Acta Phys. -Chim. Sin. ›› 2022, Vol. 38 ›› Issue (11): 2204057.doi: 10.3866/PKU.WHXB202204057
Special Issue: Special Issue of Emerging Scientists
• REVIEW • Previous Articles Next Articles
Xiaobo Ding, Qianhui Huang, Xunhui Xiong()
Received:
2022-04-29
Accepted:
2022-06-06
Published:
2022-06-13
Contact:
Xunhui Xiong
E-mail:esxxiong@scut.edu.cn
About author:
Xunhui Xiong, Email: esxxiong@scut.edu.cnSupported by:
Xiaobo Ding, Qianhui Huang, Xunhui Xiong. Research and Application of Fast-Charging Graphite Anodes for Lithium-Ion Batteries[J].Acta Phys. -Chim. Sin., 2022, 38(11): 2204057.
Table 1
modification strategies and electrochemical properties of graphite in other reports."
Modification strategy | Electrochemical performance (capacity/corresponding current density) | Reference |
Edge-plane activated graphite coated by an amorphous Si nanolayer | 100 mAh?g?1/1 A?g?1 200 mAh?g?1/0.67 A?g?1 | |
The electrolyte consists of 1.0 M lithium trifluoromethanesulfonate (LiTF) in DEGDME | ~100 mAh?g?1/1 A?g?1 | |
The electrolyte consists of a superconcentrated 4.5 M LiFSA/AN solution | ~278 mAh?g?1/1.86 A?g?1 | |
LTO coated graphite | ~143 mAh?g?1/2.14 A?g?1 | |
PEGPE coated natural graphite | 298 mAh?g?1/0.186 A?g?1 | |
Graphite particles oriented perpendicularly to the current collector | 83 mAh?g?1/0.74 A?g?1 | |
Silicon-nanolayer-embedded graphite/carbon composite | ~260 mAh?g?1/1.86 A?g?1 | |
Zirconia film coated graphite | ~370 mAh?g?1/1.12 A?g?1 | |
Superconcentrated (1 : 1.1) LiFSA/DMC electrolytes | ~243 mAh?g?1/1.86 A?g?1 | |
The electrolyte consists of 3.6 M LiFSA in DME | ~108 mAh?g?1/1.86 A?g?1 ~250 mAh?g?1/0.74 A?g?1 | |
Using a combination of lithium difluorophosphate (LiDFP) and vinylene carbonate (VC) as electrolyte additives | 250 mAh?g?1/1.8 A?g?1 | |
Amorphous carbon coating on the graphite surface | 263 mAh?g?1/1.86 A?g?1 | |
Adding LiNO3 into the graphite electrode | 291.7 mAh?g?1/0.68 A?g?1 | |
A rapid cell internal heating step | 80% SOC acquired in 15 min at 50 ℃ | |
An asymmetric temperature modulation method | 6C charge to 80% SOC |
Fig 2
(a) Structural diagram of MoOx-MoPx@graphite composite; (b) construction strategy of MoOx-MoPx composite coating; (c) discharge electrochemical behavior of MoOx-MoPx@graphite composites in three electrode full cell system. (d) and (e) the initial morphology of the uncoated graphite electrode; (f) and (g) the morphology of uncoated graphite electrode after cycle; (h) and (I) the morphology of MoOx-MoPx@graphite after cycle. Adapted with permission from Ref. 45, Copyright 2021, Nature publisher."
Fig 3
(a) HR-TEM result of original graphite; (b) HR-TEM result of turbine carbon@graphite composite; (c) schematic diagram of lithium ion migration in original graphite; (d) schematic diagram of lithium ion migration in turbine carbon@graphite composites. Adapted with permission from Ref. 16, Copyright 2020, Wiley."
Fig 4
(a) Synthetic strategy of amorphous silicon coated edge activated graphite; (b) the mechanism of improving the electrochemical properties of graphite by edge activation and amorphous silicon coating. (c) HR-TEM of composite material; (d) comparison of electrochemically active surface areas of the two materials. SEM image of (e) original graphite, (f) nickel adsorbed graphite, (g) amorphous silicon coated graphite. Adapted with permission from Ref. 21, Copyright 2017, Nature publisher."
Fig 5
(a) Structural diagram of TiO2?x@graphite, (b) HR-TEM result of TiO2?x@graphite 47; (c) structural diagram of amorphous Al2O3@graphite, (d) HR-TEM result of amorphous Al2O3@graphite 48; (e) synthesis strategy of PDA@graphite, (f) HR-TEM result of PDA@graphite 49. (a, b) Adapted with permission from Ref. 47, Copyright 2017, Elsevier. (c, d) Adapted with permission from Ref. 48, Copyright 2019, Elsevier. (e, f) Adapted with permission from Ref. 49, Copyright 2022, Wiley."
Fig 6
(a) Mechanism of KOH activated graphite 55; (b) mechanism of acid-base activated graphite 56; (c) SEM images of worm like expanded graphite prepared under different conditions 57. (a) Adapted with permission from Ref. 55, Copyright 2015, Elsevier. (b) Adapted with permission from Ref. 56, Copyright 2020, Elsevier. (c) Adapted with permission from Ref. 57, Copyright 2021, Elsevier."
Fig 7
(a) Schematic of the preparation of MEG and its mechanism in improving the capacity 61; (b) schematic illustration of Li+ insertion in CNT separated porous graphite nano sheets 62; (c) schematic showing magnetically aligned graphite particles to shorten the Li+ diffusion path 33. (a) Adapted with permission from Ref. 61, Copyright 2019, Elsevier. (b) Adapted with permission from Ref. 62, Copyright 2019, Elsevier. (c) Adapted with permission from Ref. 33, Copyright 2016, Nature publisher."
Fig 8
Regulating the Li+ solvation structure. (a) Desolvation energies of Li, Na, and Mg ions compared to those of K ions 75. (b) The dependence of desolvation energy between solvents and Li ion on solvent type 37. (a) Adapted with permission from Ref. 75, Copyright 2017, The Electrochemical Society. (b) Adapted with permission from Ref. 37, Copyright 2013, The Electrochemical Society."
Fig 9
(a) improvement mechanism of FEC additive on the performance of NCM/graphite full cell; (b) homo and LUMO orbitals of DMC, EC and FI molecules; (c) illustration of solution structure and Li+ embedding process in graphite layer a) LCE and b) in DME without/using BTFE 71; (d) schematic diagram of adding metal cation additives to adjust the solvation structure to inhibit the cointercalation of solvent molecules 85. (a) Adapted with permission from Ref. 81, Copyright 2018, Elsevier. (b) Adapted with permission from Ref. 82, Copyright 2019, Elsevier.) (c) Adapted with permission from Ref. 71, Copyright 2021, Wiley. (d) Adapted with permission from Ref. 85, Copyright 2016, American Chemical Society."
Fig 10
Optimization of fast-charging protocols. (a) Voltage and current profiles of CC-CV and pulse charging 93. (b) A LIB cell under an asymmetric temperature modulation method is rapidly pre-heated to and charged at 60 ℃ 94. (a) Adapted with permission from Ref. 93, Copyright 2001, Elsevier. (b) Adapted with permission from Ref. 94, Copyright 2019, Cell Press."
1 | (a) Chen, C.; Liang, Q. W.; Chen, Z. X.; Zhu, W. Y.; Wang, Z. J.; Li, Y.; Wu, X. W.; Xiong, X. H. Angew. Chem. Int. Ed. 2021, 60 (51), 26718. doi: 10.1002/anie.202110441 |
(b) Wu, F. X.; Maier, J.; Yu, Y. Chem. Soc. Rev. 2020, 49 (5), 1569. doi: 10.1039/c7cs00863e | |
(c) Chen, C.; Liang, Q. W.; Wang, G.; Liu, D. D.; Xiong, X. H. Adv. Funct. Mater. 2022, 32 (4), 2107249. doi: 10.1002/adfm.202107249 | |
2 | (a) Collin, R.; Miao, Y.; Yokochi, A.; Enjeti, P.; von Jouanne, A. Energies 2019, 12 (10), 1839. doi: 10.3390/en12101839 |
(b) Deb, N.; Singh, R.; Brooks, R. R.; Bai, K. Energies 2021, 14 (22), 7566. doi: 10.3390/en14227566 | |
3 |
Cai W. L. ; Yao Y. X. ; Zhu G. L. ; Yan C. ; Jiang L. L. ; He C. X. ; Huang J. Q. ; Zhang Q. Chem. Soc. Rev. 2020, 49 (12), 3806.
doi: 10.1039/c9cs00728h |
4 |
Zhang S. S. Chemelectrochem 2020, 7 (17), 3569.
doi: 10.1002/celc.202000650 |
5 |
Huang S. ; Wu X. Y. ; Cavalheiro G. M. ; Du X. N. ; Liu B. Z. ; Du Z. J. ; Zhang G. S. J. Electrochem. Soc. 2019, 166 (14), A3254.
doi: 10.1149/2.0441914jes |
6 |
Tanim T. R. ; Dufek E. J. ; Evans M. ; Dickerson C. ; Jansen A. N. ; Polzin B. J. ; Dunlop A. R. ; Trask S. E. ; Jackman R. ; Bloom I. ; et al J. Electrochem. Soc. 2019, 166 (10), A1926.
doi: 10.1149/2.0731910jes |
7 |
Deb S. ; Tammi K. ; Kalita K. ; Mahanta P. Wiley Interdiscip. Rev. Energy Environ. 2018, 7 (6), e306.
doi: 10.1002/wene.306 |
8 |
Previati G. ; Mastinu G. ; Gobbi M. Energies 2022, 15 (4), 1326.
doi: 10.3390/en15041326 |
9 |
Ahmed S. ; Bloom I. ; Jansen A. N. ; Tanim T. ; Dufek E. J. ; Pesaran A. ; Burnham A. ; Carlson R. B. ; Dias F. ; Hardy K. ; et al J. Power Sources 2017, 367, 250.
doi: 10.1016/j.jpowsour.2017.06.055 |
10 |
Raboaca M. S. ; Meheden M. ; Musat A. ; Viziteu A. ; Creanga A. ; Vlad V. ; Filote C. ; Rata M. ; Lavric A. Int. J. Energy Res. 2022, 46 (2), 523.
doi: 10.1002/er.7206 |
11 |
Li L. ; Zhang D. ; Deng J. P. ; Gou Y. C. ; Fang J. F. ; Cui H. ; Zhao Y. Q. ; Cao M. H. Carbon 2021, 183, 721.
doi: 10.1016/j.carbon.2021.07.053 |
12 |
Logan E. R. ; Dahn J. R. Trends Chem. 2020, 2 (4), 354.
doi: 10.1016/j.trechm.2020.01.011 |
13 |
Liu Y. Y. ; Zhu Y. Y. ; Cui Y. Nat. Energy 2019, 4 (7), 540.
doi: 10.1038/s41560-019-0405-3 |
14 |
Weiss M. ; Ruess R. ; Kasnatscheew J. ; Levartovsky Y. ; Levy N. R. ; Minnmann P. ; Stolz L. ; Waldmann T. ; Wohlfahrt-Mehrens M. ; Aurbach D. ; et al Adv. Energy Mater. 2021, 11 (33), 2101126.
doi: 10.1002/aenm.202101126 |
15 |
Xie W. L. ; Liu X. H. ; He R. ; Li Y. L. ; Gao X. L. ; Li X. H. ; Peng Z. X. ; Feng S. W. ; Feng X. N. ; Yang S. C. J. Energy Storage 2020, 32, 101837.
doi: 10.1016/j.est.2020.101837 |
16 |
Cai W. L. ; Yan C. ; Yao Y. X. ; Xu L. ; Xu R. ; Jiang L. L. ; Huang J. Q. ; Zhang Q. Small Struct. 2020, 1 (1), 2000010.
doi: 10.1002/sstr.202000010 |
17 |
Zhao L. ; Ding B. C. ; Qin X. Y. ; Wang Z. J. ; Lv W. ; He Y. B. ; Yang Q. H. ; Kang F. Y. Adv. Mater. 2022, 34, 2106704.
doi: 10.1002/adma.202106704 |
18 |
Rangom Y. ; Duignan T. T. ; Zhao X. S. ACS Appl. Mater. Interfaces 2021, 13 (36), 42662.
doi: 10.1021/acsami.1c09559 |
19 |
Kabra V. ; Parmananda M. ; Fear C. ; Usseglio-Viretta F. L. E. ; Colclasure A. ; Smith K. ; Mukherjee P. P. ACS Appl. Mater. Interfaces 2020, 12 (50), 55795.
doi: 10.1021/acsami.0c15144 |
20 |
Liu Q. ; Du C. ; Shen B. ; Zuo P. ; Cheng X. RSC Adv. 2016, 6 (18), 88683.
doi: 10.1039/c6ra19482f |
21 |
Kim N. ; Chae S. ; Ma J. ; Ko M. ; Cho J. Nat. Commun. 2017, 8 (1), 812.
doi: 10.1038/s41467-017-00973-y |
22 |
Zou Y. G. ; Cao Z. ; Zhang J. L. ; Wahyudi W. ; Wu Y. Q. ; Liu G. ; Li Q. ; Cheng H. R. ; Zhang D. Y. ; Park G. T. ; et al Adv. Mater. 2021, 33 (43), 2102964.
doi: 10.1002/adma.202102964 |
23 |
Yao F. ; Gunes F. ; Ta H. Q. ; Lee S. M. ; Chae S. J. ; Sheem K. Y. ; Cojocaru C. S. ; Xie S. S. ; Lee Y. H. J. Am. Chem. Soc. 2012, 134 (20), 8646.
doi: 10.1021/ja301586m |
24 |
Kaskhedikar N. A. ; Maier J. Adv. Mater. 2009, 21 (25–26), 2664.
doi: 10.1002/adma.200901079 |
25 |
Yu D. D. ; Zhu Q. N. ; Cheng L. W. ; Dong S. ; Zhang X. H. ; Wang H. ; Yang N. J. ACS Energy Lett. 2021, 6 (3), 949.
doi: 10.1021/acsenergylett.1c00043 |
26 |
Li F. S. ; Wu Y. S. ; Chou J. ; Winter M. ; Wu N. L. Adv. Mater. 2015, 27 (1), 13.
doi: 10.1002/adma.201403880 |
27 |
Shim J. H. ; Lee S. J. Power Sources 2016, 324, 475.
doi: 10.1016/j.jpowsour.2016.05.094 |
28 |
Wang R. H. ; Li X. H. ; Wang Z. X. ; Zhang H. Nano Energy 2017, 34, 131.
doi: 10.1016/j.nanoen.2017.02.037 |
29 |
Xu M. ; Wang R. ; Reichman B. ; Wang X. J. Energy Storage 2018, 20, 298.
doi: 10.1016/j.est.2018.09.004 |
30 |
Kim H. ; Lim K. ; Yoon G. ; Park J. H. ; Ku K. ; Lim H. D. ; Sung Y. E. ; Kang K. Adv. Energy Mater. 2017, 7 (19), 1700418.
doi: 10.1002/aenm.201700418 |
31 |
Yamada Y. ; Furukawa K. ; Sodeyama K. ; Kikuchi K. ; Yaegashi M. ; Tateyama Y. ; Yamada A. J. Am. Chem. Soc. 2014, 136 (13), 5039.
doi: 10.1021/ja412807w |
32 |
Lu M. ; Tian Y. Y. ; Zheng X. D. ; Gao J. ; Huang B. J. Power Sources 2012, 219, 188.
doi: 10.1016/j.jpowsour.2012.07.044 |
33 |
Billaud J. ; Bouville F. ; Magrini T. ; Villevieille C. ; Studart A. R Nat. Energy 2016, 1, 16097.
doi: 10.1038/nenergy.2016.97 |
34 |
Ko M. ; Chae S. ; Ma J. ; Kim N. ; Lee H. W. ; Cui Y. ; Cho J. Nat. Energy 2020, 5 (4), 34.
doi: 10.1038/s41560-020-0587-8 |
35 |
Kottegoda I. R. M. ; Kadoma Y. ; Ikuta H. ; Uchimoto Y. ; Wakihara M. Electrochem. Solid State Lett. 2002, 5 (12), A275.
doi: 10.1149/1.1516410 |
36 |
Wang J. H. ; Yamada Y. ; Sodeyama K. ; Chiang C. H. ; Tateyama Y. ; Yamada A. Nat. Commun. 2016, 7, 12032.
doi: 10.1038/ncomms12032 |
37 |
Okoshi M. ; Yamada Y. ; Yamada A. ; Nakai H. J. Electrochem. Soc. 2013, 160 (11), A2160.
doi: 10.1149/2.074311jes |
38 |
Kim K. E. ; Jang J. Y. ; Park I. ; Woo M. H. ; Jeong M. H. ; Shin W. C. ; Ue M. ; Choi N. S. Electrochem. Commun. 2015, 61, 121.
doi: 10.1016/j.elecom.2015.10.013 |
39 |
Han Y. J. ; Kim J. ; Yeo J. S. ; An J. C. ; Hong I. P. ; Nakabayashi K. ; Miyawaki J. ; Jung J. D. ; Yoon S. H. Carbon 2015, 94, 432.
doi: 10.1016/j.carbon.2015.07.030 |
40 |
Qi W. B. ; Ben L. B. ; Yu H. L. ; Zhan Y. J. ; Zhao W. W. ; Huang X. J. J. Power Sources 2019, 424, 150.
doi: 10.1016/j.jpowsour.2019.03.077 |
41 |
Yang X. G. ; Zhang G. S. ; Ge S. H. ; Wang C. Y. Proc. Natl. Acad. Sci. U. S. A. 2018, 115 (28), 7266.
doi: 10.1073/pnas.1807115115 |
42 |
Tan D. H. S. ; Wu E. A. ; Nguyen H. ; Chen Z. ; Marple M. A. T. ; Doux J. M. ; Wang X. F. ; Yang H. D. ; Banerjee A. ; Meng Y. S. ACS Energy Lett. 2019, 4 (10), 2418.
doi: 10.1021/acsenergylett.9b01693 |
43 |
Ma Z. ; Zhuang Y. C. ; Deng Y. M. ; Song X. N. ; Zuo X. X. ; Xiao X. ; Nan J. M. J. Power Sources 2018, 376, 91.
doi: 10.1016/j.jpowsour.2017.11.038 |
44 |
Carrillo A. ; Swartz J. A. ; Gamba J. M. ; Kane R. S. ; Chakrapani N. ; Wei B. Q. ; Ajayan P. M. Nano Lett. 2003, 3 (10), 1437.
doi: 10.1021/nl034376x |
45 |
Lee S. M. ; Kim J. ; Moon J. ; Jung K. N. ; Kim J. H. ; Park G. J. ; Choi J. H. ; Rhee D. Y. ; Kim J. S. ; Lee J. W. ; et al Nat. Commun. 2021, 12 (1), 39.
doi: 10.1038/s41467-020-20297-8 |
46 |
Chen K. H. ; Goel V. ; Namkoong M. J. ; Wied M. ; Muller S. ; Wood V. ; Sakamoto J. ; Thornton K. ; Dasgupta N. P. Adv. Energy Mater. 2021, 11 (5), 2003336.
doi: 10.1002/aenm.202003336 |
47 |
Kim D. S. ; Chung D. J. ; Bae J. ; Jeong G. ; Kim H. Electrochim. Acta 2017, 258, 336.
doi: 10.1016/j.electacta.2017.11.056 |
48 |
Kim D. S. ; Kim Y. E. ; Kim H. J. Power Sources 2019, 422, 18.
doi: 10.1016/j.jpowsour.2019.03.027 |
49 |
Zhou J. H. ; Ma K. N. ; Lian X. Y. ; Shi Q. T. ; Wang J. Q. ; Chen Z. J. ; Guo L. L. ; Liu Y. ; Bachmatiuk A. ; Sun J. Y. ; et al Small 2022, 18, 15.
doi: 10.1002/smll.202107460 |
50 |
Lei X. F. ; Wang C. W. ; Yi Z. H. ; Liang Y. G. ; Sun J. T. J. Alloy. Compd. 2007, 429 (1–2), 311.
doi: 10.1016/j.jallcom.2006.04.019 |
51 |
Zhang W. ; Fang L. ; Yue M. ; Yu Z. Chin. J. Power Sources 2006, 30 (2), 100.
doi: 10.1198/108571106X99751 |
52 |
Lu Y. ; Ye D. ; Sun X. ; Wang Y. Battery Bimonthly 2014, 44 (3), 171.
doi: 10.1198/10cr04152215 |
53 |
Ma S. Q. ; Li Y. K. ; Lan J. ; Liu Y. E. ; Yin L. S. Chin. J. Power Sources 2020, 44 (11), 1580.
doi: 10.3969/j.issn.1002-087X.2020.11.005 |
54 |
Yoshio M. ; Wang H. Y. ; Fukuda K. ; Umeno T. ; Abe T. ; Ogumi Z. J. Mater. Chem. 2004, 14 (11), 1754.
doi: 10.1039/b316702j |
55 |
Cheng Q. ; Yuge R. ; Nakahara K. ; Tamura N. ; Miyamoto S. J. Power Sources 2015, 284, 258.
doi: 10.1016/j.jpowsour.2015.03.036 |
56 |
Kim J. ; Jeghan S. M. N. ; Lee G. Microporous Mesoporous Mat. 2020, 305, 110325.
doi: 10.1016/j.micromeso.2020.110325 |
57 |
Son D. K. ; Kim J. ; Raj M. R. ; Lee G. Carbon 2021, 175, 187.
doi: 10.1016/j.carbon.2021.01.015 |
58 |
Zou L. ; Kang F. Y. ; Zheng Y. P. ; Shen W. C. Electrochim. Acta 2009, 54 (15), 3930.
doi: 10.1016/j.electacta.2009.02.012 |
59 |
Zhao Q. ; Hao X. G. ; Su S. M. ; Ma J. B. ; Hu Y. ; Liu Y. ; Kang F. Y. ; He Y. B. J. Mater. Chem. A 2019, 7 (26), 15871.
doi: 10.1039/c9ta04240g |
60 |
Lin Y. X. ; Huang Z. H. ; Yu X. L. ; Shen W. C. ; Zheng Y. P. ; Kang F. Y. Electrochim. Acta 2014, 116, 170.
doi: 10.1016/j.electacta.2013.11.057 |
61 |
Li J. H. ; Hou S. Y. ; Su J. R. ; Li K. ; Wei L. B. ; Ma L. Q. ; Shen W. C. ; Kang F. Y. ; Huang Z. H. New Carbon Mater. 2019, 34 (2), 205.
doi: 10.1016/s1872-5805(19)60012-0 |
62 |
Xu J. ; Wang X. ; Yuan N. Y. ; Hu B. Q. ; Ding J. N. ; Ge S. H. J. Power Sources 2019, 430, 74.
doi: 10.1016/j.jpowsour.2019.05.024 |
63 |
Kim T. H. ; Jeon E. K. ; Ko Y. ; Jang B. Y. ; Kim B. S. ; Song H. K. J. Mater. Chem. A 2014, 2 (20), 7600.
doi: 10.1039/c3ta15360f |
64 |
Cheng Q. ; Zhang Y. J. Electrochem. Soc. 2018, 165 (5), A1104.
doi: 10.1149/2.1171805jes |
65 |
Yeo J. S. ; Park T. H. ; Seo M. H. ; Miyawaki J. ; Mochida I. ; Yoon S. H. Int. J. Electroanal. Chem. 2013, 8 (1), 1308.
doi: 10.1016/j.jelechem.2013.02.009 |
66 |
Park M. S. ; Kim J. H. ; Jo Y. N. ; Oh S. H. ; Kim H. ; Kim Y. J. J. Mater. Chem. 2011, 21 (44), 17960.
doi: 10.1039/c1jm13158c |
67 |
Zhang S. S. Infomat 2021, 3 (1), 125.
doi: 10.1002/inf2.12159 |
68 |
Gao N. ; Kim S. ; Chinnam P. ; Dufek E. J. ; Colclasure A. M. ; Jansen A. ; Son S. B. ; Bloom I. ; Dunlop A. ; Trask S. ; et al Energy Storage Mater. 2022, 44, 296.
doi: 10.1016/j.ensm.2021.10.011 |
69 |
Liu T. C. ; Lin L. P. ; Bi X. X. ; Tian L. L. ; Yang K. ; Liu J. J. ; Li M. F. ; Chen Z. H. ; Lu J. ; Amine K. ; et al Nat. Nanotech. 2019, 14 (1), 50.
doi: 10.1038/s41565-018-0284-y |
70 |
Wang Z. X. ; Qi F. L. ; Yin L. C. ; Shi Y. ; Sun C. G. ; An B. G. ; Cheng H. M. ; Li F. Adv. Energy Mater. 2020, 10 (14), 1903843.
doi: 10.1002/aenm.201903843 |
71 |
Jiang L. L. ; Yan C. ; Yao Y. X. ; Cai W. L. ; Huang J. Q. ; Zhang Q. Angew. Chem. Int. Ed. 2021, 60 (7), 3402.
doi: 10.1002/anie.202009738 |
72 |
Mallarapu A. ; Bharadwaj V. S. ; Santhanagopalan S. J. Mater. Chem. A 2021, 9 (8), 4858.
doi: 10.1039/d0ta10166d |
73 |
Xu K. ; von Cresce A. ; Lee U. Langmuir 2010, 26 (13), 11538.
doi: 10.1021/la1009994 |
74 |
Moon H. ; Mandai T. ; Tatara R. ; Ueno K. ; Yamazaki A. ; Yoshida K. ; Seki S. ; Dokko K. ; Watanabe M. J. Phys. Chem. C 2015, 119 (8), 3957.
doi: 10.1021/jp5128578 |
75 |
Okoshi M. ; Yamada Y. ; Komaba S. ; Yamada A. ; Nakai H. J. Electrochem. Soc. 2017, 164 (2), A54.
doi: 10.1149/2.0211702jes |
76 |
Du Z. J. ; Wood D. L. ; Belharouak I. Electrochem. Commun. 2019, 103, 109.
doi: 10.1016/j.elecom.2019.04.013 |
77 |
Zhang L. F. ; Chai L. L. ; Zhang L. ; Shen M. ; Zhang X. L. ; Battaglia V. S. ; Stephenson T. ; Zheng H. H. Electrochim. Acta 2014, 127, 39- 44.
doi: 10.1016/j.electacta.2014.02.008 |
78 |
Chen Z. H. ; Lu W. Q. ; Liu J. ; Amine K. Electrochim. Acta 2006, 51 (16), 3322.
doi: 10.1016/j.electacta.2005.09.027 |
79 |
Wrodnigg G. H. ; Besenhard J. O. ; Winter M. J. Electrochem. Soc. 1999, 146 (2), 47.
doi: 10.1149/1.1391630 |
80 |
Matsuo Y. ; Fumita K. ; Fukutsuka T. ; Sugie Y. ; Koyama H. ; Inoue K. J. Power Sources 2003, 119, 373.
doi: 10.1016/s0378-7753(03)00271-4 |
81 |
Son H. B. ; Jeong M. Y. ; Han J. G. ; Kim K. ; Kim K. H. ; Jeong K. M. ; Choi N. S. J. Power Sources 2018, 400, 147.
doi: 10.1016/j.jpowsour.2018.08.022 |
82 |
Shi J. L. ; Ehteshami N. ; Ma J. L. ; Zhang H. ; Liu H. D. ; Zhang X. ; Li J. ; Paillard E. J. Power Sources 2019, 429, 67.
doi: 10.1016/j.jpowsour.2019.04.113 |
83 |
Komaba S. ; Itabashi T. ; Kaplan B. ; Groult H. ; Kumagai N. Electrochem. Commun. 2003, 5 (11), 962.
doi: 10.1016/j.elecom.2003.09.003 |
84 |
Honghe Z. ; Yanbao F. ; Hucheng Z. ; Abe T. ; Ogumi Z. Electrochem. Solid State Lett. 2006, 9 (3), A115.
doi: 10.1149/1.2161447 |
85 |
Zheng J. M. ; Yan P. F. ; Cao R. G. ; Xiang H. F. ; Engelhard M. H. ; Polzin B. J. ; Wang C. M. ; Zhang J. G. ; Xu W. ACS Appl. Mater. Interfaces 2016, 8 (8), 5715.
doi: 10.1021/acsami.5b12517 |
86 |
Wu M. S. ; Lin J. C. ; Chiang P. C. J. Electrochem. Solid State Lett. 2004, 7 (7), A206.
doi: 10.1149/1.1739313 |
87 |
Yoon T. ; Chapman N. ; Seo D. M. ; Lucht B. L. J. Electrochem. Soc. 2017, 164 (9), A2082.
doi: 10.1149/2.1421709jes |
88 |
Jeong S. K. ; Inaba M. ; Iriyama Y. ; Abe T. ; Ogumi Z. Electrochem. Solid State Lett. 2003, 6 (1), A1.
doi: 10.1149/1.1526781 |
89 |
Yamada Y. ; Wang J. H. ; Ko S. ; Watanabe E. ; Yamada A. Nat. Energy 2019, 4 (5), 42.
doi: 10.1038/s41560-019-0375-5 |
90 |
Chen S. R. ; Yu Z. X. ; Gordin M. L. ; Yi R. ; Song J. X. ; Wang D. H. ACS Appl. Mater. Interfaces 2017, 9 (8), 6959.
doi: 10.1021/acsami.6b11008 |
91 |
Zhang S. S. J. Power Sources 2006, 161 (2), 1385.
doi: 10.1016/j.jpowsour.2006.06.040 |
92 |
Keil P. ; Jossen A. J. Energy Storage 2016, 6, 125.
doi: 10.1016/j.est.2016.02.005 |
93 |
Li J. ; Murphy E. ; Winnick J. ; Kohl P. A. J. Power Sources 2001, 102 (1–2), 302.
doi: 10.1016/s0378-7753(01)00820-5 |
94 |
Yang X. G. ; Liu T. ; Gao Y. ; Ge S. H. ; Leng Y. J. ; Wang D. H. ; Wang C. Y. Joule 2019, 3 (12), 3002.
doi: 10.1016/j.joule.2019.09.021 |
[1] | Feng Wu, Qing Li, Lai Chen, Zirun Wang, Gang Chen, Liying Bao, Yun Lu, Shi Chen, Yuefeng Su. An Optimized Synthetic Process for the Substitution of Cobalt in Nickel-Rich Cathode Materials [J]. Acta Phys. -Chim. Sin., 2022, 38(5): 2007017-. |
[2] | Jian Wang, Bo Yin, Tian Gao, Xingyi Wang, Wang Li, Xingxing Hong, Zhuqing Wang, Haiyong He. Reduced Graphene Oxide Modified Few-Layer Exfoliated Graphite to Enhance the Stability of the Negative Electrode of a Graphite-Based Potassium Ion Battery [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2012088-. |
[3] | Xuewei Liu, Ying Niu, Ruixiong Cao, Xiaohong Chen, Hongyan Shang, Huaihe Song. Is there a Demand of Conducting Agent of Acetylene Black for Graphene-Wrapped Natural Spherical Graphite as Anode Material for Lithium-Ion Batteries? [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2012062-. |
[4] | Yuefeng Su, Qiyu Zhang, Lai Chen, Liying Bao, Yun Lu, Shi Chen, Feng Wu. Effects of ZrO2 Coating on Ni-Rich LiNi0.8Co0.1Mn0.1O2 Cathodes with Enhanced Cycle Stabilities [J]. Acta Phys. -Chim. Sin., 2021, 37(3): 2005062-. |
[5] | Sidong Zhang, Yuan Liu, Muyao Qi, Anmin Cao. Localized Surface Doping for Improved Stability of High Energy Cathode Materials [J]. Acta Phys. -Chim. Sin., 2021, 37(11): 2011007-. |
[6] | Muqin Wang, Zhe Peng, Huan Lin, Zhendong Li, Jian Liu, Zhongmin Ren, Haiyong He, Deyu Wang. A Framework with Enriched Fluorinated Sites for Stable Li Metal Cycling [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2007016-. |
[7] | Yongchao Shi, Mingxue Tang. NMR/EPR Investigation of Rechargeable Batteries [J]. Acta Physico-Chimica Sinica, 2020, 36(4): 1905004-. |
[8] | Jiangtao HU, Jiaxin ZHENG, Feng PAN. Research Progress into the Structure and Performance of LiFePO4 Cathode Materials [J]. Acta Physico-Chimica Sinica, 2019, 35(4): 361-370. |
[9] | Shah Rahim,Alam Naveed,A. Razzaq Amir,Cheng YANG,Yujie CHEN,Jiapeng HU,Xiaohui ZHAO,Yang PENG,Zhao DENG. Effect of Binder Conformity on the Electrochemical Behavior of Graphite Anodes with Different Particle Shapes [J]. Acta Physico-Chimica Sinica, 2019, 35(12): 1382-1390. |
[10] | Yanhuan CHEN,Jiaofu LI,Huibiao LIU. Preparation of Graphdiyne-Organic Conjugated Molecular Composite Materials for Lithium Ion Batteries [J]. Acta Phys. -Chim. Sin., 2018, 34(9): 1074-1079. |
[11] | Hui NING,Wenhang WANG,Qinhu MAO,Shirui ZHENG,Zhongxue YANG,Qingshan ZHAO,Mingbo WU. Catalytic Electroreduction of CO2 to C2H4 Using Cu2O Supported on 1-Octyl-3-methylimidazole Functionalized Graphite Sheets [J]. Acta Phys. -Chim. Sin., 2018, 34(8): 938-944. |
[12] | Quan-Jun WANG,Hong-Juan SUN,Tong-Jiang PENG,Ming-Zhu FENG. Structure Development during the Cation Exchange Processes of Graphite Oxide [J]. Acta Phys. -Chim. Sin., 2017, 33(2): 413-418. |
[13] | Wan-Long LI,Yue-Jiao LI,Mei-Ling CAO,Wei QU,Wen-Jie QU,Shi CHEN,Ren-Jie CHEN,Feng WU. Synthesis and Electrochemical Performance of Alginic Acid-Based Carbon-Coated Li3V2(PO4)3 Composite by Rheological Phase Method [J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2261-2267. |
[14] | Ya-Dong LI,Yu-Feng DENG,Zhi-Yi PAN,Yin-Ping WEI,Shi-Xi ZHAO,Lin GAN. Dual Electron Energy Loss Spectrum Imaging of the Surfaces of LiNi0.5Mn1.5O4 Cathode Material [J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2293-2300. |
[15] | Wei HUANG,Chun-Yang WU,Yue-Wu ZENG,Chuan-Hong JIN,Ze ZHANG. Surface Analysis of the Lithium-Rich Cathode Material Li1.2Mn0.54Co0.13Ni0.13NaxO2 by Advanced Electron Microscopy [J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2287-2292. |
|