Acta Phys. -Chim. Sin. ›› 2022, Vol. 38 ›› Issue (6): 2107030.doi: 10.3866/PKU.WHXB202107030
Special Issue: Surface and Interface Engineering for Electrochemical Energy Storage and Conversion
• REVIEW • Previous Articles Next Articles
Ying Mo1, Kuikui Xiao1, Jianfang Wu1, Hui Liu2, Aiping Hu1, Peng Gao1,*(), Jilei Liu1,*()
Received:
2021-07-16
Accepted:
2021-08-19
Published:
2021-08-26
Contact:
Peng Gao,Jilei Liu
E-mail:gaop@hnu.edu.cn;liujilei@hnu.edu.cn
About author:
Email: liujilei@hnu.edu.cn (J.L)Supported by:
Ying Mo, Kuikui Xiao, Jianfang Wu, Hui Liu, Aiping Hu, Peng Gao, Jilei Liu. Lithium-Ion Battery Separator: Functional Modification and Characterization[J]. Acta Phys. -Chim. Sin. 2022, 38(6), 2107030. doi: 10.3866/PKU.WHXB202107030
Table 1
General requirements for lithium ion battery separators 1."
Parameter | Requirement |
Thickness | 20–25μm |
Pore size | < 1 μm |
Porosity | 40%–60% |
Permeability (Gurley number) | < 0.025 s∙mm-1 |
Ionic conductivity | 10-3 to 10-1 S∙cm-1 |
Electrolyte wettability | Wet out completely and quickly |
Mechanical strength | 98.06 MPa |
Thermal stability | < 5% at 100 ℃ after 1 h |
Dimensional stability | No curl up or shrink, lay flat |
Shutdown | Efficiently shutdown at elevated temperatures |
Electrochemical stability | Stable for a long period of time |
Fig 1
(a) COMSOL simulations for Li0|separator|Li4Ti5O12 cells showing how t+ and σ influence the voltage drop across the electrolyte in the separator (charging rate 10C; 98% SOC)14; (b) COMSOL simulations of electrolyte salt concentration as function of distance across the separator in a symmetric Li versus Li cell (to exclude effects of electrode structure), current densities relate to charging rates for a 3 mAh·cm?2 graphite electrode 13; (c) schematic diagram of lithium deposition on battery electrodes assembled with PP separator and GO-g-PAM modified PP separator 22; (d) schematic diagram of the manufacturing process of CPC separator; (e) schematic diagram of the influence of the pore distribution of the separator on the morphology of lithium electrodes 23. (a) Adapted with permission from Copyright 2016, American Chemical Society Publisher.(b) Adapted with permission from Copyright 2018, Springer Nature Publisher.(c) Adapted with permission from Copyright 2019, Springer Nature Publisher.(d, e) Adapted with permission from Copyright 2018, John Wiley and Sons Publisher."
Fig 3
(a) Schematic diagram of the effect of current distribution on the utilization of the active electrode material 32; (b) schematic diagram of the morphological changes of Li-metal electrodes during cycling of PE separator and PE separator modified by polydopamine 33; (c) schematic diagram of the Li electrodeposition process in batteries assembled with PP and Si-PP separators 35. (a) Adapted with permission from Copyright 2019, Elsevier Publisher. (b) Adapted with permission from Copyright 2012, John Wiley and Sons Publisher. (c) Adapted with permission from Copyright 2020, Elsevier Publisher."
Fig 4
(a) Fabrication of a PBO nanoporous membrane, (b) stress-strain curve of PBO microporous membrane 37; (c) different situations of unmodified and PE/SiO2/PE separators after being pierced by dendrites, (d) schematic diagram showing the mechanism for the extended battery life using PE/SiO2/PE separator 46. (a, b) Adapted with permission from Copyright 2016, American Chemical Society Publisher. (c, d) Adapted with permission from Copyright 2016, John Wiley and Sons Publisher."
Fig 5
(a) Schematic diagram of the PEC-coated separators and unmodified separators in batteries, (b) the equivalent circuit of the cell containing a Janus separator and unmodified separator during internal shorting 47; schematic diagram showing the design and fabrication of smart battery (c) the voltage change detected before and after a short circuit in a battery with a traditional separator, (d) the voltage change detected before and after a short circuit in a battery with a polymer-metal-polymer separator 48. (a, b) Adapted with permission from Copyright 2020, John Wiley and Sons Publisher. (c, d) Adapted with permission from Copyright 2014, Springer Nature Publisher."
Fig 6
(a) The conceptual plan of the tri-layer membrane working in battery 60; (b) schematic diagram of the thermal induced shutdown process of PLA@PBS separator in Li-ion batteries 61; (c) safety mechanism of APP-CCS@ PFR in LIBs 62. (a) Adapted with permission from Copyright 2018, Elsevier Publisher. (b) Adapted with permission from Copyright 2017, Royal Society of Chemistry Publisher."
Fig 7
SEM images of polyolefin separators: (a) PP separator prepared by dry process; (b) PE separator prepared by wet process 3. AFM images of polyolefin separators: (c) Celgard 2325 and (d) Toray V20CFD 64. (e) Concentration profiles and (f) concentration density maps from diffusion simulations across the through-plane direction of PE and PP (the concentration difference is ~50 mmol?L-1 between top and bottom, top 1.25 mol?L-1 and bottom 1.20 mol?L-1); (g) schematic diagram of LIB setup with electrode particles touching the separator; (h) schematic diagram of separator's pores being partially blocked; (i) the concentration density distribution diagram of PE and PP with a few pores been blocked 16. (a, b) Adapted with permission from Copyright 2014, Royal Society of Chemistry Publisher. (c, d) Adapted with permission from Copyright 2014, Royal Society of Chemistry Publisher. (e–i) Adapted with permission from Copyright 2018, Royal Society of Chemistry Publisher."
Fig 8
(a) Contact angle of Celgard and ATP-PVA/Celgard separators; dynamic wetting process of (b) Celgard and (c) ATP-PVA/Celgard by the liquid electrolyte (LE) drops (6 mL) released from 5 mm height; (d) schematic illustration of the device for studying the climbing behavior of LE in separators; climbing behaviors of (e) ATP-PVA/Celgard and (f) Celgard 77. Adapted with permission from Copyright 2020, Elsevier Publisher."
Fig 9
(a) The schematic diagram of stretching the separator along four different directions; the tensile behavior and failure modes of three separators stretched along four directions: (b) PP-D-U; (c) PP-D-B; (d) PE-W-B 79; (e) average elastic modulus vs. load for different separators 80; (f) the compression stress-strain curves and SEM images of the surface and cross-section at different stress: (f) PP-D-U, (g) PP-D-B, (h) PE-W-B 79. (a–d) Adapted with permission from Copyright 2021, Springer Nature Publisher. (e) Adapted with permission from Copyright 2013, Elsevier Publisher. (f–h) Adapted with permission from Copyright 2021, Springer Nature Publisher."
Fig 10
(a) Photograph images of the PE and GFP separators obtained after thermal storage at different temperatures for 30 min; (b) TGA curves of PE and GFP separators; (c) DSC curves of PE and GFP separators 85; (d) infrared thermography of the PP and modified separators at a heating rate of 5 ℃·s-1 87; (e) thermal distributions of pure PVDF-HFP, PVDF-HFP/LLZO (4.29% (w)) and Celgard 2500 separators, respectively 89. (a–c) Adapted with permission from Copyright 2021, Elsevier Publisher. (d) Adapted with permission from Copyright 2019, Royal Society of Chemistry Publisher. (e) Adapted with permission from Copyright 2019, Elsevier Publisher."
Fig 12
(a) EIS spectra of LIBs with SFEG and Celgard 2400 separators 93; (b) impedance measurements recorded at 25 ℃ in a stainless steel |separator| stainless steel configuration for unmodified and polyelectrolyte modified PE separators, (c) Arrhenius plot of the electrolyte conductivity vs temperature 14. (a) Adapted with permission from Copyright 2021, John Wiley and Sons Publisher. (b, c) Adapted with permission from Copyright 2016, American Chemical Society Publisher."
Fig 15
SEM images of Celgard 2250 separator after 200 cycles, the Li foil shows many dendrites from the top view (a) and the cross-sectional view (b), SEM images of the separator modified with SiO2 after 200 cycles, the top view (c) and the cross-sectional view (d), it can be seen that the lithium foil is very flat 38; top-view SEM images of deposited Li on Cu foil in Li/Cu cells assembled with different separators at 1, 10, and 20 mAh·cm?2 plating capacities and 1 mA?cm?2 current density, (e) PE, (f) SiO@PAA-PE 100; in situ observation of the Li dendrite growth process: (g) schematic diagram of the in situ cell, and (h) photograph of transparent Li/Li symmetrical cells for in situ investigation, (i) optical images (top view) of the discharged Li metal wrapped by blank separator, (j) optical images (top view) of the discharged Li metal wrapped by NS protected 38. (a–d) Adapted with permission from Copyright 2020, John Wiley and Sons Publisher. (e, f) Adapted with permission from Copyright 2021, John Wiley and Sons Publisher. (g–j) Adapted with permission from Copyright 2020, John Wiley and Sons Publisher."
Fig 16
(a) EIS spectra of the cells assembled with PP and C@PP separators 101; EIS spectra of the cells with different separators and electrolytes, which were obtained (b) before cycling and (c) after 100 cycles at 55 ℃ and 0.5C 102. (a) Adapted with permission from Copyright 2021, Elsevier Publisher. (b, c) Adapted with permission from Copyright 2020, Elsevier Publisher."
Table 2
Summary of test methods for battery separators."
Type of analysis | Parameters extracted Structure | |
Structure | SEM, AFM | ? Pore distribution |
? Pore size | ||
Mercury porosimetry (MIP) | ? Porosity (ε) | |
? Pore size distribution | ||
Permeability measurement (Gurley number) | ? Transmission resistance | |
? Porosity (ε) | ||
? Tortuosity (τ) | ||
Brunauer-Emmett-Teller (BET) | ? Specific surface area | |
? Pore diameter | ||
Focused ion beam scanning electron microscopic (FIB-SEM) | ? 3D microstructure | |
X-ray computed tomography(CT) | ? 3D microstructure | |
Thermogravimetric analysis (TGA) | ? Thermal stability | |
? Reveal composition of materials | ||
Differential Scanning Calorimetry (DSC) | ? Glass transition temperature (Tg) | |
? Melting temperature (Tm) | ||
? Crystallization temperature (Tc) | ||
? Enthalpy of the polymer separator | ||
Infrared thermography(FLIR) | ? Temperature field distribution | |
Tensile strength test | ? Fracture characteristics | |
Puncture strength test | ? Withstand the indentation caused by electrode particles | |
Compression performance test | ? Compression characteristics | |
Wetting analysis | ? Contact angle | |
? Electrolyte uptake | ||
? Electrolyte climbing behavior | ||
Electrochemical performance | Linear sweep voltammetry (LSV) | ? Electrochemical stability |
Electrochemical Impedance Spectroscopy (EIS) | ? Ion conductivity (σ=d/(R × S) | |
? MacMullin number (Nm) | ||
? Internal resistance | ||
Potentiostatic polarization combined with electrochemical impedance spectroscopy | ? Lithium-ion transference number (t+) | |
Constant current charge and discharge test | ? Cycle performance | |
? Rate performance | ||
Open circuit voltage (OCV) | ? Self-discharge characteristics |
1 |
Waqas M. ; Ali S. ; Feng C. ; Chen D. J. ; Han J. C. ; He W. D Small 2019, 15, e1901689.
doi: 10.1002/smll.201901689 |
2 |
Pan R. J. ; Cheung O. ; Wang Z. H. ; Tammela P. ; Huo J. X. ; Lindh J. ; Edström K. ; Strømme M. ; Nyholm L J. Power Sources 2016, 321, 185.
doi: 10.1016/j.jpowsour.2016.04.115 |
3 |
Lee H. ; Yanilmaz M. ; Toprakci O. ; Fu K. ; Zhang X. W Energy Environ. Sci. 2014, 7, 3857.
doi: 10.1039/C4EE01432D |
4 |
Zhang W. D. ; Tu Z. Y. ; Qian J. Q. ; Choudhury S. S. ; Archer L. A. ; Lu Y. Y Small 2018, 14, e1703001.
doi: 10.1002/smll.201703001 |
5 |
Thackeray M. M. ; Wolverton C. ; Isaacs E. D Energy Environ. Sci. 2012, 5, 7854.
doi: 10.1039/c2ee21892e |
6 | Zhang J. ; Li H. Q. ; Zuo M. ; Xie Y. ; Tang Q. ; Huang Y. Q. ; Bai P. W Adv. Mater. Ind. 2016, 1, 36. |
张静; 李合琴; 左敏; 谢毅; 唐琼; 黄依琴; 柏佩文. 新材料产业, 2016, 1, 36.
doi: 10.3969/j.issn.1008-892X.2016.01.009 |
|
7 | Yu F. F. ; Dong H. Y. ; Xu S. Y. ; Bai Y. Z. ; Song S. J Mod. Plast. Process. Appl. 2018, 3, 60. |
于方方; 董浩宇; 许淑义; 白耀宗; 宋尚军. 现代塑料加工应用, 2018, 3, 60.
doi: 10.19690/j.issn.1004-3055.20180014 |
|
8 |
Shin W. K. ; Kim D. W J. Power Sources 2013, 226, 54.
doi: 10.1016/j.jpowsour.2012.10.082 |
9 |
Wen H. J. ; Zhang J. J. ; Chai J. C. ; Ma J. ; Yue L. P. ; Dong T. T. ; Zang X. ; Liu Z. H. ; Zhang B. T. ; Cui G. L ACS Appl. Mater. Inter. 2017, 9, 3694.
doi: 10.1021/acsami.6b14352 |
10 |
Yuan B. ; Wen K. ; Chen D. ; Liu Y. ; Dong Y. ; Feng C. ; Han Y. ; Han J. ; Zhang Y. ; Xia C. ; et al Adv. Funct. Mater 2021, 202101420.
doi: 10.1002/adfm.202101420 |
11 | Liao Y. H. ; Li W. S Acta Phys. -Chim. Sin. 2017, 8, 1533. |
廖友好; 李伟善. 物理化学学报, 2017, 8, 1533.
doi: 10.3866/PKU.WHXB201704281 |
|
12 |
Harris S. J. ; Lu P J. Phys. Chem. C 2013, 117, 6481.
doi: 10.1021/jp311431z |
13 |
Lagadec M. F. ; Zahn R. ; Wood V Nat. Energy 2018, 4, 16.
doi: 10.1038/s41560-018-0295-9 |
14 |
Zahn R. ; Lagadec M. F. ; Hess M. ; Wood V ACS Appl. Mater. Inter. 2016, 8, 32637.
doi: 10.1021/acsami.6b12085 |
15 |
Lagadec M. F. ; Ebner M. ; Zahn R. ; Wood V J. Electrochem. Soc. 2016, 163, A992.
doi: 10.1149/2.0811606jes |
16 |
Lagadec M. F. ; Zahn R. ; Müller S. ; Wood V Energy Environ. Sci. 2018, 11, 3194.
doi: 10.1039/c8ee00875b |
17 |
Wang X. ; Xu G. J. ; Wang Q. F. ; Lu C. L. ; Zong C. Z. ; Zhang J. J. ; Yue L. P. ; Cui G. L Chin. J. Chem. Eng. 2018, 26, 1292.
doi: 10.1016/j.cjche.2017.12.010 |
18 |
Ma X. J. ; Kolla P. ; Yang R. D. ; Wang Z. ; Zhao Y. ; Smirnova A. L. ; Fong H Electrochim. Acta 2017, 236, 417.
doi: 10.1016/j.electacta.2017.03.205 |
19 |
Chen C. C. ; Zhang W. D. ; Zhu H. ; Li B. G. ; Lu Y. Y. ; Zhu S. P Nano Res. 2020, 14, 1465.
doi: 10.1007/s12274-020-3203-0 |
20 |
Dai J. H. ; Shi C. ; Li C. ; Shen X. ; Peng L. Q. ; Wu D. Z. ; Sun D. H. ; Zhang P. ; Zhao J. B Energy Environ. Sci. 2016, 9, 3252.
doi: 10.1039/c6ee01219a |
21 |
Xu Q. ; Kong Q. S. ; Liu Z. H. ; Zhang J. J. ; Wang X. J. ; Liu R. Z. ; Yue L. P. ; Cui G. L RCS Adv. 2014, 4, 7845.
doi: 10.1039/c3ra45879b |
22 |
Li C. F. ; Liu S. H. ; Shi C. G. ; Liang G. H. ; Lu Z. T. ; Fu R. W. ; Wu D. C Nat. Commun. 2019, 10, 1363.
doi: 10.1038/s41467-019-09211-z |
23 |
Pan R. J. ; Xu X. X. ; Sun R. ; Wang Z. H. ; Lindh J. ; Edstrom K. ; Stromme M. ; Nyholm L Small 2018, 14, e1704371.
doi: 10.1002/smll.201704371 |
24 |
Liu W. ; Lin D. C. ; Pei A. ; Cui Y J. Am. Chem. Soc. 2016, 138, 15443.
doi: 10.1021/jacs.6b08730 |
25 |
Shin W. K. ; Kannan A. G. ; Kim D. W ACS Appl. Mater. Inter. 2015, 7, 23700.
doi: 10.1021/acsami.5b07730 |
26 |
Liu Y. D. ; Liu Q. ; Xin L. ; Liu Y. Z. ; Yang F. ; Stach E. A. ; Xie J Nat. Energy 2017, 2, 17083.
doi: 10.1038/nenergy.2017.83 |
27 |
Cohen Y. S. ; Cohen Y. ; Aurbach D J. Phys. Chem. B 2000, 104, 12282.
doi: 10.1021/jp002526b |
28 |
Love C. T J. Electrochem. Energy 2016, 13, 031004.
doi: 10.1115/1.4034483 |
29 |
Kang S. J. ; Mori T. ; Suk J. D. ; Kim D. W. ; Kang Y. K. ; Wilcke W. ; Kim H. C J. Mater. Chem. A 2014, 2, 9970.
doi: 10.1039/c4ta01314j |
30 |
Yan J. ; Liu F. Q. ; Hu Z. Y. ; Gao J. ; Zhou W. D. ; Huo H. ; Zhou J. J. ; Li L Nano Lett. 2020, 20, 3798.
doi: 10.1021/acs.nanolett.0c00819 |
31 | Liu D. D. ; Chen C. ; Xiong X. H Acta Phys. -Chim. Sin. 2021, 37, 2008078. |
刘冬冬; 陈超; 熊训辉. 物理化学学报, 2021, 37, 2008078.
doi: 10.3866/PKU.WHXB202008078 |
|
32 |
Pan R. J. ; Sun R. ; Wang Z. H. ; Lindh J. ; Edström K. ; Strømme M. ; Nyholm L Nano Energy 2019, 55, 316.
doi: 10.1016/j.nanoen.2018.11.005 |
33 |
Ryou M. H. ; Lee D. J. ; Lee J. N. ; Lee Y. M. ; Park J. K. ; Choi J. W Adv. Energy Mater. 2012, 2, 645.
doi: 10.1002/aenm.201100687 |
34 |
Wang H. W. ; Hu J. Y. ; Dong J. H. ; Lau K. C. ; Qin L. ; Lei Y. ; Li B. H. ; Zhai D. Y. ; Wu Y. Y. ; Kang F. Y Adv. Energy Mater. 2019, 9, 1902697.
doi: 10.1002/aenm.201902697 |
35 |
Chen X. ; Zhang R. Y. ; Zhao R. R. ; Qi X. Q. ; Li K. J. ; Sun Q. ; Ma M. Y. ; Qie L. ; Huang Y. H Energy Storage Mater. 2020, 31, 181.
doi: 10.1016/j.ensm.2020.06.037 |
36 |
Monroe C. ; Newman J J. Electrochem. Soc. 2005, 152, A396.
doi: 10.1149/1.1850854 |
37 |
Hao X. M. ; Zhu J. ; Jiang X. ; Wu H. T. ; Qiao J. S. ; Sun W. ; Wang Z. H. ; Sun K. N Nano Lett. 2016, 16, 2981.
doi: 10.1021/acs.nanolett.5b05133 |
38 |
Liang J. ; Chen Q. Y. ; Liao X. B. ; Yao P. C. ; Zhu B. ; Lv G. X. ; Wang X. Y. ; Chen X. ; Zhu J Angew Chem. Int. Ed. 2020, 59, 6561.
doi: 10.1002/anie.201915440 |
39 |
Wang X. ; Hua H. M. ; Peng L. Q. ; Huang B. Y. ; Zhang P. ; Zhao J. B Appl. Surf. Sci. 2021, 542, 148661.
doi: 10.1016/j.apsusc.2020.148661 |
40 |
Lee S. H. ; Kim J. ; Kim B. H. ; Yoon S. ; Cho K. Y Small 2019, 15, e1804980.
doi: 10.1002/smll.201804980 |
41 |
Xiang H. F. ; Chen J. J. ; Li Z. ; Wang H. H J. Power Sources 2011, 196, 8651.
doi: 10.1016/j.jpowsour.2011.06.055 |
42 |
Zhai Y. Y. ; Xiao K. ; Yu J. Y. ; Ding B Electrochim. Acta 2015, 154, 219.
doi: 10.1016/j.electacta.2014.12.102 |
43 |
Chen J. J. ; Wang S. Q. ; Cai D. D. ; Wang H. H J. Membr. Sci. 2014, 449, 169.
doi: 10.1016/j.memsci.2013.08.028 |
44 |
Wang R. ; Deng J. N. ; Li J. ; Tang M. Q. ; Li P. Y. ; Zhang Y Int. J. Electrochem. Sci. 2020, 15, 567.
doi: 10.20964/2020.01.46 |
45 |
Li H. J. ; Li L. ; Zheng S. Z. ; Wang X. M. ; Ma Z. S Materials (Basel) 2019, 12, 2813.
doi: 10.3390/ma12172813 |
46 |
Liu K. ; Zhuo D. ; Lee H. W. ; Liu W. ; Lin D. C. ; Lu Y. Y. ; Cui Y Adv. Mater. 2017, 29, 1603987.
doi: 10.1002/adma.201603987 |
47 |
Gonzalez M. S. ; Yan Q. Z. ; Holoubek J. ; Wu Z. H. ; Zhou H. Y. ; Patterson N. ; Petrova V. ; Liu H. ; Liu P Adv. Mater. 2020, 32, e1906836.
doi: 10.1002/adma.201906836 |
48 |
Wu H. ; Zhuo D. ; Kong D. S. ; Cui Y Nat. Commun. 2014, 5, 5193.
doi: 10.1038/ncomms6193 |
49 | Zhang S. C. ; Shen Z. Y. ; Lu Y. Y Acta Phys. -Chim. Sin. 2021, 37, 2008065. |
张世超; 沈泽宇; 陆盈盈. 物理化学学报, 2021, 37, 2008065.
doi: 10.3866/PKU.WHXB202008065 |
|
50 |
Wang E. ; Chiu C. H. ; Chou P. H J. Power Sources 2020, 461, 228148.
doi: 10.1016/j.jpowsour.2020.228148 |
51 |
Seo J. H. ; Park J. ; Plett G. ; Sastry A. M Electrochem. Solid-State Lett. 2010, 13, A135.
doi: 10.1149/1.3458649 |
52 |
Gor G. Y. ; Cannarella J. ; Prévost J. H. ; Arnold C. B J. Electrochem. Soc. 2014, 161, F3065.
doi: 10.1149/2.0111411jes |
53 |
Gor G. Y. ; Cannarella J. ; Leng C. Z. ; Vishnyakov A. ; Arnold C. B J. Power Sources 2015, 294, 167.
doi: 10.1016/j.jpowsour.2015.06.028 |
54 |
Sheidaei A. ; Xiao X. R. ; Huang X. S. ; Hitt J J. Power Sources 2011, 196, 8728.
doi: 10.1016/j.jpowsour.2011.06.026 |
55 |
Yan S. T. ; Xiao X. R. ; Huang X. S. ; Li X. D. ; Qi Y Polymer 2014, 55, 6282.
doi: 10.1016/j.polymer.2014.09.067 |
56 | Gao Z. H. ; Wen R. Y. ; Men S. L. ; Zhang j. M Battery Bimon 2021, 51, 88. |
高志浩; 温荣严; 门树林; 张健敏. 电池, 2021, 51, 88.
doi: 10.19535/j.1001-1579.2021.01.022 |
|
57 |
Xiong B. J. ; Chen R. ; Zeng F. X. ; Kang J. ; Men Y. F J. Membr. Sci. 2018, 545, 213.
doi: 10.1016/j.memsci.2017.10.001 |
58 |
Lin X. R. ; Salari M. ; Arava L. M. ; Ajayan P. M. ; Grinstaff M. W Chem. Soc. Rev. 2016, 45, 5848.
doi: 10.1039/c6cs00012f |
59 | Li H. ; Ji W. X. ; Cao Y. L. ; Zhan H. ; Yang H. X. ; Ai X. P Energy Storage Sci. Technol. 2018, 7, 376. |
李惠; 吉维肖; 曹余良; 詹晖; 杨汉西; 艾新平. 储能科学与技术, 2018, 7, 376.
doi: 10.12028/j.issn.2095-4239.2018.0017 |
|
60 |
Li Z. ; Xiong Y. ; Sun S. P. ; Zhang L. ; Li S. S. ; Liu X. G. ; Xu Z. H. ; Xu S. M J. Membr. Sci. 2018, 565, 50.
doi: 10.1016/j.memsci.2018.07.094 |
61 |
Jiang X. Y. ; Xiao L. F. ; Ai X. P. ; Yang H. X. ; Cao Y. L J. Mater. Chem. A 2017, 5, 23238.
doi: 10.1039/c7ta08063h |
62 |
Peng L. Q. ; Kong X. B. ; Li H. ; Wang X. ; Shi C. ; Hu T. X. ; Liu Y. Z. ; Zhang P. ; Zhao J. B Adv. Funct. Mater. 2020, 31
doi: 10.1002/adfm.202008537 |
63 | Hong X. D. ; Wang Y. ; Yang Y. K Polymer Mater. Sci. Eng. 2013, 29, 178. |
洪晓东; 王铀; 杨永康. 高分子材料科学与工程, 2013, 29, 178.
doi: 10.16865/j.cnki.1000-7555.2013.06.043 |
|
64 |
Chen J. C. ; Yan Y. D. ; Sun T. ; Qi Y. ; Li X. D RCS Adv. 2014, 4, 14904.
doi: 10.1039/c4ra00983e |
65 |
Viguié J. ; Savart T. ; Duru P. ; Rouch J. C. ; Remigy J. C J. Membr. Sci. 2013, 435, 11.
doi: 10.1016/j.memsci.2013.01.062 |
66 | Jiang W. ; Lin Y. ; Zeng L. X. ; Qian Q. R. ; Chen Q. H Insulating Mater. 2018, 3, 7. |
江玮; 林宇; 曾令兴; 钱庆荣; 陈庆华. 绝缘材料, 2018, 51, 7.
doi: 10.16790/j.cnki.1009-9239.im.2018.03.002 |
|
67 |
Arora P. ; Zhang Z. J Chem. Rev. 2004, 104, 4419.
doi: 10.1002/chin.200450272 |
68 |
Giesche H Part. Part. Syst. Char. 2006, 23, 9.
doi: 10.1002/ppsc.200601009 |
69 |
Martinez-Cisneros C. ; Antonelli C. ; Levenfeld B. ; Varez A. ; Sanchez J. Y Electrochim. Acta 2016, 216, 68.
doi: 10.1016/j.electacta.2016.08.105 |
70 |
Hantel M. M. ; Armstrong M. J. ; DaRosa F. ; l'Abee R J. Electrochem. Soc. 2016, 164, A334.
doi: 10.1149/2.1071702jes |
71 |
Tung K. L. ; Chang K. S. ; Wu T. T. ; Lin N. J. ; Lee K. R. ; Lai J. Y Curr. Opin. Chem. Eng. 2014, 4, 121.
doi: 10.1016/j.coche.2014.03.002 |
72 |
Valverde A. ; Gonalves R. ; Silva M. M. ; Wuttke S. ; Fidalgo-Marijuan A. ; Costa Carlos M. ; Vilas-Vilela J. L. ; Laza J. M. ; Arriortua M. I. ; Lanceros-Méndez S. ; et al ACS Appl. Energ. Mater 2020, 3, 11907.
doi: 10.1021/acsaem.0c02044 |
73 | Jiang, H. T. Preparation of Biomass-Based Porous Carbon and Its Application in Modification of Lithium-Sulfur Battery Separator. M. E. Dissertation, Jiangsu University, Zhenjiang, 2020. |
蒋海涛. 生物质基多孔碳的制备及其在锂硫电池隔膜改性中的应用[D]. 镇江: 江苏大学, 2020. | |
74 |
Hao Z. D. ; Wu Y. ; Zhao Q. ; Tang J. D. ; Zhang Q. Q. ; Ke X. X. ; Liu J. B. ; Jin Y. H. ; Wang H Adv. Funct. Mater. 2021, 2102938.
doi: 10.1002/adfm.202102938 |
75 | Xie, Y. Research on Separator Wettability in Li Metal M. E. Dissertation, Hefei University of Technology, Hefei, 2017. |
谢勇. 锂金属电池中隔膜润湿性研究[D]. 合肥: 合肥工业大学, 2017. | |
76 |
Ryou M. H. ; Lee Y. M. ; Park J. K. ; Choi J. W Adv. Mater. 2011, 23, 3066.
doi: 10.1002/adma.201100303 |
77 |
Yang Y. F. ; Wang W. K. ; Zhang J. P Mater. Today Energy 2020, 16, 100420.
doi: 10.1016/j.mtener.2020.100420 |
78 | Chen F. J. ; Zhang G. B Chin. Battery Ind. 2020, 24, 184. |
陈芳杰; 张高宾. 电池工业, 2020, 24, 184.
doi: 10.3969/j.issn.1008-7923.2020.04.003 |
|
79 |
Ding L. ; Zhang D. X. ; Zhang S. H. ; Wu T. ; Yang F. ; Lan F. ; Cao Y. ; Xiang M J. Polym. Res. 2021, 28, 1.
doi: 10.1007/s10965-020-02358-0 |
80 |
Halalay I. C. ; Lukitsch M. J. ; Balogh M. P. ; Wong C. A J. Power Sources 2013, 238, 469.
doi: 10.1016/j.jpowsour.2013.04.036 |
81 |
Chen J. C. ; Sun T. ; Qi Y. ; Li X. D ECS Electrochem. Lett. 2014, 3, A41.
doi: 10.1149/2.012405eel |
82 |
Cannarella J. ; Liu X. Y. ; Leng C. Z. ; Sinko P. D. ; Gor G. Y. ; Arnold C. B J. Electrochem. Soc. 2014, 161, F3117.
doi: 10.1149/2.0191411jes |
83 | Rui S. B. ; Wang K. L. ; Zhang Z Shanghai Plastics 2017, 1, 37. |
芮胜波; 王克立; 张钊. 上海塑料, 2017, 1, 37.
doi: 10.16777/j.cnki.issn.1009-5993.2017.01.007 |
|
84 |
Schick C Anal. Bioanal. Chem. 2009, 395, 1589.
doi: 10.1007/s00216-009-3169-y |
85 |
Chen J. H. ; Kang T. X. ; Cui Y. ; Xue J. J. ; Xu H. L. ; Nan J. M J. Power Sources 2021, 496, 229862.
doi: 10.1016/j.jpowsour.2021.229862 |
86 |
Venugopal G. ; Moore J. ; Howard J. ; Pendalwar S J. Power Sources 1999, 77, 34.
doi: 10.1016/S0378-7753(98)00168-2 |
87 |
Han Y. P. ; Ye L. H. ; Boateng B. ; Sun Q. W. ; Zhen C. ; Chen N. ; Shi X. Y. ; Dickerson J. H. ; Li X. ; He W. D J. Mater. Chem. A 2019, 7, 1410.
doi: 10.1039/c8ta09092k |
88 |
Robinson J. B. ; Darr J. A. ; Eastwood D. S. ; Hinds G. ; Lee P. D. ; Shearing P. R. ; Taiwo O. O. ; Brett D. J. L J. Power Sources 2014, 252, 51.
doi: 10.1016/j.jpowsour.2013.11.059 |
89 |
Shi X. Y. ; Sun Q. W. ; Boateng B. ; Niu Y. H. ; Han Y. D. ; Lv W. Q. ; He W. D J. Power Sources 2019, 414, 225.
doi: 10.1016/j.jpowsour.2019.01.005 |
90 | Yang, X. Uhmwpe Cell Membrane Forming Research. M. E. Dissertation, Beijing University of Chemical Technology, Beijing, 2012. |
杨晓娟. 超高分子量聚乙烯电池膜成型研究[D]. 北京: 北京化工大学, 2012. | |
91 |
Gou H. P. ; Li W. B. ; Yang Y. F. ; Li X. D. ; Cui H. L. ; Liu Y. ; Wang J. Y. ; Kakimov A. ; Wang J. J. ; Shi W. Y. ; et al J. Power Sources 2021, 499, 229933.
doi: 10.1016/j.jpowsour.2021.229933 |
92 | Jiang H. J. ; Zhang Y. Q. ; Wu D. Y. ; Yu X. H. ; Cao J. H Acta Polym. Sin 2015, 11, 1271. |
姜红娟; 张燕青; 吴大勇; 于晓慧; 操建华. 高分子学报, 2015, 11, 1271. | |
93 |
Yang H. ; Shi X. S. ; Chu S. Y. ; Shao Z. P. ; Wang Y Adv. Sci. 2021, 8, 2003096.
doi: 10.1002/advs.202003096 |
94 |
Huang X. S J. Solid State Electrochem. 2011, 15, 649.
doi: 10.1007/s10008-010-1264-9 |
95 |
Diederichsen K. M. ; McShane E. J. ; McCloskey B. D ACS Energy Lett. 2017, 2, 2563.
doi: 10.1021/acsenergylett.7b00792 |
96 |
Evans J. ; Vincent C. A. ; Bruce P. G Polymer 1987, 28, 2324.
doi: 10.1016/0032-3861(87)90394-6 |
97 | Wang R. R. ; Zhu Z. D. ; Peng W Chin. Battery Ind. 2020, 24, 283. |
王蓉蓉; 朱振东; 彭文. 电池工业, 2020, 24, 283.
doi: 10.3969/j.issn.1008-7923.2020.06.001 |
|
98 |
Li J. ; Wang Q. T. ; Wang Z. Y. ; Cao Y. T. ; Zhu J. Q. ; Lou Y. Y. ; Zhao Y. ; Shi L. Y. ; Yuan S J. Colloid Interf. Sci. 2021, 595, 142.
doi: 10.1016/j.jcis.2021.03.099 |
99 |
Rehnlund D. ; Lindgren F. ; Böhme S. ; Nordh T. ; Zou Y. M. ; Pettersson J. ; Bexell U. ; Boman M. ; Edström K. ; Nyholm L Energy Environ. Sci. 2017, 10, 1350.
doi: 10.1039/c7ee00244k |
100 |
Tan L. W. ; Sun Y. ; Wei C. L. ; Tao Y. ; Tian Y. ; An Y. L. ; Zhang Y. C. ; Xiong S. L. ; Feng J. K Small 2021, 17, e2007717.
doi: 10.1002/smll.202007717 |
101 |
Sun Y. ; Wang X. C. ; Yang A. K. ; Huang Y. D. ; Jia W. ; Jia D. Z. ; Cheng F. Y. ; Xu M. J. ; Li M. H. ; Lu Y Chem. Eng. J. 2021, 418, 129404.
doi: 10.1016/j.cej.2021.129404 |
102 |
Ahn J. H. ; You T. S. ; Lee S. M. ; Esken D. ; b D. D. ; Huang Y. C. ; Kim D. W J. Power Sources 2020, 472, 228519.
doi: 10.1016/j.jpowsour.2020.228519 |
[1] | Shuai Chen, Chuang Yu, Qiyue Luo, Chaochao Wei, Liping Li, Guangshe Li, Shijie Cheng, Jia Xie. Research Progress of Lithium Metal Halide Solid Electrolytes [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2210032-0. |
[2] | Linfeng Peng, Chuang Yu, Chaochao Wei, Cong Liao, Shuai Chen, Long Zhang, Shijie Cheng, Jia Xie. Recent Progress on Lithium Argyrodite Solid-State Electrolytes [J]. Acta Phys. -Chim. Sin., 2023, 39(7): 2211034-0. |
[3] | Hangyu Lu, Ruilin Hou, Shiyong Chu, Haoshen Zhou, Shaohua Guo. Progress on Modification Strategies of Layered Lithium-Rich Cathode Materials for High Energy Lithium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(7): 2211057-0. |
[4] | Ru Wang, Zhikang Liu, Chao Yan, Long Qie, Yunhui Huang. Interface Strengthening of Composite Current Collectors for High-Safety Lithium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2203043-0. |
[5] | Yae Qi, Yongyao Xia. Electrolyte Regulation Strategies for Improving the Electrochemical Performance of Aqueous Zinc-Ion Battery Cathodes [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2205045-0. |
[6] | Siying Zhu, Huiyang Li, Zhongli Hu, Qiaobao Zhang, Jinbao Zhao, Li Zhang. Research Progresses on Structural Optimization and Interfacial Modification of Silicon Monoxide Anode for Lithium-Ion Battery [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2103052-. |
[7] | Yue Yang, Jiawei Zhu, Pengyan Wang, Haimi Liu, Weihao Zeng, Lei Chen, Zhixiang Chen, Shichun Mu. NH2-MIL-125 (Ti) Derived Flower-Like Fine TiO2 Nanoparticles Implanted in N-doped Porous Carbon as an Anode with High Activity and Long Cycle Life for Lithium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2106002-. |
[8] | Zheng Bo, Jing Kong, Huachao Yang, Zhouwei Zheng, Pengpeng Chen, Jianhua Yan, Kefa Cen. Ultra-Low-Temperature Supercapacitor Based on Holey Graphene and Mixed-Solvent Organic Electrolyte [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2005054-. |
[9] | Xuewei Liu, Ying Niu, Ruixiong Cao, Xiaohong Chen, Hongyan Shang, Huaihe Song. Is there a Demand of Conducting Agent of Acetylene Black for Graphene-Wrapped Natural Spherical Graphite as Anode Material for Lithium-Ion Batteries? [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2012062-. |
[10] | Hui Li, Shuangyu Liu, Tianci Yuan, Bo Wang, Peng Sheng, Li Xu, Guangyao Zhao, Huitao Bai, Xin Chen, Zhongxue Chen, Yuliang Cao. Influence of NaOH Concentration on Sodium Storage Performance of Na0.44MnO2 [J]. Acta Phys. -Chim. Sin., 2021, 37(3): 1907049-. |
[11] | Xinyang Yue, Cui Ma, Jian Bao, Siyu Yang, Dong Chen, Xiaojing Wu, Yongning Zhou. Failure Mechanisms of Lithium Metal Anode and Their Advanced Characterization Technologies [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2005012-. |
[12] | Yaokun Ye, Zongxiang Hu, Jiahua Liu, Weicheng Lin, Taowen Chen, Jiaxin Zheng, Feng Pan. Research Progress of Theoretical Studies on Polarons in Cathode Materials of Lithium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2021, 37(11): 2011003-. |
[13] | Yuheng Sun, Mingda Gao, Hui Li, Li Xu, Qing Xue, Xinran Wang, Ying Bai, Chuan Wu. Application of Metal-Organic Frameworks to the Interface of Lithium Metal Batteries [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2007048-. |
[14] | Huifang An, Li Jiang, Feng Li, Ping Wu, Xiaoshu Zhu, Shaohua Wei, Yiming Zhou. Hydrogel-Derived Three-Dimensional Porous Si-CNT@G Nanocomposite with High-Performance Lithium Storage [J]. Acta Physico-Chimica Sinica, 2020, 36(7): 1905034-. |
[15] | Yongli Tong, Meizhen Dai, Lei Xing, Hengqi Liu, Wanting Sun, Xiang Wu. Asymmetric Hybrid Capacitor Based on NiCo2O4 Nanosheets Electrode [J]. Acta Physico-Chimica Sinica, 2020, 36(7): 1903046-. |
|