Acta Phys. -Chim. Sin. ›› 2022, Vol. 38 ›› Issue (5): 2007017.doi: 10.3866/PKU.WHXB202007017
• ARTICLE • Previous Articles Next Articles
Feng Wu1,2, Qing Li1,2,3, Lai Chen1,2,*(), Zirun Wang1, Gang Chen1,2, Liying Bao1, Yun Lu1,2, Shi Chen1, Yuefeng Su1,2,*()
Received:
2020-07-06
Accepted:
2020-08-18
Published:
2020-08-24
Contact:
Lai Chen,Yuefeng Su
E-mail:chenlai144@sina.com;suyuefeng@bit.edu.cn
About author:
Email: suyuefeng@bit.edu.cn (Y.S.)Supported by:
Feng Wu, Qing Li, Lai Chen, Zirun Wang, Gang Chen, Liying Bao, Yun Lu, Shi Chen, Yuefeng Su. An Optimized Synthetic Process for the Substitution of Cobalt in Nickel-Rich Cathode Materials[J]. Acta Phys. -Chim. Sin. 2022, 38(5), 2007017. doi: 10.3866/PKU.WHXB202007017
Table 1
Synthesis conditions for all samples."
Chemical formula | Abbreviation | Precursor | Synthetic method | pH | Lithium salt | |
The feasibility analysis of substituting Co with Cr, Cd | LiNi0.8Mn0.1Cr0.1O2 | Cr811 | Cr-(OH)2 | Hydroxide coprecipitation | 11 | LiOH·H2O |
LiNi0.8Mn0.1Cd0.1O2 | Cd811 | Cd-(OH)2 | ||||
LiNi0.8Mn0.1Co0.1O2 | Co811 | Co-(OH)2 | ||||
The feasibility analysis and synthetic process optimization of substituting Co with Zr in Ni-rich cathode | LiNi0.8Mn0.1Co0.1O2 | Co-LiOH | Co-CO3 | Carbonate coprecipitation | 7.8 | LiOH·H2O |
LiNi0.8Mn0.1Zr0.1O2 | Zr-LiOH-7.6 | Zr-CO3 | 7.6 | LiOH·H2O | ||
Zr-LiOH | 7.8 | |||||
Zr-LiOH-8.0 | 8.0 | |||||
Zr-LiOH-8.2 | 8.2 | |||||
LiNi0.8Mn0.1Co0.1O2 | Co-LiOH/Li2CO3 | Co-CO3 | Carbonate coprecipitation | 7.8 | LiOH·H2O + Li2CO3 | |
LiNi0.8Mn0.1Zr0.1O2 | Zr-LiOH/Li2CO3-7.6 | Zr-CO3 | 7.6 | LiOH·H2O + Li2CO3 | ||
Zr-LiOH/Li2CO3 | 7.8 | |||||
Zr-LiOH/Li2CO3-8.0 | 8.0 | |||||
Zr-LiOH/Li2CO3-8.2 | 8.2 | |||||
The verification of substituting Co with Zr in Ni-rich cathode | LiNi0.85Mn0.1Co0.05O2 | Co8555-LiOH | Ni0.85Mn0.1Co0.05CO3 | Carbonate coprecipitation | 7.8 | LiOH·H2O |
LiNi0.85Mn0.1Zr0.05O2 | Zr8555-LiOH | Ni0.85Mn0.1Zr0.05CO3 | ||||
LiNi0.85Mn0.1Co0.05O2 | Co8555-LiOH/Li2CO3 | Ni0.85Mn0.1Co0.05CO3 | LiOH·H2O + Li2CO3 | |||
LiNi0.85Mn0.1Zr0.05O2 | Zr8555-LiOH/Li2CO3 | Ni0.85Mn0.1Zr0.05CO3 |
Table 2
Electrochemical performances for Co-LiOH, Zr-LiOH, Co-LiOH/Li2CO3 and Zr-LiOH/Li2CO3."
Samples | The initial discharge capacity at 0.2C (coulombic efficiency) | The highest discharge capacity (mAh·g-1) | 100th discharge capacity at 0.2C (mAh·g-1) | 100th capacity retention at 0.2C | Discharge capacity at 10C (mAh·g-1) | The initial discharge capacity at 1C (mAh·g-1) | 80th capacity retention at 1C |
Co-LiOH | 157.5 (79.9%) | 165 | 151.4 | 86.1% | 121.6 | 147.8 | 91.14% |
Zr-LiOH | 145.8 (78.7%) | 145.8 | 126.9 | 87.04% | 48.6 | 126.8 | 90.46% |
Co-LiOH/Li2CO3 | 190 (82.7%) | 192.8 | 178.3 | 93.84% | 140.8 | 174.2 | 92.31% |
Zr-LiOH/Li2CO3 | 170.8 (80.1%) | 170.8 | 153.4 | 89.81% | 57.8 | 154.6 | 92.24% |
Table 3
Electrochemical performances of Zr4+ doped Cobalt-free Ni-rich cathode materials synthesized at different pH."
Samples | The initial discharge capacity (mAh·g?1) (coulombic efficiency) | The highest discharge capacity (mAh·g?1) | 70th discharge capacity (mAh·g?1) | 70th capacity retention |
Zr-LiOH-7.6 | 151.6 (74.1%) | 154.2 | 114.8 | 74.45% |
Zr-LiOH | 145.8 (78.7%) | 145.8 | 135.2 | 92.73% |
Zr-LiOH-8.0 | 149.9 (75.3%) | 152.8 | 94.3 | 61.71% |
Zr-LiOH-8.2 | 116 (67.6%) | 134.6 | 118.8 | 88.26% |
Zr-LiOH/Li2CO3-7.6 | 157.7 (68.7%) | 160.3 | 138.8 | 86.59% |
Zr-LiOH/Li2CO3 | 170.8 (80.1%) | 171 | 154.9 | 90.58% |
Zr-LiOH/Li2CO3-8.0 | 164.6 (77.1%) | 166.5 | 128.8 | 77.36% |
Zr-LiOH/Li2CO3-8.2 | 108.1 (51.3%) | 140.6 | 140.6 | 100% |
1 | Wang Z. ; Wu F. ; Su Y. ; Bao L. ; Chen L. ; Li N. ; Chen S. Acta Phys. -Chim. Sin. 2012, 28, 823. |
王昭; 吴锋; 苏岳锋; 包丽颖; 陈来; 李宁; 陈实. 物理化学学报, 2012, 28, 823.
doi: 10.3866/PKU.WHXB201202102 |
|
2 |
Tarascon J. M. ; Aamand M. Nature 2001, 414, 359.
doi: 10.1038/35104644 |
3 |
Wu F. ; Li Q. ; Chen L. ; Zhang Q. ; Wang Z. ; Lu Y. ; Bao L. ; Chen S. ; Su Y. ACS Appl. Mater. Interfaces 2019, 11, 36751.
doi: 10.1021/acsami.9b12595 |
4 |
Zhu G.-L. ; Zhao C.-Z. ; Huang J.-Q. ; He C. ; Zhang J. ; Chen S. ; Xu L. ; Yuan H. ; Zhang Q. Small 2019, 15, 1805389.
doi: 10.1002/smll.201805389 |
5 | Chen L. ; Chen S. ; Hu D. ; Su Y. ; Li W. ; Wang Z. ; Bao L. ; Wu F. Acta Phys. -Chim. Sin. 2014, 30, 467. |
陈来; 陈实; 胡道中; 苏岳锋; 李维康; 王昭; 包丽颖; 吴锋. 物理化学学报, 2014, 30, 467.
doi: 10.3866/PKU.WHXB201312252 |
|
6 |
Li M. ; Lu J. ; Chen Z. Adv. Mater. 2018, 30, 1800561.
doi: 10.1002/adma.201800561 |
7 |
Sakti A. ; Michalek J. J. ; Fuchs E. R. H. ; Whitacre J. F. J. Power Sources 2015, 273, 966.
doi: 10.1016/j.jpowsour.2014.09.078 |
8 |
Kim J. ; Lee H. ; Cha H. ; Yoon M. ; Park M. ; Cho J. Adv. Energy Mater. 2017, 8, 1702028.
doi: 10.1002/aenm.201702028 |
9 |
Bessette S. ; Paolella A. ; Kim C. ; Zhu W. ; Hovington P. ; Gauvin R. ; Zaghib K. Sci. Rep. 2018, 8, 17575.
doi: 10.1038/s41598-018-33608-3 |
10 |
Myung S.-T. ; Maglia F. ; Park K.-J. ; Yoon C. S. ; Lamp P. ; Kim S. J. ; Sun Y.-K. ACS Energy Lett. 2017, 2, 196.
doi: 10.1021/acsenergylett.6b00594 |
11 |
Jiang L. ; Luo Z. ; Wu T. ; Shao L. ; Sun J. ; Liu C. ; Li G. ; Cao K. ; Wang Q. J. Electrochem. Soc. 2019, 166, A1055.
doi: 10.1149/2.0661906jes |
12 |
Liu W. ; Oh P. ; Liu X. ; Lee M.-J. ; Cho W. ; Chae S. ; Kim Y. ; Cho J. Angew. Chem. Int. Ed. 2015, 54, 4440.
doi: 10.1002/anie.201409262 |
13 | Kou J. ; Wang Z. ; Bao L. ; Su Y. ; Hu Y. ; Chen L. ; Xu S. ; Chen F. ; Chen R. ; Sun F. Acta Phys. -Chim. Sin. 2016, 32, 717. |
寇建文; 王昭; 包丽颖; 苏岳锋; 胡宇; 陈来; 徐少禹; 陈芬; 陈人杰; 孙逢春. 物理化学学报, 2016, 32, 717.
doi: 10.3866/PKU.WHXB201512301 |
|
14 |
Yu H. ; Qian Y. ; Otani M. ; Tang D. ; Guo S. ; Zhu Y. ; Zhou H. Energy Environ. Sci. 2014, 7, 1068.
doi: 10.1039/C3EE42398K |
15 | Wu F. ; Wang M. ; Su Y. ; Chen S. Acta Phys. -Chim. Sin. 2009, 25, 629. |
吴锋; 王萌; 苏岳锋; 陈实. 物理化学学报, 2009, 25, 629.
doi: 10.3866/PKU.WHXB20090411 |
|
16 |
Wu F. ; Li Q. ; Chen L. ; Lu Y. ; Su Y. ; Bao L. ; Chen R. ; Chen S. ChemSusChem 2019, 12, 935.
doi: 10.1002/cssc.201802304 |
17 |
Kong F. ; Liang C. ; Wang L. ; Zheng Y. ; Perananthan S. ; Longo R. C. ; Ferraris J. P. ; Kim M. ; Cho K. Adv. Energy Mater. 2018, 9, 1802586.
doi: 10.1002/aenm.201802586 |
18 |
Kim J.-H. ; Park K.-J. ; Kim S. J. ; Yoon C. S. ; Sun Y.-K. J. Mater. Chem. A. 2019, 7, 2694.
doi: 10.1039/C8TA10438G |
19 |
Kim D. ; Lim J.-M. ; Lim Y.-G. ; Yu J.-S. ; Park M.-S. ; Cho M. ; Cho K. Chem. Mater. 2015, 27, 6450.
doi: 10.1021/acs.chemmater.5b02697 |
20 |
Wu Z. ; Ji S. ; Hu Z. ; Zheng J. ; Xiao S. ; Lin Y. ; Xu K. ; Amine K. ; Pan F. ACS Appl. Mater. Interfaces 2016, 8, 15361.
doi: 10.1021/acsami.6b0373 |
21 |
Zheng J. ; Teng G. ; Xin C. ; Zhou Z. ; Liu J. ; Li Q. ; Hu Z. ; Xu M. ; Yan S. ; Yang W. ; et al Phys. Chem. Lett. 2017, 8, 5537.
doi: 10.1021/acs.jpclett.7b02498 |
22 |
Whittingham M. S. Chem. Rev. 2004, 104, 4271.
doi: 10.1021/cr020731c |
23 |
Jian L. F. ; Zhang M. ; Yuan H. T. ; Zhao M. ; Guo J. ; Wang W. ; Zhou X. D. ; Wang Y. M. J. Power Sources 2007, 167, 178.
doi: 10.1016/j.jpowsour.2007.01.070 |
24 |
Kim Y. Int. J. Quantum Chem. 2019, 119, e26028.
doi: 10.1002/qua.26028 |
25 |
He T. ; Lu Y. ; Su Y. ; Bao L. ; Tan J. ; Chen L. ; Zhang Q. ; Li W. ; Chen S. ; Wu F. ChemSusChem 2018, 11, 1639.
doi: 10.1002/cssc.201702451 |
26 |
Han B. ; Xu S. ; Zhao S. ; Lin G. ; Feng Y. ; Chen L. ; Ivey D. G. ; Wang P. ; Wei W. ACS Appl. Mater. Interfaces 2018, 10, 39599.
doi: 10.1021/acsami.8b11112 |
27 |
Deng S. ; Lin Z. ; Li Y. ; Xue L. ; Li H. ; Chen Y. ; Lei T. ; Zhu J. ; Li J. ; Zhang J. Int. J. Mater. Res. 2018, 109, 1043.
doi: 10.3139/146.111701 |
28 |
Ma Y. ; Li L. ; Wang L. ; Luo R. ; Xu S. ; Wu F. ; Chen R. J. Alloys Compd. 2019, 778, 643.
doi: 10.1016/j.jallcom.2018.11.189 |
29 | Cui Y. F. ; Cui J. L. ; Man J. Z. ; Cheng F. P. ; Zhang P. C. ; Li S. ; Wen Z. H. ; Sun J. C. Rare Metal Mat. Eng. 2019, 48, 587. |
崔永福; 崔金龙; 满建宗; 程付鹏; 张鹏超; 李嵩; 文钟晟; 孙俊才. 稀有金属材料与工程, 2019, 48, 587. | |
30 |
Wang D. ; Belharouak I. ; Koenig G. M., Jr. ; Zhou G. ; Amine K. J. Mater. Chem. C. 2011, 21, 9290.
doi: 10.1039/C1JM11077B |
31 |
Wu F. ; Li Q. ; Bao L. ; Zheng Y. ; Lu Y. ; Su Y. ; Wang J. ; Chen S. ; Chen R. ; Tian J. Electrochim. Acta 2018, 260, 986.
doi: 10.1016/j.electacta.2017.12.034 |
[1] | Xiaobo Ding, Qianhui Huang, Xunhui Xiong. Research and Application of Fast-Charging Graphite Anodes for Lithium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2204057-. |
[2] | Yuefeng Su, Qiyu Zhang, Lai Chen, Liying Bao, Yun Lu, Shi Chen, Feng Wu. Effects of ZrO2 Coating on Ni-Rich LiNi0.8Co0.1Mn0.1O2 Cathodes with Enhanced Cycle Stabilities [J]. Acta Phys. -Chim. Sin., 2021, 37(3): 2005062-. |
[3] | Sidong Zhang, Yuan Liu, Muyao Qi, Anmin Cao. Localized Surface Doping for Improved Stability of High Energy Cathode Materials [J]. Acta Phys. -Chim. Sin., 2021, 37(11): 2011007-. |
[4] | Yongchao Shi, Mingxue Tang. NMR/EPR Investigation of Rechargeable Batteries [J]. Acta Physico-Chimica Sinica, 2020, 36(4): 1905004-. |
[5] | Jiangtao HU, Jiaxin ZHENG, Feng PAN. Research Progress into the Structure and Performance of LiFePO4 Cathode Materials [J]. Acta Physico-Chimica Sinica, 2019, 35(4): 361-370. |
[6] | Shah Rahim,Alam Naveed,A. Razzaq Amir,Cheng YANG,Yujie CHEN,Jiapeng HU,Xiaohui ZHAO,Yang PENG,Zhao DENG. Effect of Binder Conformity on the Electrochemical Behavior of Graphite Anodes with Different Particle Shapes [J]. Acta Physico-Chimica Sinica, 2019, 35(12): 1382-1390. |
[7] | Yanhuan CHEN,Jiaofu LI,Huibiao LIU. Preparation of Graphdiyne-Organic Conjugated Molecular Composite Materials for Lithium Ion Batteries [J]. Acta Phys. -Chim. Sin., 2018, 34(9): 1074-1079. |
[8] | Wan-Long LI,Yue-Jiao LI,Mei-Ling CAO,Wei QU,Wen-Jie QU,Shi CHEN,Ren-Jie CHEN,Feng WU. Synthesis and Electrochemical Performance of Alginic Acid-Based Carbon-Coated Li3V2(PO4)3 Composite by Rheological Phase Method [J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2261-2267. |
[9] | Ya-Dong LI,Yu-Feng DENG,Zhi-Yi PAN,Yin-Ping WEI,Shi-Xi ZHAO,Lin GAN. Dual Electron Energy Loss Spectrum Imaging of the Surfaces of LiNi0.5Mn1.5O4 Cathode Material [J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2293-2300. |
[10] | Wei HUANG,Chun-Yang WU,Yue-Wu ZENG,Chuan-Hong JIN,Ze ZHANG. Surface Analysis of the Lithium-Rich Cathode Material Li1.2Mn0.54Co0.13Ni0.13NaxO2 by Advanced Electron Microscopy [J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2287-2292. |
[11] | Ting LI,Zhi-Hui LONG,Dao-Hong ZHANG. Synthesis and Electrochemical Properties of Fe2O3/rGO Nanocomposites as Lithium and Sodium Storage Materials [J]. Acta Phys. -Chim. Sin., 2016, 32(2): 573-580. |
[12] | Shou-Pu ZHU,Tian WU,Hai-Ming SU,Shan-Shan QU,Yong-Juan XIE,Ming CHEN,Guo-Wang DIAO. Hydrothermal Synthesis of Fe3O4/rGO Nanocomposites as Anode Materials for Lithium Ion Batteries [J]. Acta Phys. -Chim. Sin., 2016, 32(11): 2737-2744. |
[13] | Qian-Wen. WANG,Xian-Feng. DU,Xi-Zi. CHEN,You-Long. XU. TiO2 Nanotubes as an Anode Material for Lithium Ion Batteries [J]. Acta Phys. -Chim. Sin., 2015, 31(8): 1437-1451. |
[14] | ZENG Yu-Qun, GUO Yong-Sheng, WU Bing-Bin, HONG Xiang, WU Kai ZHONG, Kai-Fu. Synthesis and Electrochemical Performance of Plastic Crystal Compound-Based Ionic Liquid [J]. Acta Phys. -Chim. Sin., 2015, 31(7): 1351-1358. |
[15] | XUE Qing-Rui, LI Jian-Ling, XU Guo-Feng, HOU Peng-Fei, YAN Gang, DAI Yu, WANG Xin-Dong, GAO Fei. Effects of Surface Modification with Ag/C on Electrochemical Properties of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 [J]. Acta Phys. -Chim. Sin., 2014, 30(9): 1667-1673. |
|