Acta Phys. -Chim. Sin. ›› 2023, Vol. 39 ›› Issue (2): 2203043.doi: 10.3866/PKU.WHXB202203043
• ARTICLE • Previous Articles Next Articles
Ru Wang1,3, Zhikang Liu1, Chao Yan4, Long Qie2,*(), Yunhui Huang2,*()
Received:
2022-03-25
Accepted:
2022-04-26
Published:
2022-05-09
Contact:
Long Qie,Yunhui Huang
E-mail:qie@hust.edu.cn;huangyh@hust.edu.cn
About author:
Email: huangyh@hust.edu.cn (Y.H.)Supported by:
Ru Wang, Zhikang Liu, Chao Yan, Long Qie, Yunhui Huang. Interface Strengthening of Composite Current Collectors for High-Safety Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin. 2023, 39(2), 2203043. doi: 10.3866/PKU.WHXB202203043
Table 2
Electrolyte compatibility of composite current collectors and electrodes."
Step | Detailed operation | Cautions |
1.Electrolyte compatibility test of CCs | 1. Take out three kinds of composite current collectors in advance, and take out 5 cm × 5 cm slices in the direction of size 2. Pre-dry the current collector for 12 h at 60 ℃ 3. Packaged in clean aluminum-plastic soft bag with the size of 10 cm × 10 cm 4. Inject 1.5 g electrolyte into the aluminum-plastic film soft bag 5. After sealing, put them into the oven at 25, 60 and 85 ℃ for compatibility test, soak for 72 h | Before soaking, dry the film to remove water, and sufficient electrolyte is injected into the soft bag to ensure that the electrolyte in the soft bag can fully infiltrate the electrode. |
2.Electrolyte compatibility test of electrode | 1. Select NCM523 material as positive electrode 2. Pre-dry the current collector at 60 ℃ for 12 h 3. Coating with NCM523 material, the coating area density is 40 mg?cm?2 4. Dry the electrode at 60 ℃ for 24 h 5. Rolled electrode at the compacted density of 3.5 g?cm?3 5. Inject 1.5 g of electrolyte 6. Soak for 24 h at the temperature of 25, 60 and 80 ℃ 7. Observe the delamination after disassembling |
Fig 5
XPS curves of composite CCs with different intermediate reinforcement layers: (a) binding energy spectra of elements on the surface of the intermediate reinforcement layer of AlOx, (b) binding energy spectra of Al 2p in AlOx intermediate reinforcement layer at higher resolution, (c) binding energy spectra of O 1s in AlOx intermediate reinforcement layer at higher resolution, (d) binding energy spectra of elements on the surface of the intermediate reinforcement layer of silicon oxide, (e) binding energy spectra of Si 2p in SiOx intermediate reinforcement layer at higher resolution, (f) binding energy spectra of O 1s in SiOx intermediate reinforcement layer at higher resolution."
Fig 9
Electrolyte immersion test results: (a, b, c) Images of PET-AlOx-Al after 72 h immersion with electrolyte at 25, 60 and 85 ℃ in turns, (d, e, f) PET-AlOx-Al electrodes after 72 h immersion with electrolyte at 25, 60 and 85 ℃, (g, h, i) PET-SiOx-Al after 72 h immersion with electrolyte at 25, 60 and 85 ℃, (j, k, l) PET-SiOx-Al electrodes after 72 h immersion with electrolyte at 25, 60 and 85 ℃, (m, n, o) PET-Al after 72 h immersion with electrolyte at 25, 60 and 85 ℃, (p, q, r) PET-Al electrodes after 72 h immersion with electrolyte at 25, 60 and 85 ℃."
1 | Guo Q. Solar Energy 2021, (12), 5. |
郭骞. 太阳能, 2021, (12), 5.
doi: 10.19911/j.1003-0417.tyn20210318.05 |
|
2 | Guan J. ; Li N. W. ; Yu L. Acta Phys. -Chim. Sin. 2021, 37 (2), 2009011. |
关俊; 李念武; 于乐. 物理化学学报, 2021, 37 (2), 2009011.
doi: 10.3866/PKU.WHXB202009011 |
|
3 | Hua G. ; Fan Y. ; Zhang Q. Acta Phys. -Chim. Sin. 2021, 37 (2), 2008089. |
华广斌; 樊晏辰; 张千帆. 物理化学学报, 2021, 37 (2), 2008089.
doi: 10.3866/PKU.WHXB202008089 |
|
4 | Zhang S. ; Shen Z. ; Lu Y. Acta Phys. -Chim. Sin. 2021, 37 (1), 2008065. |
张世超; 沈泽宇; 陆盈盈. 物理化学学报, 2021, 37 (1), 2008065.
doi: 10.3866/PKU.WHXB202008065 |
|
5 | Wu F. ; Li Q. ; Chen L. Acta Phys. -Chim. Sin. 2020, 38 (5), 2007017. |
吴锋; 李晴; 陈来. 物理化学学报, 2020, 38 (5), 2007017.
doi: 10.3866/PKU.WHXB202007017 |
|
6 | Dong H ; Zhang S ; Li Y ; Xian X ; Yi C ; Liu L ; Yu X ; Han G ; Sheng Y. Energy Storage Sci. Technol. 2019, 8 (S1), 65. |
董海斌; 张少禹; 李毅; 羡学磊; 伊程毅; 刘连喜; 于东兴; 韩光; 盛彦锋. 储能科学与技术, 2019, 8 (S1), 65.
doi: 10.19799/j.cnki.2095-4239.2019.0052 |
|
7 |
Wang Y. ; Ren D. S. ; Feng X. N. ; Wang L. ; Ouyang M. G. Appl. Energy, 2022, 306, 117943.
doi: 10.1016/j.apenergy.2021.117943 |
8 |
Li Y. ; Liu X. ; Wang L. ; Feng X. N. ; Ren D. S. ; Wu Y. ; Xu G. L. ; Lu L. G. ; Hou J. X. ; Zhang W. F. ; et al Nano Energy 2021, 85, 105878.
doi: 10.1016/j.nanoen.2021.105878 |
9 |
Yun J. H. ; Han G. B. ; Lee Y. M. ; Lee Y. G. ; Kim K. M. ; Park J. K. ; Cho K. Y. Electrochem. Solid State Lett. 2011, 14 (8), A116.
doi: 10.1149/1.3596721 |
10 |
Fritsch M. ; Coeler M. ; Kunz K. ; Krause B. ; Marcinkowski P. ; Potschke P. ; Wolter M. ; Michaelis A. Batteries 2020, 6 (4), 60.
doi: 10.3390/batteries6040060 |
11 |
Ye Y. S. ; Chou L. Y. ; Liu Y. Y. ; Wang H. S. ; Lee H. K. ; Huang W. X. ; Wan J. Y. ; Liu K. ; Zhou G. M. ; Yang Y. F. ; et al Nat. Energy 2020, 5 (10), 786.
doi: 10.1038/s41560-020-00702-8 |
12 |
Pham M. T. M. ; Darst J. J. ; Walker W. Q. ; Heenan T. M. M. ; Patel D. ; Iacoviello F. ; Rack A. ; Olbinado M. P. ; Hinds G. ; Brett D. J. L. ; et al Cell Rep. Phys. Sci. 2021, 2 (3), 100360.
doi: 10.1016/j.xcrp.2021.100360 |
13 |
Kang H. ; Park H. ; Park Y. ; Jung M. ; Kim B. C. ; Wallace G. ; Cho G. Sci. Rep. 2014, 4 (1), 5387.
doi: 10.1038/srep05387 |
14 |
Shin K. -H. ; Nguyen H. A. D. ; Park J. ; Shin D. ; Lee D. J. Coat. Technol. Res. 2017, 14 (1), 95.
doi: 10.1007/s11998-016-9844-y |
15 |
Struller C. F. ; Kelly P. J. ; Copeland N. J. Surf. Coat. Technol., 2014, 241, 130.
doi: 10.1016/j.surfcoat.2013.08.011 |
16 |
Kouicem M. M. ; Tomasella E. ; Bousquet A. ; Batisse N. ; Monier G. ; Robert-Goumet C. ; Dubost L. Appl. Surf. Sci., 2021, 564, 150322.
doi: 10.1016/j.apsusc.2021.150322 |
17 |
Schissel P. ; Kennedy C. ; Goggin R. J. Adhes. Sci. Technol. 1995, 9 (4), 413.
doi: 10.1163/156856195X00356 |
18 |
Mwema F. M. ; Oladijo O. P. ; Akinlabi S. A. ; Akinlabi E. T. J. Alloy. Compd., 2018, 747, 306.
doi: 10.1016/j.jallcom.2018.03.006 |
19 |
Kim S. H. ; Kim M. ; Lee J. H. ; Lee S. ACS Appl. Mater. Interfaces 2018, 10 (12), 10454.
doi: 10.1021/acsami.8b00761 |
20 |
Bichler C. ; Kerbstadt T. ; Langowski H. C. ; Moosheimer U. Surf. Coat. Technol. 1999, 112 (1–3), 373.
doi: 10.1016/s0257-8972(98)00780-4 |
21 |
Cueff R. ; Baud G. ; Benmalek M. ; Besse J. P. ; Butruille J. R. ; Dunlop H. M. ; Jacquet M. Thin Solid Films 1995, 270 (1), 230.
doi: 10.1016/0040-6090(95)06917-8 |
22 | Xie C ; Wang K. Plast. Packag. 2018, 28 (2), 8. |
谢超杰; 王克俭. 塑料包装, 2018, 28 (2), 8. | |
23 | Liu Y ; Wang J ; Xiong L. J. Wuhan Inst. Technol. 2010, 32 (5), 4. |
刘玉兰; 汪建华; 熊礼威. 武汉工程大学学报, 2010, 32 (5), 4.
doi: 10.3969/j.issn.1674 |
|
24 |
Sundararajan M ; Subramani S. ; Devarajan M ; Jaafar M. J. Mater. Sci: Mater Electron., 2020, 31, 9641.
doi: 10.1007/s10854-020-03507-3 |
25 | Zhai L ; Ling G ; Li J. Mater. Rep. 2006, (S2), 274. |
翟兰兰; 凌国平; 郦剑. 材料导报, 2006, (S2), 274.
doi: 10.3321/j.issn:1005-023X.2006.z2.080 |
|
26 |
Drabold D. A. ; Adams J. B. ; Anderson D. C. ; Kieffer. J. Adhesion 1993, 42 (1–2), 55.
doi: 10.1080/00218469308026570 |
27 | Liu Z ; Lin J ; Sun Z ; Gao D. J. Vac. Sci. Technol. 2009, 29 (S1), 94. |
刘壮; 林晶; 孙智慧; 高德. 真空科学与技术学报, 2009, 29 (S1), 94.
doi: 10.3969/j.issn.1672-7126.2009.z1.22 |
|
28 |
Madocks J ; Rewhinkle J ; Barton L. Mater. Sci. Eng. 2005, 119 (3), 2683.
doi: 10.1016/j.mseb.2004.12.080 |
29 | Peacock, A. Handbook of Polyethylene: Structures: Properties, and Applications, 1st ed.; CRC Press. : Boca Raton, FL, USA, 2000; pp. 20–25 |
30 | Lv D ; Li W. J. Power Sources 2007, 31 (10), 3. |
吕东生; 李伟善. 电源技术, 2007, 31 (10), 3.
doi: 10.3969/j.issn.1002-087X.2007.10.020 |
|
31 | Chen, H. Study on the Anti-Corrosion of Alumium Current Collector for Lithium-Ion Battery. Master Dissertation, Harbin Institute of Technology, Harbin, 2009. |
陈海. 锂离子电池正极铝集流体耐蚀性能研究. 哈尔滨工业大学[D]. 哈尔滨: 哈尔滨工业大学, 2009. | |
32 |
Raveh A. ; Tsameret Z. K. ; Grossman E. Surf. Coat. Technol. 1997, 88 (1–3), 103.
doi: 10.1016/S0257-8972(95)02757-2 |
33 |
Alfonsetti R. ; Lozzi L. ; Passacantando M. ; Picozzi P. ; Santucci S. Appl. Surf. Sci. 1993, s70–71, 222.
doi: 10.1016/0169-4332(93)90431-A |
34 | Moulder, J. F.; Stickle, W. F.; Sobol, P. E. Handbook of X-Ray Photoelectron Spectroscopy, 1st ed.; Perkin-Elmer Corporation: Physical Electronics Division 6509 Flying Cloud Drive Eden Prairie, MN 55344, USA, 1992; pp. 55–58. |
35 |
Huang C. ; Liu C. H. ; Wu S. Y. Surf. Interface Anal. 2009, 41 (1), 44.
doi: 10.1002/sia.2975 |
36 |
Williams K. R. ; Gupta K. ; Wasilik M. J. Microelectromech. Syst., 2003, 12, 761.
doi: 10.1109/JMEMS.2003.820936 |
37 |
Williams K. R. ; Gupta K. ; Wasilik M. J. Microelectromech. Syst. 2003, 12 (6), 761.
doi: 10.1109/jmems.2003.820936 |
[1] | Hangyu Lu, Ruilin Hou, Shiyong Chu, Haoshen Zhou, Shaohua Guo. Progress on Modification Strategies of Layered Lithium-Rich Cathode Materials for High Energy Lithium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(7): 2211057-0. |
[2] | Siying Zhu, Huiyang Li, Zhongli Hu, Qiaobao Zhang, Jinbao Zhao, Li Zhang. Research Progresses on Structural Optimization and Interfacial Modification of Silicon Monoxide Anode for Lithium-Ion Battery [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2103052-. |
[3] | Yue Yang, Jiawei Zhu, Pengyan Wang, Haimi Liu, Weihao Zeng, Lei Chen, Zhixiang Chen, Shichun Mu. NH2-MIL-125 (Ti) Derived Flower-Like Fine TiO2 Nanoparticles Implanted in N-doped Porous Carbon as an Anode with High Activity and Long Cycle Life for Lithium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2106002-. |
[4] | Ying Mo, Kuikui Xiao, Jianfang Wu, Hui Liu, Aiping Hu, Peng Gao, Jilei Liu. Lithium-Ion Battery Separator: Functional Modification and Characterization [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2107030-. |
[5] | Xuewei Liu, Ying Niu, Ruixiong Cao, Xiaohong Chen, Hongyan Shang, Huaihe Song. Is there a Demand of Conducting Agent of Acetylene Black for Graphene-Wrapped Natural Spherical Graphite as Anode Material for Lithium-Ion Batteries? [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2012062-. |
[6] | Yaokun Ye, Zongxiang Hu, Jiahua Liu, Weicheng Lin, Taowen Chen, Jiaxin Zheng, Feng Pan. Research Progress of Theoretical Studies on Polarons in Cathode Materials of Lithium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2021, 37(11): 2011003-. |
[7] | Huifang An, Li Jiang, Feng Li, Ping Wu, Xiaoshu Zhu, Shaohua Wei, Yiming Zhou. Hydrogel-Derived Three-Dimensional Porous Si-CNT@G Nanocomposite with High-Performance Lithium Storage [J]. Acta Physico-Chimica Sinica, 2020, 36(7): 1905034-. |
[8] | Chao Li, Ming Shen, Bingwen Hu. Solid-State NMR and EPR Methods for Metal Ion Battery Research [J]. Acta Physico-Chimica Sinica, 2020, 36(4): 1902019-. |
[9] | Kun Liu, Yao Liu, Haifeng Zhu, Xiaoli Dong, Yonggang Wang, Congxiao Wang, Yongyao Xia. NaTiSi2O6/C Composite as a Novel Anode Material for Lithium-Ion Batteries [J]. Acta Physico-Chimica Sinica, 2020, 36(11): 1912030-. |
[10] | Lei. HE,Jun-Min. XU,Yong-Jian. WANG,Chang-Jin. ZHANG. LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1605-1613. |
[11] | Ai-Hua TIAN,Wei WEI,Peng QU,Qiu-Ping XIA,Qi SHEN. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance [J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1621-1627. |
[12] | You-Hao LIAO,Wei-Shan LI. Research Progresses on Gel Polymer Separators for Lithium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1533-1547. |
[13] | Guang-Kai JU,Zhan-Liang TAO,Jun CHEN. Controllable Preparation and Electrochemical Performance of Self-assembled Microspheres of α-MnO2 Nanotubes [J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1421-1428. |
[14] | Yong-Ping GAN,Pei-Pei LIN,Hui HUANG,Yang XIA,Chu LIANG,Jun ZHANG,Yi-Shun WANG,Jian-Feng HAN,Cai-Hong ZHOU,Wen-Kui ZHANG. The Effects of Surfactants on Al2O3-Modified Li-rich Layered Metal Oxide Cathode Materials for Advanced Li-ion Batteries [J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1189-1196. |
[15] | Ze-Yu GU,Song GAO,Hao HUANG,Xiao-Zhe JIN,Ai-Min WU,Guo-Zhong CAO. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1197-1204. |
|