Acta Physico-Chimica Sinica ›› 2020, Vol. 36 ›› Issue (4): 1905004.doi: 10.3866/PKU.WHXB201905004
Special Issue: Solid-State Nuclear Magnetic Resonance
Previous Articles Next Articles
Received:
2019-05-02
Accepted:
2019-07-02
Published:
2020-03-12
Contact:
Mingxue Tang
E-mail:mingxue.tang@hpstar.ac.cn
Supported by:
Yongchao Shi, Mingxue Tang. NMR/EPR Investigation of Rechargeable Batteries[J]. Acta Physico-Chimica Sinica 2020, 36(4), 1905004. doi: 10.3866/PKU.WHXB201905004
Fig 1
High resolution SSNMR on battery materials. (a) 7Li MAS-NMR spectrum of pristine Li-rich Li1.2Ni0.13Mn0.54Co0.13O2 (LNMCO) with fine structure information for Li at transition metal (LiTM)and Li (LiLi) layers, respectively 4. (b) The obtained pjMATPASS spectra for Li2MnO3, a pure isotropic spectrum is shown as sum projection on the right 4. (c) Li+ pathway determination in composite electrolyte: 6Li replace 7Li on its way under potential stimulation 30 (a, b) Reprinted with permission from Ref. 4, Copyright (2017) American Chemical Society. (c) Reprinted with permission from Ref. 30, Copyright (2016) Wiley."
Fig 2
NMR adapted cell design. (a) Teflon 2032-size coin cell for in situ NMR 53. (b) Bellcore-type of bag cell for in situ NMR study 56. (c) Different versions of plastic cylindrical cells for in situ NMR investigation 28, 49, 57, 64, 69 (a) Adapted Ref. 53 from Elsevier publisher. (b) Adapted Ref. 56 from Elsevier publisher. (c) Adapted from Ref. 57 published by Elsevier. Reprinted with permission from Ref. 64, Copyright (2013) Springer Nature. Reprinted with permission from Ref. 28, Copyright (2014) American Chemical Society. Reprinted with permission from Ref. 49, Copyright (2015) American Chemical Society. Reprinted with permission from Ref. 69, Copyright (2018) Royal Society of Chemistry."
Fig 3
In situ NMR on batteries. (a) 31P NMR for Cu3P/Li half-cell investigation 57. Cycling curve is presented to the left and the vertical axis to the right demonstrates the molar fraction of Li ions. (b) 31P study a Ni5P4/Li half-cell 7. (c) 7Li NMR on a Li-Si battery for cycling mechanism and cause of self-discharge 71. Charge-discharge curves with specific capacity are shown to the right. (d) 23Na determination of the formation of Na dendrite 72 (a) Adapted from Ref. 57 published by Elsevier. (b) Reprinted with permission from Ref. 7, Copyright (2013) Royal Society of Chemistry. (c) Reprinted with permission from Ref. 71, Copyright (2009) American Chemical Society. (d) Reprinted with permission from Ref. 72, Copyright (2016) American Chemical Society. "
Fig 4
In situ MRI for Li ion batteries. (a) Coin type cell 7Li NMR images of the counter electrode and the lithium dendrites that were formed on a hard carbon electrode before (left) and after (right) passing current through the cell 53. (b) 7Li chemical shift imaging (CSI) for a Li/Li symmetric cell before and after polarization 48. (c) 7Li S-ISIS image with both position and chemical shift information that cannot be obtained by using CSI technique as shown in (d) 50 (a) Adapted from Ref. 53 published by Elsevier. (b) Reprinted with permission from Ref. 48, Copyright (2012) Springer Nature. (c) Reprinted with permission from Ref. 50, Copyright (2016) Springer Nature. "
Fig 9
Magnetic susceptibility for electrodes at different orientations. (a) 7Li NMR spectra 91 and (b) 7Li MRI 18 for Li metal. (c) 7Li NMR spectra for Li-rich Li1.08Mn1.92O4 electrode film 59 (a) Reprinted with permission from Ref. 91, Copyright (2013) American Chemical Society. (b) Adapted from Ref. 18 published by Elsevier. (c) Adapted from Ref. 59 published by Elsevier. "
Fig 5
In situ MRI on electrolytes upon battery cycling. (a) 19F image evolution of electrolyte upon cycling 43. (b) 7Li image of electrolyte 46. (c) 7Li MRI of both electrolyte and Li electrodes 64. (d) 7Li image of a solid symmetric Li/LGPS/Li battery for Li distribution and reason for increased resistance 70 (a) Adapted from Ref. 43. (b) Reprinted with permission from Ref. 46, Copyright (2016) American Chemical Society. (c) Reprinted with permission from Ref. 64, Copyright (2015) American Chemical Society. (d) Reprinted with permission from Ref. 70, Copyright (2018) American Chemical Society."
Fig 6
(a) Electrochemical cell for operando EPR study. The surrounding quartz glass tube is not shown. The in situ EPR spectra at the pristine, at the end of the first cycle, and at the end of the last 3C cycle are presented in (b), (c) and (d), respectively. Black and red curves are noted as the electrolyte without and with FEC additive 87 (a–d) Reprinted with permission from Ref. 87, Copyright (2015) Royal Society of Chemistry. "
Fig 7
(a) Picture and schematic of a LMO/Li half-cell battery for operando EPR studies. The whole battery is located in the center of the resonator cavity of an EPR spectrometer, with a connection to a galvanostat for electrochemical operation. (b) CW-EPR spectrum of the pristine battery and its constituents, pure LMO, LMO mixed with conductive additive, and Li metal. (c) Schematic of the interactions within LMO cathode and its time evolution upon battery cycling 88 (a–c) Reprinted with permission from Ref. 88, Copyright (2017) American Chemical Society."
Fig 8
(a) Picture of a LRSO/Li half-cell battery for in situ EPR image (EPRI) studies with cycling curves shown on the top-right corner 86. The whole battery is located in the center of the resonator cavity of an EPR spectrometer, with a connection to a galvanostat for electrochemical operation. (b–e) in situ EPR images (EPRI) of the LRSO/Li battery under different cycling states as marked in (a). (f) Thick lithium metal with mechanical stamp and its corresponding EPR image as shown on the top 89. (g) EPR image of lithium dendrites formed in a glass fiber separator 89. (a–e) Reprinted with permission from Ref. 86, Copyright (2015) Springer Nature. (f–g) Reprinted with permission from Ref. 89, Copyright (2018) Springer Nature. "
1 | Armand, M.; Tarascon, J. M. 2008, 451 (7179), 652. doi: 10.1038/451652a |
2 |
Kuhn A. ; Köhler J. ; Lotsch B. V. Phys. Chem. Chem. Phys. 2013, 15 (28), 11620.
doi: 10.1039/c3cp51985f |
3 |
Feng X. Y. ; Li X. ; Tang M. ; Gan A. ; Hu Y. Y. J. Power Sources 2017, 354, 172.
doi: 10.1016/j.jpowsour.2017.04.032 |
4 |
Li X. ; Tang M. ; Feng X. ; Hung I. ; Rose A. ; Chien P. H. ; Gan Z. ; Hu Y. Y. Chem. Mater. 2017, 29 (19), 8282.
doi: 10.1021/acs.chemmater.7b02589 |
5 |
Arbi K. ; Hoelzel M. ; Kuhn A. ; García-Alvarado F. ; Sanz J. Phys. Chem. Chem. Phys. 2014, 16 (34), 18397.
doi: 10.1039/C4CP02938K |
6 |
Arbi K. ; Bucheli W. ; Jiménez R. ; Sanz J. J. Eur. Ceram. Soc. 2015, 35 (5), 1477.
doi: 10.1016/j.jeurceramsoc.2014.11.023 |
7 |
Feng X. ; Tang M. ; O'Neill S. ; Hu Y. Y. J. Mater. Chem. A 2018, 6 (44), 22240.
doi: 10.1039/C8TA05433A |
8 |
Wilkening M. ; Heitjans P. ChemPhysChem 2012, 13 (1), 53.
doi: 10.1002/cphc.201100580 |
9 |
Bottke P. ; Rettenwander D. ; Schmidt W. ; Amthauer G. ; Wilkening M. Chem. Mater. 2015, 27 (19), 6571.
doi: 10.1021/acs.chemmater.5b02231 |
10 |
Britton M. M. ; Bayley P. M. ; Howlett P. C. ; Davenport A. J. ; Forsyth M. J. Phys. Chem. Lett. 2013, 4 (17), 3019.
doi: 10.1021/jz401415a |
11 |
Ilott A. J. ; Mohammadi M. ; Schauerman C. M. ; Ganter M. J. ; Jerschow A. Nat. Commun. 2018, 9 (1), 1776.
doi: 10.1038/s41467-018-04192-x |
12 |
Messinger R. J. ; Ménétrier M. ; Salager E. ; Boulineau A. ; Duttine M. ; Carlier D. ; Ateba Mba J. M. ; Croguennec L. ; Masquelier C. ; Massiot D. ; et al Chem. Mater. 2015, 27 (15), 5212.
doi: 10.1021/acs.chemmater.5b01234 |
13 |
Shadike Z. ; Zhao E. ; Zhou Y. N. ; Yu X. ; Yang Y. ; Hu E. ; Bak S. ; Gu L. ; Yang X. Q. Adv. Energy Mater. 2018, 8 (17), 1702588.
doi: 10.1002/aenm.201702588 |
14 |
Daza P. C. C. ; Meneses R. A. M. ; de Almeida Ferreira J. L. ; Araujo J. A. ; Rodrigues A. C. M. ; da Silva C. R. M. Ceram. Int. 2018, 44 (2), 2138.
doi: 10.1016/j.ceramint.2017.10.166 |
15 |
Hammad Fawey M. ; Chakravadhanula V. S. K. ; Reddy M. A. ; Rongeat C. ; Scherer T. ; Hahn H. ; Fichtner M. ; Kübel C. Microsc. Res. Tech. 2016, 79 (7), 615.
doi: 10.1002/jemt.22675 |
16 |
Shang T. ; Wen Y. ; Xiao D. ; Gu L. ; Hu Y. S. ; Li H. Adv. Energy Mater. 2017, 7 (23), 1700709.
doi: 10.1002/aenm.201700709 |
17 |
Lacivita V. ; Artrith N. ; Ceder G. Chem. Mater. 2018, 30 (20), 7077.
doi: 10.1021/acs.chemmater.8b02812 |
18 |
Ilott A. J. ; Chandrashekar S. ; Klöckner A. ; Chang H. J. ; Trease N. M. ; Grey C. P. ; Greengard L. ; Jerschow A. J. Magn. Reson. 2014, 245, 143.
doi: 10.1016/j.jmr.2014.06.013 |
19 |
Harks P. P. R. M. L. ; Mulder F. M. ; Notten P. H. L. J. Power Sources 2015, 288, 92.
doi: 10.1016/j.jpowsour.2015.04.084 |
20 |
Pecher O. ; Carretero-González J. ; Griffith K. J. ; Grey C. P. Chem. Mater. 2017, 29 (1), 213.
doi: 10.1021/acs.chemmater.6b03183 |
21 | Zhang Z. R. ; Yang Y. ; Liu H. S. Prog. Chem. 2013, 15 (1), 18. |
张忠如; 杨勇; 刘汉三. 化学进展, 2013, 15 (1), 18. | |
22 |
Zhong G. M. ; Hou X. ; Chen S. S. ; Yang Y. Chin. Sci. Bull. 2013, 58 (32), 3287.
doi: 10.1360/972013-878 |
钟贵明; 侯旭; 陈守顺; 杨勇. 科学通报, 2013, 58 (32), 3287.
doi: 10.1360/972013-878 |
|
23 |
Zhong G. M. ; Liu Z. G. ; Wang D. W. ; Li Q. ; Fu R. Q. ; Yang Y. J. Electrochem. 2016, 22 (3), 231.
doi: 10.13208/j.electrochem.151246 |
钟贵明; 刘子庚; 王大为; 李琦; 傅日强; 杨勇. 电化学, 2016, 22 (3), 231.
doi: 10.13208/j.electrochem.151246 |
|
24 | Liu X. S. ; Xiang Y. X. ; Zhong G. M. ; Li Q. ; Zheng S. X. ; Fu R. Q. ; Yang Y. Chin. J. Power Sources 2019, 43 (1), 5. |
刘湘思; 向宇轩; 钟贵明; 李琦; 郑时尧; 傅日强; 杨勇. 电源技术, 2019, 43 (1), 5. | |
25 |
Li C. ; Shen M. ; Hu B. Acta Phys. -Chim. Sin. 2020, 36 (4), 1902019.
doi: 10.3866/PKU.WHXB201902019 |
李超; 沈明; 胡炳文. 物理化学学报, 2020, 36 (4), 1902019.
doi: 10.3866/PKU.WHXB201902019 |
|
26 |
Hain H. ; Scheuermann M. ; Heinzmann R. ; Wünsche L. ; Hahn H. ; Indris S. Z. Für Anorg. Allg. Chem. 2012, 638 (10), 1581.
doi: 10.1002/zaac.201204029 |
27 |
Murakami M. ; Noda Y. ; Koyama Y. ; Takegoshi K. ; Arai H. ; Uchimoto Y. ; Ogumi Z. J. Phys. Chem. C 2014, 118 (28), 15375.
doi: 10.1021/jp5039909 |
28 |
Salager E. ; Sarou-Kanian V. ; Sathiya M. ; Tang M. ; Leriche J. B. ; Melin P. ; Wang Z. ; Vezin H. ; Bessada C. ; Deschamps M. ; et al Chem. Mater. 2014, 26 (24), 7009.
doi: 10.1021/cm503280s |
29 |
Hung I. ; Zhou L. ; Pourpoint F. ; Grey C. P. ; Gan Z. J. Am. Chem. Soc. 2012, 134 (4), 1898.
doi: 10.1021/ja209600m |
30 |
Zheng J. ; Tang M. ; Hu Y. Y. Angew. Chem. Int. Ed. 2016, 55 (40), 12538.
doi: 10.1002/anie.201607539 |
31 |
Zheng J. ; Hu Y. Y. ACS Appl. Mater. Interfaces 2018, 10 (4), 4113.
doi: 10.1021/acsami.7b17301 |
32 |
Li S. H. ; Li J. ; Zheng A. M. ; Deng F. Acta Phys. -Chim. Sin. 2017, 33 (2), 270.
doi: 10.3866/PKU.WHXB201611022 |
李申慧; 李静; 郑安民; 邓风. 物理化学学报, 2017, 33 (2), 270.
doi: 10.3866/PKU.WHXB201611022 |
|
33 |
Shi F. ; Hu L. ; Ren J. ; Yang Q. Acta Phys. -Chim. Sin. 2020, 36 (4), 1902018.
doi: 10.3866/PKU.WHXB201902018 |
石峰; 胡丽丽; 任进军; 杨秋红. 物理化学学报, 2020, 36 (4), 1902018.
doi: 10.3866/PKU.WHXB201902018 |
|
34 |
Liu X. ; Wang Q. ; Wang C. ; Xu J. ; Deng F. Acta Phys. -Chim. Sin. 2020, 36 (4), 1905035.
doi: 10.3866/PKU.WHXB201905035 |
刘小龙; 王强; 王超; 徐君; 邓风. 物理化学学报, 2020, 36 (4), 1905035.
doi: 10.3866/PKU.WHXB201905035 |
|
35 | Ji, Y.; Liang, L.; Guo, C.; Polenova, T.; Hou, G. Acta Phys. -Chim. Sin. 2020, 36 (4), 1905029. |
纪毅,梁力鑫, Guo C.,包信和, Polenova T.,侯广进.物理化学学报, 2020, 36 (4), 1905029. doi: 10.3866/PKU.WHXB201905029 | |
36 |
Li Y. ; Wu X. ; Liu C. ; Wang M. ; Song B. ; Yu G. ; Yang G. ; Hou W. ; Gong X. ; Peng L. Acta Phys. -Chim. Sin. 2020, 36 (4), 1905021.
doi: 10.3866/PKU.WHXB201905021 |
李玉红; 吴新平; 刘聪; 王萌; 宋本腾; 郁桂云; 杨刚; 侯文华; 龚学庆; 彭路明. 物理化学学报, 2020, 36 (4), 1905021.
doi: 10.3866/PKU.WHXB201905021 |
|
37 |
Ji W. ; Shen R. ; Yang R. ; Yu G. ; Guo X. ; Peng L. ; Ding W. J. Mater. Chem. A 2014, 2 (3), 699.
doi: 10.1039/C3TA13708B |
38 |
Wang D. ; Zhong G. ; Pang W. K. ; Guo Z. ; Li Y. ; McDonald M. J. ; Fu R. ; Mi J. X. ; Yang Y. Chem. Mater. 2015, 27 (19), 6650.
doi: 10.1021/acs.chemmater.5b02429 |
39 |
Xiang Y. X. ; Zheng G. ; Zhong G. ; Wang D. ; Fu R. ; Yang Y. Solid State Ion. 2018, 318, 19.
doi: 10.1016/j.ssi.2017.11.025 |
40 |
Jiang Y. ; Yan X. ; Ma Z. ; Mei P. ; Xiao W. ; You Q. ; Zhang Y. Polymers 2018, 10 (11), 1237.
doi: 10.3390/polym10111237 |
41 |
Yan X. ; Peng B. ; Hu B. ; Chen Q. Polymer 2016, 99, 44.
doi: 10.1016/j.polymer.2016.06.056 |
42 |
Gao L. ; Chen J. ; Liu Y. ; Yamauchi Y. ; Huang Z. ; Kong X. J. Mater. Chem. A 2018, 6 (25), 12012.
doi: 10.1039/C8TA03436B |
43 | Gerald, R. E.; Klingler, R. J.; Rathke, J. W.; Sand, G.; Woelk, K. In Situ Imaging of Charge Carriers in an Electrochemical Cell. In Spatially Resolved Magnetic Resonance; Blmler, P., Blmich, B., Botto, R., Fukushima, E., Eds.; Wiley-VCH Verlag GmbH: Weinheim, Germany, 1998; pp 111–119. |
44 |
Bhattacharyya R. ; Key B. ; Chen H. ; Best A. S. ; Hollenkamp A. F. ; Grey C. P. Nat. Mater. 2010, 9 (6), 504.
doi: 10.1038/nmat2764 |
45 |
Grey C. P. ; Tarascon J. M. Nat. Mater. 2017, 16 (1), 45.
doi: 10.1038/nmat4777 |
46 |
Krachkovskiy S. A. ; Bazak J. D. ; Werhun P. ; Balcom B. J. ; Halalay I. C. ; Goward G. R. J. Am. Chem. Soc. 2016, 138 (25), 7992.
doi: 10.1021/jacs.6b04226 |
47 |
Abbrent S. ; Greenbaum S. Curr. Opin. Colloid Interface Sci. 2013, 18 (3), 228.
doi: 10.1016/j.cocis.2013.03.008 |
48 |
Chandrashekar S. ; Trease N. M. ; Chang H. J. ; Du L. S. ; Grey C. P. ; Jerschow A. Nat. Mater. 2012, 11 (4), 311.
doi: 10.1038/nmat3246 |
49 |
Tang J. A. ; Dugar S. ; Zhong G. ; Dalal N. S. ; Zheng J. P. ; Yang Y. ; Fu R. Sci. Rep. 2013, 3 (1), 1408.
doi: 10.1038/srep02596 |
50 |
Tang M. ; Sarou-Kanian V. ; Melin P. ; Leriche J. B. ; Ménétrier M. ; Tarascon J. M. ; Deschamps M. ; Salager E. Nat. Commun. 2016, 7 (1), 13284.
doi: 10.1038/ncomms13284 |
51 |
Zhong G. ; Bai J. ; Duchesne P. N. ; McDonald M. J. ; Li Q. ; Hou X. ; Tang J. A. ; Wang Y. ; Zhao W. ; Gong Z. ; et al Chem. Mater. 2015, 27 (16), 5736.
doi: 10.1021/acs.chemmater.5b02290 |
52 |
Li C. ; Shen M. ; Lou X. ; Hu B. J. Phys. Chem. C 2018, 122 (48), 27224.
doi: 10.1021/acs.jpcc.8b09151 |
53 |
Ii R. E. G. ; Klingler R. J. ; Sandı G. ; Johnson C. S. ; Scanlon L. G. ; Rathke J. W. J. Power Sources 2000, 89 (2), 237.
doi: 10.1016/S0378-7753(00)00435-3 |
54 |
Chevallier F. ; Letellier M. ; Morcrette M. ; Tarascon J. M. ; Frackowiak E. ; Rouzaud J. N. ; Béguin F. Electrochem. Solid-State Lett. 2003, 6 (11), A225.
doi: 10.1149/1.1612011 |
55 |
Letellier M. ; Chevallier F. ; Clinard C. ; Frackowiak E. ; Rouzaud J. N. ; Béguin F. ; Morcrette M. ; Tarascon J. M. J. Chem. Phys. 2003, 118 (13), 6038.
doi: 10.1063/1.1556092 |
56 |
Letellier M. ; Chevallier F. ; Morcrette M. Carbon 2007, 45 (5), 1025.
doi: 10.1016/j.carbon.2006.12.018 |
57 |
Poli F. ; Kshetrimayum J. S. ; Monconduit L. ; Letellier M. Electrochem. Commun. 2011, 13 (12), 1293.
doi: 10.1016/j.elecom.2011.07.019 |
58 |
Klett M. ; Giesecke M. ; Nyman A. ; Hallberg F. ; Lindström R. W. ; Lindbergh G. ; Furó I. J. Am. Chem. Soc. 2012, 134 (36), 14654.
doi: 10.1021/ja305461j |
59 |
Trease N. M. ; Zhou L. ; Chang H. J. ; Zhu B. Y. ; Grey C. P. Solid State Nucl. Magn. Reson. 2012, 42, 62.
doi: 10.1016/j.ssnmr.2012.01.004 |
60 |
Chevallier F. ; Poli F. ; Montigny B. ; Letellier M. Carbon 2013, 61, 140.
doi: 10.1016/j.carbon.2013.04.078 |
61 |
Krachkovskiy S. A. ; Pauric ; Allen. D. ; Halalay I. C. ; Goward G. R. J. Phys. Chem. Lett. 2013, 4 (22), 3940.
doi: 10.1021/jz402103f |
62 |
Shimoda K. ; Murakami M. ; Takamatsu D. ; Arai H. ; Uchimoto Y. ; Ogumi Z. Electrochimica Acta 2013, 108, 343.
doi: 10.1016/j.electacta.2013.06.120 |
63 |
Romanenko K. ; Forsyth M. ; O'Dell L. A. J. Magn. Reson. 2014, 248, 96.
doi: 10.1016/j.jmr.2014.09.017 |
64 |
Chang H. J. ; Ilott A. J. ; Trease N. M. ; Mohammadi M. ; Jerschow A. ; Grey C. P. J. Am. Chem. Soc. 2015, 137 (48), 15209.
doi: 10.1021/jacs.5b09385 |
65 |
Chang H. J. ; Trease N. M. ; Ilott A. J. ; Zeng D. ; Du L. S. ; Jerschow A. ; Grey C. P. J. Phys. Chem. C 2015, 119 (29), 16443.
doi: 10.1021/acs.jpcc.5b03396 |
66 |
Klamor S. ; Zick K. ; Oerther T. ; Schappacher F. M. ; Winter M. ; Brunklaus G. Phys. Chem. Chem. Phys. 2015, 17 (6), 4458.
doi: 10.1039/C4CP05021E |
67 |
Sethurajan A. K. ; Krachkovskiy S. A. ; Halalay I. C. ; Goward G. R. ; Protas B. J. Phys. Chem. B 2015, 119 (37), 12238.
doi: 10.1021/acs.jpcb.5b04300 |
68 |
Romanenko K. ; Jin L. ; Howlett P. ; Forsyth M. Chem. Mater. 2016, 28 (8), 2844.
doi: 10.1021/acs.chemmater.6b00797 |
69 |
Kayser S. A. ; Mester A. ; Mertens A. ; Jakes P. ; Eichel R. A. ; Granwehr J. Phys. Chem. Chem. Phys. 2018, 20 (20), 13765.
doi: 10.1039/C8CP01067F |
70 |
Chien P. H. ; Feng X. ; Tang M. ; Rosenberg J. T. ; O'Neill S. ; Zheng J. ; Grant S. C. ; Hu Y. Y. J. Phys. Chem. Lett. 2018, 9 (8), 1990.
doi: 10.1021/acs.jpclett.8b00240 |
71 |
Key B. ; Bhattacharyya R. ; Morcrette M. ; Seznéc V. ; Tarascon J. M. ; Grey C. P. J. Am. Chem. Soc. 2009, 131 (26), 9239.
doi: 10.1021/ja8086278 |
72 |
Bayley P. M. ; Trease N. M. ; Grey C. P. J. Am. Chem. Soc. 2016, 138 (6), 1955.
doi: 10.1021/jacs.5b12423 |
73 |
Britton M. M. Spectrosc. 2017, 101, 51.
doi: 10.1016/j.pnmrs.2017.03.001 |
74 |
Krachkovskiy S. A. ; Foster J. M. ; Bazak J. D. ; Balcom B. J. ; Goward G. R. J. Phys. Chem. C 2018, 122 (38), 21784.
doi: 10.1021/acs.jpcc.8b06563 |
75 |
Ilott A. J. ; Trease N. M. ; Grey C. P. ; Jerschow A. Nat. Commun. 2014, 5 (1), 4536.
doi: 10.1038/ncomms5536 |
76 |
Gourier D. ; Tranchant A. ; Baffier N. ; Messina R. Electrochim. Acta 1992, 37 (15), 2755.
doi: 10.1016/0013-4686(92)85203-W |
77 |
Alcántara R. ; Lavela P. ; Tirado J. L. ; Zhecheva E. ; Stoyanova R. J. Electroanal. Chem. 1998, 454 (1–2), 173.
doi: 10.1016/S0022-0728(98)00278-2 |
78 |
Stoyanova R. K. ; Zhecheva E. N. ; Gorova M. Y. J. Mater. Chem. 2000, 10 (6), 1377.
doi: 10.1039/A909066E |
79 |
Alcántara R. ; Ortiz G. F. ; Lavela P. ; Tirado J. L. ; Stoyanova R. ; Zhecheva E. Chem. Mater. 2006, 18 (9), 2293.
doi: 10.1021/cm060060p |
80 |
Zhecheva E. ; Stoyanova R. ; Shinova E. Mater. Sci. 2007, 42 (10), 3343.
doi: 10.1007/s10853-006-0744-x |
81 |
Jakes P. ; Erdem E. ; Ozarowski A. ; Tol J. ; van Buckan R. ; Mikhailova D. ; Ehrenberg H. ; Eichel R. A. Phys. Chem. Chem. Phys. 2011, 13 (20), 9344.
doi: 10.1039/C0CP02048F |
82 |
Stoyanova R. ; Ivanova S. ; Zhecheva E. ; Samoson A. ; Simova S. ; Tzvetkova P. ; Barra A. L. Phys. Chem. Chem. Phys. 2014, 16 (6), 2499.
doi: 10.1039/C3CP54438A |
83 |
Pal D. ; Abdi S. H. ; Shukla M. J. Mater. Sci. Mater. Electron. 2015, 26 (9), 6647.
doi: 10.1007/s10854-015-3265-z |
84 |
Sathiya M. ; Rousse G. ; Ramesha K. ; Laisa C. P. ; Vezin H. ; Sougrati M. T. ; Doublet M. L. ; Foix D. ; Gonbeau D. ; Walker W. ; et al Nat. Mater. 2013, 12 (9), 827.
doi: 10.1038/nmat3699 |
85 |
Senguttuvan P. ; Rousse G. ; Arroyo y de Dompablo M. E. ; Vezin H. ; Tarascon J. M. ; Palacín M. R. J. Am. Chem. Soc. 2013, 135 (10), 3897.
doi: 10.1021/ja311044t |
86 |
Sathiya M. ; Leriche J. B. ; Salager E. ; Gourier D. ; Tarascon J. M. ; Vezin H. Nat. Commun. 2015, 6 (1), 6276.
doi: 10.1038/ncomms7276 |
87 |
Wandt J. ; Marino C. ; Gasteiger H. A. ; Jakes P. ; Eichel R. A. ; Granwehr J. Energy Environ. Sci. 2015, 8 (4), 1358.
doi: 10.1039/C4EE02730B |
88 |
Tang M. ; Dalzini A. ; Li X. ; Feng X. ; Chien P. H. ; Song L. ; Hu Y. Y. J. Phys. Chem. Lett. 2017, 8 (17), 4009.
doi: 10.1021/acs.jpclett.7b01425 |
89 |
Niemöller A. ; Jakes P. ; Eichel R. A. ; Granwehr J. Sci. Rep. 2018, 8 (1), 14331.
doi: 10.1038/s41598-018-32112-y |
90 |
Wandt J. ; Jakes P. ; Granwehr J. ; Eichel R. A. ; Gasteiger H. A. Mater. Today 2018, 21 (3), 231.
doi: 10.1016/j.mattod.2017.11.001 |
91 |
Blanc F. ; Leskes M. ; Grey C. P. Acc. Chem. Res. 2013, 46 (9), 1952.
doi: 10.1021/ar400022u |
[1] | Lianlian Ji, Xianpeng Wang, Yingying Zhang, Xueli Shen, Di Xue, Lu Wang, Zi Wang, Wenchong Wang, Lizhen Huang, Lifeng Chi. In situ and Ex situ Investigation of the Organic-Organic Interface Effect [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2304002-. |
[2] | Feng Wu, Qing Li, Lai Chen, Zirun Wang, Gang Chen, Liying Bao, Yun Lu, Shi Chen, Yuefeng Su. An Optimized Synthetic Process for the Substitution of Cobalt in Nickel-Rich Cathode Materials [J]. Acta Phys. -Chim. Sin., 2022, 38(5): 2007017-. |
[3] | Xiaobo Ding, Qianhui Huang, Xunhui Xiong. Research and Application of Fast-Charging Graphite Anodes for Lithium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2204057-. |
[4] | Yuefeng Su, Qiyu Zhang, Lai Chen, Liying Bao, Yun Lu, Shi Chen, Feng Wu. Effects of ZrO2 Coating on Ni-Rich LiNi0.8Co0.1Mn0.1O2 Cathodes with Enhanced Cycle Stabilities [J]. Acta Phys. -Chim. Sin., 2021, 37(3): 2005062-. |
[5] | Sidong Zhang, Yuan Liu, Muyao Qi, Anmin Cao. Localized Surface Doping for Improved Stability of High Energy Cathode Materials [J]. Acta Phys. -Chim. Sin., 2021, 37(11): 2011007-. |
[6] | Chao Li, Ming Shen, Bingwen Hu. Solid-State NMR and EPR Methods for Metal Ion Battery Research [J]. Acta Physico-Chimica Sinica, 2020, 36(4): 1902019-. |
[7] | Shihan Li,Zhenchao Zhao,Shikun Li,Youdong Xing,Weiping Zhang. Aluminum Distribution and Brønsted Acidity of Al-Rich SSZ-13 Zeolite: A Combined DFT Calculation and Solid-State NMR Study [J]. Acta Physico-Chimica Sinica, 2020, 36(4): 1903021-. |
[8] | Xiaolong Liu, Qiang Wang, Chao Wang, Jun Xu, Feng Deng. Hydrogen-Bond Induced Crystallization of Silicalite-1 Zeolite as Revealed by Solid-State NMR Spectroscopy [J]. Acta Physico-Chimica Sinica, 2020, 36(4): 1905035-. |
[9] | Jing Deng,Tao Ma,Ziwei Chang,Weijing Zhao,Jun Yang. Determination of Three-Dimensional Structures of Protein Assemblies via Solid-State NMR [J]. Acta Physico-Chimica Sinica, 2020, 36(4): 1905019-. |
[10] | Yuhong Li,Xin-Ping Wu,Cong Liu,Meng Wang,Benteng Song,Guiyun Yu,Gang Yang,Wenhua Hou,Xue-Qing Gong,Luming Peng. NMR and EPR Studies of Partially Reduced TiO2 [J]. Acta Physico-Chimica Sinica, 2020, 36(4): 1905021-. |
[11] | Yi Ji, Lixin Liang, Changmiao Guo, Xinhe Bao, Tatyana Polenova, Guangjin Hou. Zero-Quantum Homonuclear Recoupling Symmetry Sequences in Solid-State Fast MAS NMR Spectroscopy [J]. Acta Physico-Chimica Sinica, 2020, 36(4): 1905029-. |
[12] | Fenfen Wang, Peng Wang, Hongyao Niu, Yingfeng Yu, Pingchuan Sun. Solid-State NMR Studies on Hydrogen Bonding Interactions and Structural Evolution in PAA/PEO Blends [J]. Acta Physico-Chimica Sinica, 2020, 36(4): 1912016-. |
[13] | Zonghui Zhang, Jinjun Ren, Lili Hu. Structure Investigations on 100LiO1/2-(100-x)PO5/2-xTeO2 Fast Ionic Conducting Glasses Using Solid-State Nuclear Magnetic Resonance Spectroscopy [J]. Acta Physico-Chimica Sinica, 2020, 36(11): 2001048-. |
[14] | Huabo Zhao, Ding Ma. χ-Fe5C2: Structure, Synthesis, and Tuning of Catalytic Properties [J]. Acta Physico-Chimica Sinica, 2020, 36(1): 1906087-. |
[15] | Jiangtao HU, Jiaxin ZHENG, Feng PAN. Research Progress into the Structure and Performance of LiFePO4 Cathode Materials [J]. Acta Physico-Chimica Sinica, 2019, 35(4): 361-370. |
|