves Fuel Cell Performance [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2111037-0. |
[11] | Ru Wang, Zhikang Liu, Chao Yan, Long Qie, Yunhui Huang. Interface Strengthening of Composite Current Collectors for High-Safety Lithium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2203043-0. |
[12] | Kuangyu Wang, Kai Liu, Hui Wu. Molten Alkali Metal Batteries Based on Solid Electrolytes [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2301009-. |
[13] | Luwei Peng, Yang Zhang, Ruinan He, Nengneng Xu, Jinli Qiao. Research Advances in Electrocatalysts, Electrolytes, Reactors and Membranes for the Electrocatalytic Carbon Dioxide Reduction Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2302037-. |
[14] | Hao-Tian Teng, Wen-Tao Wang, Xiao-Feng Han, Xiang Hao, Ruizhi Yang, Jing-Hua Tian. Recent Development and Perspectives of Flexible Zinc-Air Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2107017-0. |
[15] | Ying Mo, Kuikui Xiao, Jianfang Wu, Hui Liu, Aiping Hu, Peng Gao, Jilei Liu. Lithium-Ion Battery Separator: Functional Modification and Characterization [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2107030-. |
|