Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (11): 2011007.doi: 10.3866/PKU.WHXB202011007
Special Issue: Energy and Materials Chemistry
• REVIEW • Previous Articles Next Articles
Sidong Zhang1,2, Yuan Liu1,3, Muyao Qi1,2, Anmin Cao1,2,*()
Received:
2020-11-02
Accepted:
2020-11-27
Published:
2020-12-03
Contact:
Anmin Cao
E-mail:anmin_cao@iccas.ac.cn
About author:
Anmin Cao, Email: anmin_cao@iccas.ac.cnSupported by:
Sidong Zhang, Yuan Liu, Muyao Qi, Anmin Cao. Localized Surface Doping for Improved Stability of High Energy Cathode Materials[J]. Acta Phys. -Chim. Sin. 2021, 37(11), 2011007. doi: 10.3866/PKU.WHXB202011007
Fig 2
(a–d) The upper panels are the HRTEM images of NMC 811 surface after exposure to N2, O2, CO2, and water vapor at the gas pressure of 5 × 10-2 Torr and at the room temperature for 30 min, respectively. The lower panels show the schematic drawing of Li ions evolution in the layered structure under the exposure of each corresponding gas 21. The green dashed lines outline the surface boundaries of NMC811. 1 Torr = 133.322 Pa. Adapted with permission from Ref. 21, Copyright 2020 Springer Nature. "
Fig 3
In the LixNi1+ZO2 system, (a) during the first electrochemical cycle, the oxidation of Ni2+ causes a local collapse of the space, which makes it difficult for the diffusion and re-intercalation of lithium ions 28; (b) Electrochemical cycling performances of LiNi0.7Co0.15Mn0.15O2, LiNi0.6Co0.2Mn0.2O2 and LiNi0.62Co0.14Mn0.24O230. (a) Adapted with permission from Ref. 28, Copyright 2000 IOP Publishing; (b) Adapted from American Chemical Society. "
Fig 4
A schematic representation of the (a) manganese catalyzed degradation of the anode SEI 33; (b) Acidic species induced decomposition of anode SEI components 34. (a) Adapted with permission from Ref. 33, Copyright 2018 IOP Publishing; (b) Adapted with permission from Ref. 34, Copyright 2020 IOP Publishing. "
Table 1
The electrochemical performance of different cathode materials through the surface confinement doping of different metals."
Molecular Formula | Doping Element | Electrochemical data | Ref |
LiMn2O4 | Ti | 0.5C/100 cycles capacity retention/from ~40% to ~83% | Lu et al. |
LiNi0.5Mn1.5O4−δ | Ti | Coulombic efficiency and rate performance improve | Okudur et al. |
LiNi0.5Mn1.5O4 | Al | 0.1C/150 cycles capacity retention/from 85.4% to 97.6% | Piao et al. |
LiNi0.82Co0.12Mn0.06O2 | Mn | 1C/50 cycles capacity retention/87.3% | Cho et al. |
LiNi0.5Co0.2Mn0.3O2 | Al | 0.2C/50 cycles capacity retention/90% | Aurbach et al. |
LiNi0.8Mn0.1Co0.1O2 | Ca | 0.2C/50 cycles capacity retention/81.1% | Chen et al. |
LiNi0.8Co0.15Al0.05O2 | B- Polyanion | 2C/200 cycles capacity retention/96.7% | Tao et al. |
LiNi0.8Co0.2O2 | Ti-Gradient Doping | 1C/200 cycles capacity retention/97.71% | Kong et al. |
Li[Ni0.76Co0.09Mn0.15]O2 | Al-Gradient Doping | 1C/1000 cycles capacity retention/95% | Kim et al. |
LiNi0.9Co0.1O2 | Ti | 0.2C/100cycles capacity retention/97.9% | Wu et al. |
LiNi0.90Co0.07Mg0.03O2 | Mg-Gradient Doping | 1C/300 cycles capacity retention/80.9% | Zhang et al. |
LiNi0.94Co0.06O2 | Al | 0.2C/100 cycles capacity retention/95% | Zou et al. |
LiNi0.8Co0.1Mn0.1O2 | Ta | 1/3C/100 cycles capacity retention/94% | Tina et al. |
Li1.2Mn0.54Ni0.13Co0.13O2 | Nb | 0.1C/100 cycles capacity retention/94.5% | Liu et al. |
Li1.2Ni0.13Co0.13Mn0.54O2 | LiFePO4 | 1C/100 cycles capacity retention/70% | Zhang et al. |
0.35Li2MnO3·0.65LiNi0.35Mn0.45Co0.20O2 | Cr | 0.5C/200 cycles capacity retention/86% | Chen et al. |
Fig 7
STEM image of the sample (a) High-angle annular bright field (HAADF) image of the bulk; (b) HAADF image of the near surface; (c) the ABF enlarged image of the surface area in (b); (d) EDS spectrum of Nb and Mn in the HAADF image; (e) surface doping layer; (f) surface doping and Nb-enhanced surface structure 63. Adapted with permission from Ref. 63, copyright 2018 John Wiley and Sons publisher. "
Fig 8
(a–c) STEM-HAADF images to show the surface structure of samples with the increase of Zn content. (a) Coexistence of a spinel phase and a layered phase. (b) Coexistence of the layered phase and the rock-salt like phase. (c) Surface dominated by rock-salt like phase at high Zn content. (d) Schematic illustration for the phase evolution observed on LNMO surface in respond to the change in Zn content 67. Adapted with permission from Ref. 67, copyright 2019 American Chemical Society. "
Fig 9
(a) Scanning transmission electron microscopy-high resolution annular dark field image (STEM-HAADF) of Al-LNMO particles; (b) and (c) enlarged STEM-HAADF images of two areas in (a); (d) Surface schematic diagram of the vacancy occupancy (SVSO) strategy; most of the 16c positions in the outer layer are occupied by foreign atoms; (e) The 16c charge and discharge curves at 1st and 150th; (f) Cycle performance at 0.1C rate 52. Adapted with permission from Ref. 52, copyright 2018 Elsevier publisher. "
Fig 10
(a) Transmission diagram of NMC811ZO–800 ℃; (b) Relationship between surface Zr content (XPS test result) and temperature; (c) The relationship between Zr content and the distance from the surface of particles (NMC811ZO-450 ℃ and NMC811ZO-800 ℃) to the interior; (d) Cycle performance of uncoated NMC811 and ZrO2 coated NMC811ZO-450 ℃ and NMC811ZO-800 ℃ at 30 ℃ 70. Adapted with permission from Ref. 70, copyright 2017 John Wiley and Sons publisher. "
1 |
Dunn B. ; Kamath H. ; Tarascon J. M. Science 2011, 334, 928.
doi: 10.1126/science.1212741 |
2 |
Song M. K. ; Park S. ; Alamgir F. M. ; Cho J. ; Liu M. Mater. Sci. Eng. R: Rep. 2011, 72, 203.
doi: 10.1016/j.mser.2011.06.001 |
3 | Zhang S. C. ; Shen Z. Y. ; Lu Y. Y. Acta Phys. -Chim. Sin. 2021, 37, 2008065. |
张世超; 沈泽宇; 陆盈盈. 物理化学学报, 2021, 37, 2008065.
doi: 10.3866/PKU.WHXB202008065 |
|
4 |
Lyu Y. ; Wu X. ; Wang K. ; Feng Z. ; Cheng T. ; Liu Y. ; Wang M. ; Chen R. ; Xu L. ; Zhou J. ; et al Adv. Energy Mater. 2020, 2000982.
doi: 10.1002/aenm.202000982 |
5 |
Xue Y. J. Modern Power Syst. Clean Energy 2015, 3, 297.
doi: 10.1007/s40565-015-0111-5 |
6 | Huang Y. Chin. Sci. Bull. 2019, 64, 3811. |
黄云辉. 科学通报, 2019, 64, 3811.
doi: 10.1360/TB-2019-0656 |
|
7 |
Wang L. ; Wu Z. ; Zou J. ; Gao P. ; Niu X. ; Li H. ; Chen L. Joule 2019, 3, 2086.
doi: 10.1016/j.joule.2019.07.011 |
8 |
Li M. ; Pei C. ; Xiong F. ; Tan S. ; Yin Y. ; Tang H. ; Huang D. ; An Q. ; Mai L. Electrochim. Acta 2019, 320, 134556.
doi: 10.1016/j.electacta.2019.134556 |
9 |
Li M. ; Lu J. ; Chen Z. ; Amine K. Adv. Mater. 2018, 30, 1800561.
doi: 10.1002/adma.201800561 |
10 |
Huang Y. ; Dong Y. ; Li S. ; Lee J. ; Wang C. ; Zhu Z. ; Xue W. ; Li Y. ; Li J. Adv. Energy Mater. 2020, 2000997.
doi: 10.1002/aenm.202000997 |
11 |
Deng Y. P. ; Wu Z. G. ; Liang R. ; Jiang Y. ; Luo D. ; Yu A. ; Chen Z. Adv. Funct. Mater. 2019, 29, 1808522.
doi: 10.1002/adfm.201808522 |
12 |
Zhang M. ; Garcia-Araez N. ; Hector A. L. J. Mater. Chem. A 2018, 6, 14483.
doi: 10.1039/c8ta04063j |
13 | Zhang J. B. ; Hua W. B. ; Zheng Z. ; Liu W. Y. ; Guo X. D. ; Zhong B. H. Acta Phys. -Chim. Sin. 2015, 31, 905. |
张继斌; 滑纬博; 郑卓; 刘文元; 郭孝东; 钟本和. 物理化学学报, 2015, 31, 905.
doi: 10.3866/PKU.WHXB201503091 |
|
14 | Xiong F. ; Zhang W. X. ; Yang Z. H. ; Chen F. ; Wang T. Z. ; Chen Z. X. Energy Storage Science and Technology 2018, 7, 607. |
熊凡; 张卫新; 杨则恒; 陈飞; 王同振; 陈章贤. 储能科学与技术, 2018, 7, 607.
doi: 10.12028/j.issn.2095-4239.2018.0060 |
|
15 | Wu F. ; Li Q. ; Chen L. ; Wang Z. R. ; Chen G. ; Bao L. Y. ; Lu Y. ; Chen S. ; Su Y. F. Acta Phys. -Chim. Sin. 2021, 37, 2007017. |
吴锋; 李晴; 陈来; 王紫润; 陈刚; 包丽颖; 卢赟; 陈实; 苏岳锋. 物理化学学报, 2021, 37, 2007017.
doi: 10.3866/PKU.WHXB202007017 |
|
16 |
Noh H. J. ; Youn S. ; Yoon C. S. ; Sun Y. K. J. Power Sources 2013, 233, 121.
doi: 10.1016/j.jpowsour.2013.01.063 |
17 |
de Biasi L. ; Kondrakov A. O. ; Geßwein H. ; Brezesinski T. ; Hartmann P. ; Janek J. J. Phys. Chem. C 2017, 121, 26163.
doi: 10.1021/acs.jpcc.7b06363 |
18 |
Dixit M. ; Markovsky B. ; Schipper F. ; Aurbach D. ; Major D. T. J. Phys. Chem. C 2017, 121, 22628.
doi: 10.1021/acs.jpcc.7b06122 |
19 |
Liu K. ; Liu Y. ; Lin D. ; Pei A. ; Cui Y. Sci. Adv. 2018, 4, eaas9820.
doi: 10.1126/sciadv.aas9820 |
20 |
Xiong X. ; Wang Z. ; Yue P. ; Guo H. ; Wu F. ; Wang J. ; Li X. J. Power Sources. 2013, 222, 318.
doi: 10.1016/j.jpowsour.2012.08.029 |
21 |
Zou L. ; He Y. ; Liu Z. ; Jia H. ; Zhu J. ; Zheng J. ; Wang G. ; Li X. ; Xiao J. ; Liu J. ; et al Nat. Commun. 2020, 11, 3204.
doi: 10.1038/s41467-020-17050-6 |
22 |
Liu W. ; Oh P. ; Liu X. ; Lee M. J. ; Cho W. ; Chae S. ; Kim Y. ; Cho J. Angew. Chem. Int. Ed. 2015, 54, 4440.
doi: 10.1002/anie.201409262 |
23 |
Kim Y. Phys. Chem. Chem. Phys. 2013, 15, 6400.
doi: 10.1039/C3CP50567G |
24 |
Bie X. ; Liu L. ; Ehrenberg H. ; Wei Y. ; Nikolowski K. ; Wang C. ; Ueda Y. ; Chen H. ; Chen G. ; Du F. RSC Adv. 2012, 2, 9986.
doi: 10.1039/c2ra21670a |
25 |
Kang K. ; Ceder G. Phys. Rev. B 2006, 74, 094105.
doi: 10.1103/PhysRevB.74.094105 |
26 |
Zhang B. ; Li L. ; Zheng J. J. Alloys Compd. 2012, 520, 190.
doi: 10.1016/j.jallcom.2012.01.004 |
27 |
Huang Z. ; Gao J. ; He X. ; Li J. ; Jiang C. J. Power Sources 2012, 202, 284.
doi: 10.1016/j.jpowsour.2011.10.143 |
28 |
Pouillerie C. ; Croguennec L. ; Biensan P. ; Willmann P. ; Delmas C J. Electrochem Soc. 2000, 147, 2061.
doi: 10.1149/1.1393486 |
29 |
Chowdari B. V. R. ; Subba Rao G. V. ; Chow S. Y. Solid State Ionics 2001, 140, 55.
doi: 10.1016/S0167-2738(01)00686-5 |
30 |
Cho Y. ; Oh P. ; Cho J. Nano Lett. 2013, 13, 1145.
doi: 10.1021/nl304558t |
31 |
Strmcnik D. ; Castelli I. E. ; Connell J. G. ; Haering D. ; Zorko M. ; Martins P. ; Lopes P. P. ; Genorio B. ; Østergaard T. ; Gasteiger H. A. ; et al Nat. Catal. 2018, 1, 255.
doi: 10.1038/s41929-018-0047-z |
32 |
Solchenbach S. ; Metzger M. ; Egawa M. ; Beyer H. ; Gasteiger H. A. J. Electrochem Soc. 2018, 165, A3022.
doi: 10.1149/2.0481813jes |
33 |
Solchenbach S. ; Hong G. ; Freiberg A. ; Jung R. ; Gasteiger H. J. Electrochem. Soc. 2018, 165, A3304.
doi: 10.1149/2.0511814jes |
34 |
Heiskanen S. K. ; Laszczynski N. ; Lucht B. L. J. Electrochem. Soc. 2020, 167, 100519.
doi: 10.1149/1945-7111/ab981c |
35 |
Yoon W. S. ; Chung K. Y. ; McBreen J. ; Yang X. Q. Electrochem. Commun. 2006, 8, 1257.
doi: 10.1016/j.elecom.2006.06.005 |
36 |
Yan P. ; Zheng J. ; Gu M. ; Xiao J. ; Zhang J. G. ; Wang C. M. Nat. Commun. 2017, 8, 14101.
doi: 10.1038/ncomms14101 |
37 |
Robert R. ; Novák P. J. Electrochem. Soc. 2015, 162, A1823.
doi: 10.1149/2.0721509jes |
38 |
Xu Z. ; Rahman M. M. ; Mu L. ; Liu Y. ; Lin F. J. Mater. Chem. A 2018, 6, 21859.
doi: 10.1039/c8ta06875e |
39 |
Zhao S. ; Yan K. ; Zhang J. ; Sun B. ; Wang G. Angew. Chem. Int. Ed. 2020.
doi: 10.1002/anie.202000262 |
40 |
Gu M. ; Belharouak I. ; Genc A. ; Wang Z. ; Wang D. ; Amine K. ; Gao F. ; Zhou G. ; Thevuthasan S. ; Baer D. R. ; et al Nano Lett. 2012, 12, 5186.
doi: 10.1021/nl302249v |
41 |
Gu M. ; Belharouak I. ; Zheng J. ; Wu H. ; Xiao J. ; Genc A. ; Amine K. ; Thevuthasan S. ; Baer D. R. ; Zhang J. G. ; et al ACS Nano 2013, 7, 760.
doi: 10.1021/nn305065u |
42 |
Lin F. ; Markus I. M. ; Nordlund D. ; Weng T. C. ; Asta M. D. ; Xin H. L. ; Doeff M. M. Nat. Commun. 2014, 5, 3529.
doi: 10.1038/ncomms4529 |
43 |
Gu L. ; Xiao D. ; Hu Y. S. ; Li H. ; Ikuhara Y. Adv. Mater. 2015, 27, 2134.
doi: 10.1002/adma.201404620 |
44 |
Xulai Y. ; Junlong X. ; Xu L. ; Tao W. ; Wen P. ; Jia X. Phys. Chem. Chem. Phys. 2014, 16, 24373.
doi: 10.1039/C4CP03173C |
45 | Xiong L. L. ; Xu Y. L. ; Zhang C. ; Tao T. Acta Phys. -Chim. Sin. 2012, 28, 1177. |
熊礼龙; 徐有龙; 张成; 陶韬. 物理化学学报, 2012, 28, 1177.
doi: 10.3866/PKU.WHXB201203092 |
|
46 |
Guan P. ; Zhou L. ; Yu Z. ; Sun Y. ; Liu Y. ; Wu F. ; Jiang Y. ; Chu D. J. Energy Chem. 2020, 43, 220.
doi: 10.1016/j.jechem.2019.08.022 |
47 |
Liu Y. ; Lin X. J. ; Sun Y. G. ; Xu Y. S. ; Chang B. B. ; Liu C. T. ; Cao A. M. ; Wan L. J. Small 2019, 15, 1901019.
doi: 10.1002/smll.201901019 |
48 |
Thackeray M. M. ; Johnson C. S. ; Kim J. S. ; Lauzze K. C. ; Vaughey J. T. ; Dietz N. ; Abraham D. ; Hackney S. A. ; Zeltner W. ; Anderson M. A. Electrochem. Commun. 2003, 5, 752.
doi: 10.1016/S1388-2481(03)00179-6 |
49 |
Piao J. Y. ; Duan S. Y. ; Lin X. J. ; Tao X. S. ; Xu Y. S. ; Cao A. M. ; Wan L. J. Chem. Commun. 2018, 54, 5326.
doi: 10.1039/C8CC01878B |
50 |
Lu J. ; Zhan C. ; Wu T. ; Wen J. ; Lei Y. ; Kropf A. J. ; Wu H. ; Miller D. J. ; Elam J. W. ; Sun Y. K. ; et al Nat. Commun. 2014, 5, 5693.
doi: 10.1038/ncomms6693 |
51 |
Ulu Okudur F. ; D'Haen J. ; Vranken T. ; De Sloovere D. ; Verheijen M. ; Karakulina O. M. ; Abakumov A. M. ; Hadermann J. ; Van Bael M. K. ; Hardy A. RSC Adv. 2018, 8, 7287.
doi: 10.1039/C7RA12932G |
52 |
Piao J. Y. ; Sun Y. G. ; Duan S. Y. ; Cao A. M. ; Wang X. L. ; Xiao R. J. ; Yu X. Q. ; Gong Y. ; Gu L. ; Li Y. ; et al Chem 2018, 4, 1685.
doi: 10.1016/j.chempr.2018.04.020 |
53 |
Cho W. ; Lim Y. J. ; Lee S. M. ; Kim J. H. ; Song J. H. ; Yu J. S. ; Kim Y. J. ; Park M. S. ACS Appl. Mater. Interfaces 2018, 10, 38915.
doi: 10.1021/acsami.8b13766 |
54 |
Aurbach D. ; Srur-Lavia O. ; Ghantya C. ; Dixit M. ; Haik O. ; Taliankerb M. ; Grinblata Y. ; Leifer N. ; Lavi R. ; Major D. ; et al J. Electrochem. Soc. 2015, 162, A1014.
doi: 10.1149/2.0681506jes |
55 |
Chen M. ; Zhao E. ; Chen D. ; Wu M. ; Han S. ; Huang Q. ; Yang L. ; Xiao X. ; Hu Z. Inorg. Chem. 2017, 56, 8355.
doi: 10.1021/acs.inorgchem.7b01035 |
56 |
Chen T. ; Li X. ; Wang H. ; Yan X. ; Wang L. ; Deng B. ; Ge W. ; Qu M. J. Power Sources. 2018, 374, 1.
doi: 10.1016/j.jpowsour.2017.11.020 |
57 |
Kong D. ; Hu J. ; Chen Z. ; Song K. ; Li C. ; Weng M. ; Li M. ; Wang R. ; Liu T. ; Liu J. ; et al Adv. Energy Mater. 2019, 9, 1901756.
doi: 10.1002/aenm.201901756 |
58 |
Kim U. H. ; Myung S. T. ; Yoon C. S. ; Sun Y. K. ACS Energy Lett. 2017, 2, 1848.
doi: 10.1021/acsenergylett.7b00613 |
59 |
Wu F. ; Liu N. ; Chen L. ; Su Y. ; Tan G. ; Bao L. ; Zhang Q. ; Lu Y. ; Wang J. ; Chen S. ; et al Nano Energy 2019, 59, 50.
doi: 10.1016/j.nanoen.2019.02.027 |
60 |
Zhang Y. ; Li H. ; Liu J. ; Zhang J. ; Cheng F. ; Chen J. J. Mater. Chem. A 2019, 7, 20958.
doi: 10.1039/C9TA02803J |
61 |
Zou L. ; Li J. ; Liu Z. ; Wang G. ; Manthiram A. ; Wang C. Nat. Commun. 2019, 10, 3447.
doi: 10.1038/s41467-019-11299-2 |
62 |
Weigel T. ; Schipper F. ; Erickson E. M. ; Susai F. A. ; Markovsky B. ; Aurbach D. ACS Energy Lett. 2019, 4, 508.
doi: 10.1021/acsenergylett.8b02302 |
63 |
Liu S. ; Liu Z. ; Shen X. ; Li W. ; Gao Y. ; Banis M. N. ; Li M. ; Chen K. ; Zhu L. ; Yu R. ; et al Adv. Energy Mater. 2018, 8, 1802105.
doi: 10.1002/aenm.201802105 |
64 | He L. ; Xu J. M. ; Wang Y. J. ; Zhang C. J. Acta Phys. -Chim. Sin. 2017, 33, 1605. |
何磊; 徐俊敏; 王永建; 张昌锦. 物理化学学报, 2017, 33, 1605.
doi: 10.3866/PKU.WHXB201704145 |
|
65 |
Zhang X. ; Cao S. ; Yu R. ; Li C. ; Huang Y. ; Wang Y. ; Wang X. ; Gairong C. ACS Appl. Energy Mater. 2019, 2, 1563.
doi: 10.1021/acsaem.8b02178 |
66 |
Zhang W. ; Sun X. ; Tang Y. ; Xia H. ; Zeng Y. ; Qiao L. ; Zhu Z. ; Lv Z. ; Zhang Y. ; Ge X. ; et al J. Am. Chem. Soc. 2019, 141, 14038.
doi: 10.1021/jacs.9b05531 |
67 |
Piao J. Y. ; Gu L. ; Wei Z. ; Ma J. ; Wu J. ; Yang W. ; Gong Y. ; Sun Y. G. ; Duan S. Y. ; Tao X. S. ; et al J. Am. Chem. Soc. 2019, 141, 4900.
doi: 10.1021/jacs.8b13438 |
68 |
Liang G. ; Wu Z. ; Didier C. ; Zhang W. ; Cuan J. ; Li B. ; Ko K. Y. ; Hung P. Y. ; Lu C. Z. ; Chen Y. ; et al Angew. Chem. Int. Ed. 2020, 59, 10594.
doi: 10.1002/anie.202001454 |
69 |
Qiu B. ; Zhang M. ; Wu L. ; Wang J. ; Xia Y. ; Qian D. ; Liu H. ; Hy S. ; Chen Y. ; An K. ; et al Nat. Commun. 2016, 7, 12108.
doi: 10.1038/ncomms12108 |
70 |
Schipper F. ; Bouzaglo H. ; Dixit M. ; Erickson E. M. ; Weigel T. ; Talianker M. ; Grinblat J. ; Burstein L. ; Schmidt M. ; Lampert J. ; et al Adv. Energy Mater. 2018, 8, 1701682.
doi: 10.1002/aenm.201701682 |
71 |
Oh P. ; Ko M. ; Myeong S. ; Kim Y. ; Cho J. Adv. Energy Mater. 2014, 4, 1400631.
doi: 10.1002/aenm.201400631 |
[1] | Chang Lan, Yuyi Chu, Shuo Wang, Changpeng Liu, Junjie Ge, Wei Xing. Research Progress of Proton-Exchange Membrane Fuel Cell Cathode Nonnoble Metal M-Nx/C-Type Oxygen Reduction Catalysts [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2210036-0. |
[2] | Feng Wu, Qing Li, Lai Chen, Zirun Wang, Gang Chen, Liying Bao, Yun Lu, Shi Chen, Yuefeng Su. An Optimized Synthetic Process for the Substitution of Cobalt in Nickel-Rich Cathode Materials [J]. Acta Phys. -Chim. Sin., 2022, 38(5): 2007017-. |
[3] | Feiyu Lin, Ying Yang, Congtan Zhu, Tian Chen, Shupeng Ma, Yuan Luo, Liu Zhu, Xueyi Guo. Fabrication of Stable CsPbI2Br Perovskite Solar Cells in the Humid Air [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2005007-. |
[4] | Zhiyang Chen, Yating Tang, Ze Lü, Xiaohan Meng, Qianwei Liang, Jianguo Feng. Citronella Oil Nanoemulsion: Formulation, Characterization, Antibacterial Activity, and Cytotoxicity [J]. Acta Phys. -Chim. Sin., 2022, 38(12): 2205053-. |
[5] | Xiaobo Ding, Qianhui Huang, Xunhui Xiong. Research and Application of Fast-Charging Graphite Anodes for Lithium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2204057-. |
[6] | Jiashun Liang, Xuan Liu, Qing Li. Principles, Strategies, and Approaches for Designing Highly Durable Platinum-based Catalysts for Proton Exchange Membrane Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2010072-. |
[7] | Leiduan Hao, Zhenyu Sun. Metal Oxide-Based Materials for Electrochemical CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009033-. |
[8] | Tian Wang, Taiyang Zhang, Yuetian Chen, Yixin Zhao. Highly Moisture Resistant 5-Aminovaleric Acid Crosslinked CH3NH3PbBr3 Perovskite Film with ALD-Al2O3 Protection [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2007021-. |
[9] | Wentao Zhou, Yihua Chen, Huanping Zhou. Strategies to Improve the Stability of Perovskite-based Tandem Solar Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2009044-. |
[10] | Chao Zheng, Aqiang Liu, Chenghao Bi, Jianjun Tian. SCN-doped CsPbI3 for Improving Stability and Photodetection Performance of Colloidal Quantum Dots [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2007084-. |
[11] | Jiaxin Wang, Weili Shen, Jinning Hu, Jun Chen, Xiaoming Li, Haibo Zeng. Mechanisms and Applications of Laser Action on Lead Halide Perovskites [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2008051-. |
[12] | Yuefeng Su, Qiyu Zhang, Lai Chen, Liying Bao, Yun Lu, Shi Chen, Feng Wu. Effects of ZrO2 Coating on Ni-Rich LiNi0.8Co0.1Mn0.1O2 Cathodes with Enhanced Cycle Stabilities [J]. Acta Phys. -Chim. Sin., 2021, 37(3): 2005062-. |
[13] | Han Wang, Hanwen An, Hongmei Shan, Lei Zhao, Jiajun Wang. Research Progress on Interfaces of All-Solid-State Batteries [J]. Acta Phys. -Chim. Sin., 2021, 37(11): 2007070-. |
[14] | Mingli Cai, Liu Yao, Jun Jin, Zhaoyin Wen. In situ Lithiophilic ZnO Layer Constructed using Aqueous Strategy for a Stable Li-Garnet Interface [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2009006-. |
[15] | Yuan Zhou, Na Han, Yanguang Li. Recent Progress on Pd-based Nanomaterials for Electrochemical CO2 Reduction [J]. Acta Physico-Chimica Sinica, 2020, 36(9): 2001041-. |
|