Acta Physico-Chimica Sinica ›› 2020, Vol. 36 ›› Issue (3): 1905025.doi: 10.3866/PKU.WHXB201905025
Special Issue: Photocatalyst
• Review • Previous Articles Next Articles
Wanjun Sun1,3,Junqi Lin1,Xiangming Liang1,Junyi Yang1,Baochun Ma1,Yong Ding1,2,*()
Received:
2019-05-06
Accepted:
2019-06-20
Published:
2019-06-24
Contact:
Yong Ding
E-mail:dingyong1@lzu.edu.cn
Supported by:
Wanjun Sun,Junqi Lin,Xiangming Liang,Junyi Yang,Baochun Ma,Yong Ding. Recent Advances in Catalysts Based on Molecular Cubanes for Visible Light-Driven Water Oxidation[J]. Acta Physico-Chimica Sinica 2020, 36(3), 1905025. doi: 10.3866/PKU.WHXB201905025
Fig 1
Structures of the native OEC (A, C) and the synthetic Mn4Ca complex (B, D) 12. (A) Mn4CaO5 core of the native OEC. (B) Mn4CaO4 core of the synthetic Mn4Ca complex. (C) Structure of the native OEC, including ligating protein side-chains and water molecules. (D) Structure of Mn4Ca complex, including all ligand groups. Adapted from Nature publisher. "
Table 1
The summary of catalytic effects of various molecule cubanes WOCs."
Molecule Cubanes WOCs | Reaction conditions | O2 yield/% | TON | TOF/s−1 | QE/% | Ref. |
Co4O4(OAc)4(py)4, 1 | [Ru(bpy)3]2+/Na2S2O8, 250 W Arc lamp, λ > 395 nm, 100 mmol∙L−1 NaHCO3 buffer, pH 7 | n.d. | 40 | 0.02 | n.d. | 22 |
Co4Ⅲ(μ-O)4(μ-CH3COO)4(p-NC5H5)4, 1 | [Ru(bpy)3]2+/Na2S2O8, 50 W halogen lamp, λ > 400 nm, 10 mmol∙L−1 borate buffer, pH 8 | n.d. | n.d. | n.d. | 26 | 28 |
Co4Ⅲ(μ-O)4(μ-CH3COO)4(p-NC5-t-Bu)4, 1b | n.d. | n.d. | n.d. | 10 | ||
Co4Ⅲ(μ-O)4(μ-CH3COO)4(p-NC5-CN)4, 1c | n.d. | n.d. | n.d. | 26 | ||
Co4Ⅲ(μ-O)4(μ-CH3COO)4(p-NC5-Me)4, 1d | n.d. | n.d. | n.d. | 30 | ||
Co4Ⅲ(μ-O)4(μ-CH3COO)4(p-NC5-Br)4, 1e | n.d. | n.d. | n.d. | 32 | ||
Co4Ⅲ(μ-O)4(μ-CH3COO)4(p-NC5-COOMe)4, 1f | n.d. | n.d. | n.d. | 46 | ||
Co4Ⅲ(μ-O)4(μ-CH3COO)4(p-NC5-OMe)4, 1g | n.d. | 140 | ~0.04 | 80 | ||
{Co4O4(OAc)3(Py)4}{(L)Ru(bpy)2}, 4 | Na2S2O8, 300 W Xe lamp, λ > 400 nm, 100 mmol∙L−1 NaHCO3 buffer, pH 7 | n.d. | 5 | 7 × 10−3 | n.d. | 29 |
{Co4O4(OAc)2(Py)4}2{(L)Ru(bpy)2}2, 5 | n.d. | 24 | 0.02 | n.d. | ||
Co4Ⅱ(hmp)4(μ-OAc)2(μ2-OAc)2(H2O)2, 6 | [Ru(bpy)3]2+/Na2S2O8, λ = 470 nm, 80 mmol∙L−1 borate buffer, pH 7 | n.d. | 40 | 7 | n.d. | 36 |
Co3ⅡHo(hmp)4(OAc)5H2O, 7a | [Ru(bpy)3]2+/Na2S2O8, λLED = 470 nm, pH 8 | 43 | 163 | 5.8 | n.d. | 34 |
Co3ⅡEr (hmp)4(OAc)5H2O, 7b | 91 | 211 | 5.7 | n.d. | ||
Co3ⅡTm (hmp)4(OAc)5H2O, 7c | 24 | 92 | 5.3 | n.d. | ||
Co3ⅡYb (hmp)4(OAc)5H2O, 7d | 42 | 160 | 6.8 | n.d. | ||
[Co4Ⅱ(dpy{OH}O)4(OAc)2(H2O)2](ClO4)2, 8a | [Ru(bpy)3]2+/Na2S2O8, λLED = 470 nm, 80 mmol∙L−1 borate buffer, pH 8.5 | 80 | 20 | 0.24 | n.d. | 37 |
[Co5Ⅱ Co2Ⅲ (mdea)4(N3)2(CH3CN)6(OH)2(H2O)2](ClO4)4, 10 | [Ru(bpy)3]2+/K2S2O8, λLED = 450 nm, 200 mmol∙L−1 borate buffer, pH 9 | n.d. | 210 | 0.23 | n.d. | 39 |
Co4Ⅲ(CO3)2(μ3-O)4(bpy)4, 11 | [Ru(bpy)3]Cl2/Na2S2O8, λLED ≥ 420 nm, 200 mmol∙L−1 borate buffer, pH 9 | 19.2 | 96 | 0.41 | n.d. | 40 |
Na[NaCo3Ⅱ{(C5H4N)2(SO3)C(O)}4], 12 | 23.4 | 117 | 0.51 | n.d. | ||
Cu8(dpk·OH)8(OAc)4](ClO4)4, 13 | [Ru(bpy)3]2+/Na2S2O8, λLED = 460 nm, 80 mmol∙L−1 borate buffer, pH 9 | 35.6 | 178 | 3.6 | n.d. | 42 |
[{Ru4O4(OH)2(H2O)4}(γ-SiW10O36)2]10−, 14 | [Ru(bpy)3]2+/Na2S2O8, Xe lamp, 420–520 nm, pH 7.2 | n.d. | 350 | 0.08 | 26 | 53 |
[{Co4(OH)3(PO4)}4(SiW9O34)4]n−, 15a | [Ru(bpy)3]2+/Na2S2O8, 300 W Xe lamp, λ > 420 nm, pH 9 | 18.1 | 22.5 | 0.053 | n.d. | 54 |
[{Co4(OH)3(PO4)}4(GeW9O34)4]n−, 15b | 31.0 | 38.75 | 0.105 | n.d. | ||
[{Co4(OH)3(PO4)}4(PW9O34)4]n−, 15c | 17.5 | 20.25 | n.d. | n.d. | ||
[{Co4(OH)3(PO4)}4(SeW9O34)4]n−, 15d | 26.4 | 33.0 | n.d. | n.d. | ||
[(A-a-SiW9O34)2Co8(OH)6(H2O)2(CO3)3]16−, 16 | [Ru(bpy)3]2+/Na2S2O8, λ > 420 nm, 80 mmol∙L−1 borate buffer, pH 9 | 43.6 | 1436 | 10 | ~36 | 56 |
Na12[{Co7ⅡAs6Ⅲ O9(OH)6}(A-a-SiW9O34)2]·8H2O, 17 | [Ru(bpy)3]2+/Na2S2O8, λ > 420 nm, 80 mmol∙L−1 borate buffer, pH 8 | 38.4 | 115.2 | 0.14 | n.d. | 57 |
[Mn3Ⅲ MnⅣO3(CH3COO)3(A-a-SiW9O34)]6−, 18 | [Ru(bpy)3]2+/Na2S2O8, NaHCO3/Na2SiF6 buffer, pH 5.2 | 1.2-3.7 | n.d. | n.d. | 1.7 | 58 |
[Ni12(OH)9(CO3)3(PO4)(SiW9O34)3]24−, 20a | [Ru(bpy)3]2+/Na2S2O8, λ > 420 nm, 80 mmol∙L−1 borate buffer, pH 9 | 15.1 | 128.2 | 0.13 | n.d. | 60 |
[Ni13(H2O)3(OH)9(PO4)4(SiW9O34)3]25−, 20b | 15.5 | 147.6 | 0.15 | n.d. | ||
[Ni25(H2O)2OH)18(CO3)2(PO4)6(SiW9O34)6]25−, 20c | 17.6 | 204.5 | 0.21 | n.d. | ||
[Co4O4(O2CMe)4(py)4, 1 | BiVO4/AgNO3, 300 W Xe lamp, λ > 420 nm | 100 | n.d. | n.d. | n.d. | 68 |
Co4O4(O2CMe)4L4, 1d | BiVO4/NaIO3, 300 W Xe lamp, λ > 420 nm, pH 4 | n.d. | n.d. | 2.0 | 4.5 | 69 |
Co4O4(O2CMe)4(py)4, 1 | PCN/AgNO3/La2O3 300 W Xe lamp | n.d. | n.d. | n.d. | n.d. | 70 |
PS Ⅱ | – | n.d. | 107 | 500 | n.d. | 61 |
1 |
Berardi S. ; Drouet S. ; Francàs L. ; Gimbert-Suriñach C. ; Guttentag M. ; Richmond C. ; Stoll T. ; Llobet A. Chem. Soc. Rev. 2014, 43, 7501.
doi: 10.1039/c3cs60405e |
2 |
Song F. ; Ding Y. ; Ma B. ; Wang C. ; Wang Q. ; Du X. ; Fu S. ; Song J. Energy Environ. Sci. 2013, 6, 1170.
doi: 10.1039/C3EE24433D |
3 |
Gong J. ; Li C. ; Wasielewski M. R. Chem. Soc. Rev. 2019, 48, 1862.
doi: 10.1039/c9cs90020al |
4 |
Wang J.-W. ; Zhong D.-C. ; Lu T.-B. Coord. Chem. Rev. 2018, 377, 225.
doi: 10.1016/j.ccr.2018.09.003 |
5 |
Xiao A. ; Lu H. ; Zhao Y. ; Luo G. G. Acta Phys. -Chim. Sin. 2016, 32 (12), 2968.
doi: 10.3866/PKU.WHXB201609194 |
肖岸; 卢辉; 赵阳; 骆耿耿. 物理化学学报, 2016, 32 (12), 2968.
doi: 10.3866/PKU.WHXB201609194 |
|
6 |
Yu L. ; Ding Y. ; Zheng M. ; Chen H. ; Zhao J. Chem. Commun. 2016, 52, 14494.
doi: 10.1039/C6CC02728h |
7 |
Dismukes G. C. ; Brimblecombe R. ; Felton G. A. ; Pryadun R. S. ; Sheats J. E. ; Spiccia L. ; Swiegers G. F. Acc. Chem. Res. 2009, 42, 1935.
doi: 10.1021/ar900249x |
8 |
Tian T. ; Gao H. ; Zhou X. ; Zheng L. ; Wu J. ; Li K. ; Ding Y. ACS Energy Lett. 2018, 3, 2150.
doi: 10.1021/acsenergylett.8b01206 |
9 |
Zhang B. ; Sun L. Chem. Soc. Rev. 2019, 48, 2216.
doi: 10.1039/c8cs00897c |
10 |
Gersten S. W. ; Samuels G. J. ; Meyer T. J. J. Am. Chem. Soc. 1982, 104, 4029.
doi: 10.1021/ja00378a053 |
11 |
Umena Y. ; Kawakami K. ; Shen J.-R. ; Kamiya N. Nature 2011, 473, 55.
doi: 10.1038/nature09913 |
12 |
Zhang C. X. ; Chen C. H. ; Dong H. X. ; Shen J. R. ; Dau H. ; Zhao J. Q. Science 2015, 348, 690.
doi: 10.1126/science.aaa6550 |
13 |
Kok B. ; Forbush B. ; McGloin M. Photochem. Photobiol. 1970, 11, 457.
doi: 10.1111/j.1751-1097.1970.tb06017.x |
14 |
Suga M. ; Akita F. ; Sugahara M. ; Kubo M. ; Nakajima Y. ; Nakane T. ; Yamashita K. ; Umena Y. ; Nakabayashi M. ; Yamane T. ; et al Nature 2017, 543, 131.
doi: 10.1038/nature21400 |
15 |
Suga M. ; Akita F. ; Hirata K. ; Ueno G. ; Murakami H. ; Nakajima Y. ; Shimizu T. ; Yamashita K. ; Yamamoto M. ; Ago H. ; et al Nature 2015, 517, 99.
doi: 10.1038/nature13991 |
16 |
Chen C. ; Chen Y. ; Yao R. ; Li Y. ; Zhang C. Angew. Chem. Int. Ed. 2019, 58, 3939.
doi: 10.1002/anie.201814440 |
17 |
Lin J. ; Han Q. ; Ding Y. Chem. Rec. 2018, 18, 1531.
doi: 10.1002/tcr.201800029 |
18 |
Buriak J. M. ; Kamat P. V. ; Schanze K. S. ACS Appl. Mater. Interfaces 2014, 6, 11815.
doi: 10.1021/am504389z |
19 |
Lin J. ; Meng X. ; Zheng M. ; Ma B. ; Ding Y. Appl Catal B: Environ 2019, 241, 351.
doi: 10.1016/j.apcatb.2018.09.052 |
20 |
Parent A. R. ; Crabtree R. H. ; Brudvig G. W. Chem. Soc. Rev. 2013, 42, 2247.
doi: 10.1039/C2CS35225G |
21 |
Yamada Y. ; Yano K. ; Hong D. ; Fukuzumi S. Phys. Chem. Chem. Phys. 2012, 14, 5753.
doi: 10.1039/c2cp00022a |
22 |
McCool N. S. ; Robinson D. M. ; Sheats J. E. ; Dismukes G. C. J. Am. Chem. Soc. 2011, 133, 11446.
doi: 10.1021/ja203877y |
23 |
Dismukes G. C. ; Brimblecombe R. ; Felton G. A. N. ; Pryadun R. S. ; Sheats J. E. ; Spiccia L. ; Swiegers G. F. Acc. Chem. Res. 2009, 42, 1935.
doi: 10.1021/ar900249x |
24 |
Smith P. F. ; Kaplan C. ; Sheats J. E. ; Robinson D. M. ; McCool N. S. ; Mezle N. ; Dismukes G. C. Inorg. Chem. 2014, 53, 2113.
doi: 10.1021/ic402720p |
25 |
Dimitrou K. ; Folting K. ; Streib W. E. ; Christou G. J. Am. Chem. Soc. 1993, 115, 6432.
doi: 10.1021/ja00067a077 |
26 |
Sumner E. C. Inorg. Chem. 1988, 27, 1320.
doi: 10.1021/ic00281a004 |
27 |
La Ganga G. ; Puntoriero F. ; Campagna S. ; Bazzan I. ; Berardi S. ; Bonchio M. ; Sartorel A. ; Natali M. ; Scandola F. Faraday Discuss. 2012, 155, 177.
doi: 10.1039/c1fd00093d |
28 |
Berardi S. ; La Ganga G. ; Natali M. ; Bazzan I. ; Puntoriero F. ; Sartorel A. ; Scandola F. ; Campagna S. ; Bonchio M. J. Am. Chem. Soc. 2012, 134, 11104.
doi: 10.1021/ja303951z |
29 |
Zhou X. ; Li F. ; Li H. ; Zhang B. ; Yu F. ; Sun L. ChemSusChem 2014, 7, 2453.
doi: 10.1002/cssc.201402195 |
30 |
Ullman A. M. ; Liu Y. ; Huynh M. ; Bediako D. K. ; Wang H. ; Anderson B. L. ; Powers D. C. ; Breen J. J. ; Abruña H. D. ; Nocera D. G. J. Am. Chem. Soc. 2014, 136, 17681.
doi: 10.1021/ja5110393 |
31 |
Nguyen A. I. ; Ziegler M. S. ; Oña-Burgos P. ; Sturzbecher-Hohne M. ; Kim W. ; Bellone D. E. ; Tilley T. D. J. Am. Chem. Soc. 2015, 137, 12865.
doi: 10.1021/jacs.5b08396 |
32 |
Wang H. -Y. ; Mijangos E. ; Ott S. ; Thapper A. Angew. Chem. Int. Ed. 2014, 53, 14499.
doi: 10.1002/anie.201406540 |
33 |
Wang J.-W. ; Sahoo P. ; Lu T.-B. ACS Catal. 2016, 6, 5062.
doi: 10.1021/acscatal.6b00798 |
34 |
Evangelisti F. ; More R. ; Hodel F. ; Luber S. ; Patzke G. R. J. Am. Chem. Soc. 2015, 137, 11076.
doi: 10.1021/jacs.5b05831 |
35 |
Folkman S. J. ; Soriano-Lopez J. ; Galan-Mascaros J. R. ; Finke R. G. J. Am. Chem. Soc. 2018, 140, 12040.
doi: 10.1021/jacs.8b06303 |
36 |
Evangelisti F. ; Guttinger R. ; More R. ; Luber S. ; Patzke G. R. J. Am. Chem. Soc. 2013, 135, 18734.
doi: 10.1021/ja4098302 |
37 |
Song F. ; Moré R. ; Schilling M. ; Smolentsev G. ; Azzaroli N. ; Fox T. ; Luber S. ; Patzke G. R. J. Am. Chem. Soc. 2017, 139, 14198.
doi: 10.1021/jacs.7b07361 |
38 | Xie, W. -F.; Guo, L. -Y.; Xu, J. -H.; Jagodič, M.; Jagličić, Z.; Wang, W. -G.; Zhuang, G. -L.; Wang, Z.; Tung, C. -H.; Sun, D. Eur. J. Inorg. Chem. 2016, 2016, 3253. doi.10.1002/ejic.201600510 |
39 | Xu, J. -H.; Guo, L. -Y.; Su, H.-F.; Gao, X.; Wu, X. -F.; Wang, W. -G.; Tung, C. -H.; Sun, D. Inorg. Chem. 2017, 56, 1591. doi: 10.1021/acs.inorgchem.6b02698 |
40 |
Zhao Y. ; Lin J. ; Liu Y. ; Ma B. ; Ding Y. ; Chen M. Chem. Commun. 2015, 51, 17309.
doi: 10.1039/C5CC07448g |
41 |
Jiang X. ; Li J. ; Yang B. ; Wei X. Z. ; Dong B. W. ; Kao Y. ; Huang M. ; Tung C. ; Wu L. Angew. Chem. Int. Ed. 2018, 57, 7850.
doi: 10.1002/anie.201803944 |
42 |
Lin J. ; Liang X. ; Cao X. ; Wei N. ; Ding Y. Chem. Commun. 2018, 54, 12515.
doi: 10.1039/c8cc06362a |
43 |
Song F. ; Ding Y. ; Zhao C. Acta Chim Sinica 2014, 72, 133.
doi: 10.6023/a13101052 |
宋芳源; 丁勇; 赵崇超. 化学学报, 2014, 72, 133.
doi: 10.6023/a13101052 |
|
44 |
Lv H. ; Geletii Y. V. ; Zhao C. ; Vickers J. W. ; Zhu G. ; Luo Z. ; Song J. ; Lian T. ; Musaev D. G. ; Hill C. L. Chem. Soc. Rev. 2012, 41, 7572.
doi: 10.1039/C2CS35292C |
45 |
Du X. ; Zhao J. ; Mi J. ; Ding Y. ; Zhou P. ; Ma B. ; Zhao J. ; Song J. Nano Energy 2015, 16, 247.
doi: 10.1016/j.nanoen.2015.06.025 |
46 |
Yu L. ; Ding Y. ; Zheng M. Appl. Catal. B: Environ. 2017, 209, 45.
doi: 10.1016/j.apcatb.2017.02.061 |
47 |
Yu L. ; Lin J. ; Zheng M. ; Chen M. ; Ding Y. Chem. Commun. 2018, 54, 354.
doi: 10.1039/C7CC08301G |
48 |
Du X. ; Ding Y. ; Song F. ; Ma B. ; Zhao J. ; Song J. Chem. Commun. 2015, 51, 13925.
doi: 10.1039/c5cc04551g |
49 |
Yin Q. ; Tan J. M. ; Besson C. ; Geletii Y. V. ; Musaev D. G. ; Kuznetsov A. E. ; Luo Z. ; Hardcastle K. I. ; Hill C. L. Science 2010, 328, 342.
doi: 10.1126/science.1185372 |
50 |
Han Z. ; Bond A. M. ; Zhao C. Sci. China Chem. 2011, 54, 1877.
doi: 10.1007/s11426-011-4442-4 |
51 |
Sartorel A. ; Carraro M. ; Scorrano G. ; Zorzi R. D. ; Geremia S. ; McDaniel N. D. ; Bernhard S. ; Bonchio M. J. Am. Chem. Soc. 2008, 130, 5006.
doi: 10.1021/ja077837f |
52 |
Geletii Y. V. ; Botar B. ; Kögerler P. ; Hillesheim D. A. ; Musaev D. G. ; Hill C. L. Angew. Chem. Int. Ed. 2008, 47, 3896.
doi: 10.1002/anie.200705652 |
53 |
Geletii Y. V. ; Huang Z. ; Hou Y. ; Musaev D. G. ; Lian T. ; Hill C. L. J. Am. Chem. Soc. 2009, 131, 7522.
doi: 10.1021/ja901373m |
54 | Han, X. -B.; Zhang, Z. -M.; Zhang, T.; Li, Y. -G.; Lin, W.; You, W.; Su, Z. -M.; Wang, E.-B. J. Am. Chem. Soc. 2014, 136, 5359. doi: 10.1021/ja412886e |
55 |
Du P. ; Kokhan O. ; Chapman K. W. ; Chupas P. J. ; Tiede D. M. J. Am. Chem. Soc. 2012, 134, 11096.
doi: 10.1021/ja303826a |
56 |
Wei J. ; Feng Y. ; Zhou P. ; Liu Y. ; Xu J. ; Xiang R. ; Ding Y. ; Zhao C. ; Fan L. ; Hu C. ChemSusChem 2015, 8, 2630.
doi: 10.1002/cssc.201500490 |
57 |
Chen W. C. ; Wang X. L. ; Qin C. ; Shao K. Z. ; Su Z. M. ; Wang E. B. Chem. Commun. 2016, 52, 9514.
doi: 10.1039/c6cc03763a |
58 |
Al-Oweini R. ; Sartorel A. ; Bassil B. S. ; Natali M. ; Berardi S. ; Scandola F. ; Kortz U. ; Bonchio M. Angew. Chem. Int. Ed. 2014, 53, 11182.
doi: 10.1002/anie.201404664 |
59 |
Schwarz B. ; Forster J. ; Goetz M. K. ; Yücel D. ; Berger C. ; Jacob T. ; Streb C. Angew. Chem. Int. Ed. 2016, 55, 6329.
doi: 10.1002/anie.201601799 |
60 | Han, X. -B.; Li, Y. -G.; Zhang, Z. -M.; Tan, H. -Q.; Lu, Y.; Wang, E. -B. J. Am. Chem. Soc. 2015, 137, 5486. doi: 10.1021/jacs.5b01329 |
61 |
Stewart A. C. ; Bendall D. S. Biochem. J. 1980, 188, 351.
doi: 10.1042/bj1880351 |
62 |
Xiang R. ; Ding Y. ; Zhao J. Chem. Asian J. 2014, 9, 3228.
doi: 10.1002/asia.201402483 |
63 |
Probs B. ; Kolano C. ; Hamm P. ; Alberto R. Inorg. Chem. 2009, 48, 1836.
doi: 10.1021/ic8013255 |
64 |
Liang X. ; Lin J. ; Cao X. ; Sun W. ; Yang J. ; Ma B. ; Ding Y. Chem. Commun. 2019, 55, 2529.
doi: 10.1039/c8cc09807g |
65 | Ye, C.; Wang, X. -Z.; Li, J. -X.; Li, Z. -J.; Li, X. -B.; Zhang, L. -P.; Chen, B.; Tung, C. -H.; Wu, L. -Z. ACS Catal. 2016, 6, 8336. doi: 10.1021/acscatal.6b02664 |
66 |
Li Y. ; Kong T. ; Shen S. Small 2019, 1900772.
doi: 10.1002/smll.201900772 |
67 |
Chang X. X. ; Gong J. L. Acta Phys. -Chim. Sin. 2016, 32 (1), 2.
doi: 10.3866/PKU.WHXB201510192 |
常晓侠; 巩金龙. 物理化学学报, 2016, 32 (1), 2.
doi: 10.3866/PKU.WHXB201510192 |
|
68 |
Wang Y. ; Li F. ; Li H. ; Bai L. ; Sun L. Chem. Commun. 2016, 52, 3050.
doi: 10.1039/c5cc09588c |
69 |
Ye S. ; Chen R. ; Xu Y. ; Fan F. ; Du P. ; Zhang F. ; Zong X. ; Chen T. ; Qi Y. ; Chen P. ; et al J. Catal. 2016, 338, 168.
doi: 10.1016/j.jcat.2016.02.024 |
70 |
Luo Z. S. ; Zhou M. ; Wang X. C. Appl. Catal. B: Environ. 2018, 238, 664.
doi: 10.1016/j.apcatb.2018.07.056 |
[1] | Chengbo Zhang, Xiaoping Tao, Wenchao Jiang, Junxue Guo, Pengfei Zhang, Can Li, Rengui Li. Microwave-Assisted Synthesis of Bismuth Chromate Crystals for Photogenerated Charge Separation [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303034-. |
[2] | Kezhen Lai, Fengyan Li, Ning Li, Yangqin Gao, Lei Ge. Identification of Charge Transfer Pathways in Metal-Organic Framework- Derived Ni-CNT/ZnIn2S4 Heterojunctions for Photocatalytic Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2304018-. |
[3] | Qianwei Song, Guanchao He, Huilong Fei. Photothermal Catalytic Conversion Based on Single Atom Catalysts: Fundamentals and Applications [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212038-0. |
[4] | Zhongliao Wang, Jing Wang, Jinfeng Zhang, Kai Dai. Overall Utilization of Photoexcited Charges for Simultaneous Photocatalytic Redox Reactions [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2209037-. |
[5] | Zhongqi Zan, Xibao Li, Xiaoming Gao, Juntong Huang, Yidan Luo, Lu Han. 0D/2D Carbon Nitride Quantum Dots (CNQDs)/BiOBr S-Scheme Heterojunction for Robust Photocatalytic Degradation and H2O2 Production [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2209016-. |
[6] | Xinhe Wu, Guoqiang Chen, Juan Wang, Jinmao Li, Guohong Wang. Review on S-Scheme Heterojunctions for Photocatalytic Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2212016-0. |
[7] | Keyu Zhang, Yunfeng Li, Shidan Yuan, Luohong Zhang, Qian Wang. Review of S-Scheme Heterojunction Photocatalyst for H2O2 Production [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2212010-. |
[8] | Wenjie Zhou, Qihang Jing, Jiaxin Li, Yingzhi Chen, Guodong Hao, Lu-Ning Wang. Organic Photocatalysts for Solar Water Splitting: Molecular- and Aggregate-Level Modifications [J]. Acta Phys. -Chim. Sin., 2023, 39(5): 2211010-0. |
[9] | Yonggang Lei, Tianyu Zhao, Kim Hoong Ng, Yingzhen Zhang, Xuerui Zang, Xiao Li, Weilong Cai, Jianying Huang, Jun Hu, Yuekun Lai. Metallic Tungsten Carbide Coupled with Liquid-Phase Dye Photosensitizer for Efficient Photocatalytic Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2023, 39(4): 2206006-0. |
[10] | Erjun Lu, Junqian Tao, Can Yang, Yidong Hou, Jinshui Zhang, Xinchen Wang, Xianzhi Fu. Carbon-Encapsulated Pd/TiO2 for Photocatalytic H2 Evolution Integrated with Photodehydrogenative Coupling of Amines to Imines [J]. Acta Phys. -Chim. Sin., 2023, 39(4): 2211029-0. |
[11] | Jing Kong, Jingui Zhang, Sufen Zhang, Juqun Xi, Ming Shen. Performance Improvement and Antibacterial Mechanism of BiOI/ZnO Nanocomposites as Antibacterial Agent under Visible Light [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2212039-. |
[12] | Jintao Dong, Sainan Ji, Yi Zhang, Mengxia Ji, Bin Wang, Yingjie Li, Zhigang Chen, Jiexiang Xia, Huaming Li. Construction of Z-Scheme MnO2/BiOBr Heterojunction for Photocatalytic Ciprofloxacin Removal and CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2023, 39(11): 2212011-. |
[13] | Cheng Hu, Hongwei Huang. Advances in Piezoelectric Polarization Enhanced Photocatalytic Energy Conversion [J]. Acta Phys. -Chim. Sin., 2023, 39(11): 2212048-. |
[14] | Xiaoyan Cai, Jiahao Du, Guangming Zhong, Yiming Zhang, Liang Mao, Zaizhu Lou. Constructing a CeO2/ZnxCd1−xIn2S4 S-Scheme Hollow Heterostructure for Efficient Photocatalytic H2 Evolution [J]. Acta Phys. -Chim. Sin., 2023, 39(11): 2302017-. |
[15] | Jun Xie, Yuheng Jiang, Siyang Li, Peng Xu, Qiang Zheng, Xiaoyu Fan, Hailin Peng, Zhiyong Tang. Stable Photocatalytic Coupling of Methane to Ethane with Water Vapor Using TiO2 Supported Ultralow Loading AuPd Nanoparticles [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2306037-. |
|