Acta Physico-Chimica Sinica ›› 2020, Vol. 36 ›› Issue (6): 1905051.doi: 10.3866/PKU.WHXB201905051
Special Issue: Thermal Analysis Kinetics and Thermokinetics
• Review • Previous Articles Next Articles
Wen Xie1,Lianjiao Zhou2,Juan Xu2,Qinglian Guo1,Fenglei Jiang2,Yi Liu2,*()
Received:
2019-05-14
Accepted:
2019-06-19
Published:
2019-12-18
Contact:
Yi Liu
E-mail:yiliuchem@whu.edu.cn
Supported by:
Wen Xie,Lianjiao Zhou,Juan Xu,Qinglian Guo,Fenglei Jiang,Yi Liu. Advances in Biothermochemistry and Thermokinetics[J]. Acta Physico-Chimica Sinica 2020, 36(6), 1905051. doi: 10.3866/PKU.WHXB201905051
Fig 2
Dependency of the metabolic heat production rate of E. coli on the dosage of MPA-CdTe and GSH-CdTe QDs 30. E. coli (λ−) treated with MPA-CdTe QDs (A) and with GSH-CdTe QDs (B). Mixture of E. coli (λ−:λ+ = 9 : 1) treated with MPA-CdTe QDs (C) and with GSH–CdTe QDs (D). A mixture of bacteria with prophages (λ+) and without prophages (λ−) as a bioindicator is more sensitive against the chemical activation than the pure λ+ strain alone. The optimum ratio of λ−/λ+ is 9/1."
1 |
Held C. ; Sadowski G. Annu. Rev. Chem. Biomol. Eng. 2016, 7, 395.
doi: 10.1146/annurev-chembioeng-080615-034704 |
2 |
Maskow T. ; Schubert T. ; Wolf A. ; Buchholz F. ; Regestein L. ; Buechs J. ; Mertens F. ; Harms H. ; Lerchner J. Appl. Microbiol. Biotechnol. 2011, 92 (1), 55.
doi: 10.1007/s00253-011-3497-7 |
3 |
Alberty R. A. ; Goldberg R. N. Biochemistry 1992, 31 (43), 10610.
doi: 10.1021/bi00158a025 |
4 |
Liu Y. ; Xie W. H. ; Xie C. L. ; Qu S. S. Acta. Phys. -Chim. Sin. 1996, 12 (2), 156.
doi: 10.3866/PKU.WHXB19960213 |
刘义; 谢卫红; 谢昌礼; 屈松生. 物理化学学报, 1996, 12 (2), 156.
doi: 10.3866/PKU.WHXB19960213 |
|
5 | Liu Y., Tan A. M., Xie C. L., Wang C. X., Acta. Phys. -Chim. Sin. 1996, 12 (4), 377. |
刘义,谭安民,谢昌礼,王存信,屈松生,郝宗宇.物理化学学报, 1996, 12 (4), 377. doi: 10.3866/PKU.WHXB19960419 | |
6 | Liu Y., Tan A. M., Xie C. L., Wang C. X., Acta. Phys. -Chim. Sin. 1996, 12 (5), 451. |
刘义,谭安民,谢昌礼,王存信,屈松生,郝宗宇.物理化学学报, 1996, 12 (5), 451. doi: 10.3866/PKU.WHXB19960513 | |
7 | Liu Y., Wang C. X., Xie C. L., Qu S. S., Acta. Phys. -Chim. Sin. 1996, 12 (7), 659. |
刘义,王存信,谢昌礼,屈松生,郝宗宇.物理化学学报, 1996, 12 (7), 659. doi: 10.3866/PKU.WHXB19960716 | |
8 |
Ozilgen M. Int. J. Energy Res. 2017, 41 (11), 1513.
doi: 10.1002/er.3712 |
9 |
Kabo G. J. ; Blokhin A. V. ; Paulechka E. ; Roganov G. N. ; Frenkel M. ; Yursha L. A. ; Diky V. J. Chem. Thermodyn. 2019, 131, 225.
doi: 10.1016/j.jct.2018.10.025 |
10 |
Jiang L. L. ; Liu Y. ; Zheng S. X. Chin. J. Appl. Environ. Biol 2016, 22 (4), 0732.
doi: 10.3724/SP.J.1145.2015.10031 |
姜兰兰; 刘燕; 郑世学. 应用与环境生物学报, 2016, 22 (4), 0732.
doi: 10.3724/SP.J.1145.2015.10031 |
|
11 |
Hansen L. D. ; Barros N. ; Transtrum M. K. ; Rodriguez-Anon J. A. ; Proupin J. ; Pineiro V. ; Arias-Gonzalez A. Thermochim. Acta 2018, 670, 128.
doi: 10.1016/j.tca.2018.10.010 |
12 |
Barros N. ; Feijoo S. ; Perez-Cruzado C. ; Hansen L. D. AIMS Microbiol 2017, 3 (4), 762.
doi: 10.3934/microbiol.2017.4.762 |
13 |
Barros N. ; Salgado J. ; Villanueva M. ; Rodriquez-Anon. J. ; Proupin J. ; Feijoo S. ; Martin-Pastor. M. J. Therm. Anal. Calorim. 2010, 104 (1), 53.
doi: 10.1007/s10973-010-1163-4 |
14 |
Xu J. B. ; Feng Y. Z. ; Barros N. ; Zhong L. H. ; Chen R. R. ; Lin X. G. J. Therm. Anal. Calorim. 2016, 127 (2), 1457.
doi: 10.1007/s10973-016-5952-2 |
15 |
Cenciani K. ; Freitas S. D. ; Critter S. A. M. ; Airoldi C. Rev. Bras. Cienc. Solo 2011, 35, 1167.
doi: 10.1590/S0100-06832011000400010 |
16 |
Cenciani K. ; Freitas S. D. ; Critter S. A. M. ; Airoldi C. Sci. Agric. 2008, 65 (6), 674.
doi: 10.1590/S0103-90162008000600016 |
17 |
Menert A. ; Paalme V. ; Juhkam J. ; Vilu R. Thermochim. Acta 2004, 420 (1–2), 89.
doi: 10.1016/j.tca.2003.12.032 |
18 |
Haman N. ; Ferrentino G. ; Imperiale S. ; Scampicchio M. J. Therm. Anal. Calorim. 2008, 132 (2), 1065.
doi: 10.1007/s10973-018-6995-3 |
19 |
Hasan S. M. K. ; Manzocco L. ; Morozova K. ; Nicoli M. C. ; Scampicchio M. Thermochim. Acta 2017, 649, 63.
doi: 10.1016/j.tca.2017.01.008 |
20 |
Hasan S. M. K. ; Asaduzzaman M. ; Merkyte V. ; Morozova K. ; Scampicchio M. Food Anal. Meth. 2017, 11 (2), 432.
doi: 10.1007/s12161-017-1014-z |
21 |
Haman N. ; Longo E. ; Schiraldi A. ; Scampicchio M. Thermochim. Acta 2017, 658, 1.
doi: 10.1016/j.tca.2017.10.012 |
22 |
Morozova K. ; Andreotti C. ; Armani M. ; Cavani L. ; Cesco S. ; Cortese L. ; Gerbi V. ; Mimmo T. ; Spena P. R. ; Scampicchio M. J. Therm. Anal. Calorim 2016, 127 (2), 1351.
doi: 10.1007/s10973-016-5891-y |
23 |
Rakhmatullina D. F. ; Gordon L. K. ; Ponomareva A. A. ; Ogorodnikova T. I. ; Alyab'ev A. Y. ; Iyudin V. S. ; Obynochnyi A. A. Russ. J. Plant Physiol 2011, 58 (1), 100.
doi: 10.1134/S1021443710061044 |
24 | Yan C. N. ; Liu Y. ; Yan W. ; Song Z. H. ; Qu S. S. Chin. J. Nat. 1997, 19 (5), 288. |
颜承农; 刘义; 颜蔚; 宋昭华; 屈松生. 自然杂志, 1997, 19 (5), 288. | |
25 |
Gao D. ; Ren Y. S. ; Yan D. Acta Pharm. Sin. B 2014, 49 (3), 385.
doi: 10.16438/j.0513-4870.2014.03.018 |
26 |
Winkelmann M. ; Hunger N. ; Huttl R. ; Wolf G. Thermochim. Acta 2009, 482 (1–2), 12.
doi: 10.1016/j.tca.2008.10.007 |
27 |
Russel M. ; Liu C. R. ; Alam A. ; Wang F. ; Yao J. ; Daroch M. ; Shah M. R. ; Wang Z. M. Environ. Sci. Pollut. Res. 2018, 25 (19), 18519.
doi: 10.1007/s11356-018-1926-1 |
28 |
Howard-Varona C. ; Hargreaves K. R. ; Abedon S. T. ; Sullivan M. B. ISME J. 2017, 11 (7), 1511.
doi: 10.1038/ismej.2017.16 |
29 |
Xu J. ; Kiesel B. ; Kallies R. ; Jiang F. L. ; Liu Y. ; Maskow T. Microb. Biotechnol 2018, 11 (6), 1112.
doi: 10.1111/1751-7915.13042 |
30 |
Xu J. ; He H. ; Wang Y. Y. ; Yan R. ; Zhou L. J. ; Liu Y. Z. ; Jiang F. L. ; Maskow T. ; Liu Y. Environ. Sci.: Nano 2018, 5 (7), 1556.
doi: 10.1039/C8EN00142A |
31 |
Liu G. S. ; Liu Y. ; Chen X. D. ; Liu P. ; Shen P. ; Qu S. S. J. Virol. Methods 2003, 112 (1–2), 137.
doi: 10.1016/S0166-0934(03)00214-3 |
32 |
Liu G. S. ; Li M. J. ; Chen X. D. ; Liu Y. ; Zhu J. C. ; Shen P. Thermochim. Acta 2005, 435 (1), 34.
doi: 10.1016/j.tca.2005.03.022 |
33 |
Liu G. S. ; Ran Z. L. ; Wang H. L. ; Liu Y. ; Shen P. ; Lu Y. Acta Chim. Sin. 2007, 65 (10), 917.
doi: 10.3321/j.issn:0567-7351.2007.10.008 |
刘国生; 冉治霖; 王海磊; 刘义; 沈萍; 卢雁. 化学学报, 2007, 65 (10), 917.
doi: 10.3321/j.issn:0567-7351.2007.10.008 |
|
34 |
Brueckner D. ; Krahenbuhl S. ; Zuber U. ; Bonkat G. ; Braissant O. J. Appl. Microbiol. 2017, 123 (3), 773.
doi: 10.1111/jam.13520 |
35 |
Gaisford S. ; Beezer A. E. ; Bishop A. H. ; Walker M. ; Parsons D. Int. J. Pharmacol. 2009, 366 (1–2), 111.
doi: 10.1016/j.ijpharm.2008.09.005 |
36 |
Said J. ; Walker M. ; Parsons D. ; Stapleton P. ; Beezer A. E. ; Gaisford S. Int. J. Pharmacol. 2014, 474 (1–2), 177.
doi: 10.1016/j.ijpharm.2014.08.034 |
37 |
Moreno M. G. ; Trampuz A. ; Di Luca M. Res. Microbiol. 2017, 72 (11), 3085.
doi: 10.1093/jac/dkx265 |
38 |
Butini M. E. ; Cabric S. ; Trampuz A. ; Di Luca M. J. Antimicrob. Chemother. 2018, 161, 252.
doi: 10.1016/j.colsurfb.2017.10.050 |
39 |
Tkhilaishvili T. ; Di Luca M. ; Abbandonato G. ; Maiolo E. M. ; Klatt A. B. ; Reuter M. ; Moncke-Buchner E. ; Trampuz A. J. Appl. Microbiol. 2018, 169 (Suppl, 9), 515.
doi: 10.1016/j.resmic.2018.05.010 |
40 |
Wu F. G. ; Sun H. Y. ; Zhou Y. ; Deng G. ; Yu Z. W. RSC Adv. 2015, 5 (1), 726.
doi: 10.1039/C4RA07569B |
41 |
Wu F. G. ; Jiang Y. W. ; Chen Z. ; Yu Z. W. Langmuir 2016, 32 (15), 3655.
doi: 10.1021/acs.langmuir.6b00235 |
42 |
Said J. ; Walker M. ; Parsons D. ; Stapleton P. ; Beezer A. E. ; Gaisford S. Methods 2015, 76, 35.
doi: 10.1016/j.ymeth.2014.12.002 |
43 |
Mishra S. ; Chattopadhyay A. ; Naaz S. ; Ghosh A. K. ; Das A. R. ; Bandyopadhyay D. Life Sci. 2019, 218, 96.
doi: 10.1016/j.lfs.2018.12.035 |
44 |
Dong P. ; Li J. H. ; Xu S. P. ; Wu X. J. ; Xiang X. ; Yang Q. Q. ; Jin J. C. ; Liu Y. ; Jiang F. L. J. Hazard. Mater. 2018, 308, 139.
doi: 10.1016/j.jhazmat.2016.01.017 |
45 |
Zhao J. ; Ma L. ; Xiang X. ; Guo Q. L. ; Jiang F. L. ; Liu Y. Chemosphere 2016, 153, 414.
doi: 10.1016/j.chemosphere.2016.03.082 |
46 |
Yang L. Y. ; Gao J. L. ; Gao T. ; Dong P. ; Ma L. ; Jiang F. L. ; Liu Y. J. Hazard. Mater. 2016, 301, 119.
doi: 10.1016/j.jhazmat.2015.08.046 |
47 |
Lai L. ; Li Y. P. ; Mei P. ; Chen W. ; Jiang F. L. ; Liu Y. J. Membr. Biol. 2016, 249 (6), 757.
doi: 10.1007/s00232-016-9920-3 |
48 |
Shore E. R. ; Awais M. ; Kershaw N. M. ; Gibson R. R. ; Pandalanen S. ; Latawiec D. ; Wen L. ; Javed M. A. ; Criddle D. N. ; Berry N. ; et al J. Med. Chem. 2016, 59 (6), 2596.
doi: 10.1021/acs.jmedchem.5b01801 |
49 |
Jiao X. Y. ; Yuan L. ; Wu C. ; Liu Y. J. ; Jiang F. L. ; Hu Y. J. ; Liu Y. Toxicol. Res. 2018, 7 (2), 191.
doi: 10.1039/C7TX00234C |
50 |
Yuan L. ; Liu Y. J. ; He H. ; Jiang F. L. ; Li H. R. ; Liu Y. Acta Phys. -Chim. Sin. 2018, 34 (1), 73.
doi: 10.3866/PKU.WHXB201707043 |
袁莲; 刘玉娇; 何欢; 蒋风雷; 李会荣; 刘义. 物理化学学报, 2018, 34 (1), 73.
doi: 10.3866/PKU.WHXB201707043 |
|
51 |
Yuan L. ; Gao T. ; He H. ; Jiang F. L. ; Liu Y. Toxicol. Res. 2017, 6 (5), 621.
doi: 10.1039/C7TX00079K |
52 |
Yuan L. ; Zhang J. Q. ; Liu Y. J. ; Zhao J. ; Jiang F. L. ; Liu Y. J. Inorg. Biochem. 2017, 177, 17.
doi: 10.1016/j.jinorgbio.2017.08.012 |
53 |
Zhao J. ; Zhou Z. Q. ; Jin J. C. ; Yuan L. ; He H. ; Jiang F. L. ; Yang X. G. ; Dai J. ; Liu Y. Chemosphere 2014, 100, 194.
doi: 10.1016/j.chemosphere.2013.11.031 |
54 |
Xia C. F. ; Jin J. C. ; Yuan L. ; Zhao J. ; Chen X. Y. ; Jiang F. L. ; Qin C. Q. ; Dai J. ; Liu Y. Chemosphere 2013, 91 (11), 1577.
doi: 10.1016/j.chemosphere.2012.12.049 |
55 |
Frank N. ; Lissner A. ; Winkelmann M. ; Huttl R. ; Mertens F. O. ; Kaschabek S. R. ; Schlomann M. Biodegradation 2010, 21 (2), 179.
doi: 10.1007/s10532-009-9292-9 |
56 |
Goldberg R. N. ; Schliesser J. ; Mittal A. ; Decker S. R. ; Santos A. F. L. O. M. ; Freitas V. L. S. ; Urbas A. ; Lang B. E. ; Heiss C. ; da Silva M. D. M. C. R. ; et al J. Chem. Thermodyn 2015, 81, 184.
doi: 10.1016/j.jct.2014.09.006 |
57 |
Popovic M. ; Woodfield B. F. ; Hansen L. D. J. Therm. Anal. Calorim. 2019, 128, 244.
doi: 10.1016/j.jct.2018.08.006 |
58 |
Liu W. T. ; Zhang Y. Z. ; Cui N. B. ; Wang T. Food Technol. Biotechnol. 2019, 76, 194.
doi: 10.1016/j.procbio.2018.10.017 |
59 |
Mason M. ; Scampicchio M. ; Quinn C. F. ; Transtrum M. K. ; Baker N. ; Hansen L. D. ; Kenealey J. D. J. Food Sci 2018, 83 (2), 326.
doi: 10.1111/1750-3841.14023 |
60 |
Aggarwal N. ; Sharma M. ; Banipal T. S. ; Banipal P. K. J. Chem. Eng. Data 2019, 64 (2), 517.
doi: 10.1021/acs.jced.8b00681 |
61 |
Kabo G. J. ; Paulechka Y. U. ; Voitkevich O. V. ; Blokhin A. V. ; Stepurko E. N. ; Kohut S. V. ; Voznyi Y. V. J. Chem. Thermodyn. 2015, 85, 101.
doi: 10.1016/j.jct.2015.01.005 |
62 |
Wu F. G. ; Jiang Y. W. ; Sun H. Y. ; Luo J. J. ; Yu Z. W. J. Phys. Chem. B 2015, 119 (45), 14382.
doi: 10.1021/acs.jpcb.5b07277 |
63 |
Belliardo C. ; Di Giorgio C. ; Chaspoul F. ; Gallice P. ; Berge-Lefranc D. J. Chem. Thermodyn 2018, 125, 271.
doi: 10.1016/j.jct.2018.05.028 |
64 |
Burova T. V. ; Grinberg N. V. ; Dubovik A. S. ; Olenichenko E. A. ; Orlov V. N. ; Grinberg V. Y. Polymer 2017, 108, 97.
doi: 10.1016/j.polymer.2016.11.049 |
65 |
Escobar J. F. B. ; Restrepo M. H. P. ; Fernandez D. M. M. ; Martinez A. M. ; Giordani C. ; Castelli F. ; Sarpietro M. G. Colloids Surf. B 2018, 166, 203.
doi: 10.1016/j.colsurfb.2018.03.023 |
66 |
Boros E. ; Sebak F. ; Heja D. ; Szakacs D. ; Zboray K. ; Schlosser G. ; Micsonai A. ; Kardos J. ; Bodor A. ; Pal G. J. Mol. Biol 2019, 431 (3), 557.
doi: 10.1016/j.jmb.2018.12.003 |
67 |
Krauss N. ; Wessner H. ; Welfle K. ; Welfle H. ; Scholz C. ; Seifert M. ; Zubow K. ; Ay J. ; Hahn M. ; Scheerer P. ; et al Proteins: Struct., Funct., Genet. 2008, 73 (3), 552.
doi: 10.1002/prot.22080 |
68 |
Alvarez-Armenta A. ; Carvajal-Millan E. ; Pacheco-Aguilar R. ; Garcia-Sanchez G. ; Marquez-Rios E. ; Scheuren-Acevedo S. M. ; Ramirez-Suarez J. C. Environ. Sci. Pollut. Res. 2019, 57 (1), 39.
doi: 10.17113/ftb.57.01.19.5848 |
69 |
Wu J. J. ; Xie D. W. ; Chen X. J. ; Tang Y. J. ; Wang L. X. ; Xie J. L. ; Wei D. Z. Process Biochem. 2019, 79, 97.
doi: 10.1016/j.procbio.2018.12.018 |
70 |
Yang L. Y. ; Hua S. Y. ; Zhou Z. Q. ; Wang G. C. ; Jiang F. L. ; Liu Y. Colloids Surf. B 2017, 157, 261.
doi: 10.1016/j.colsurfb.2017.05.065 |
71 |
Zhang Y. ; Xu Z. Q. ; Liu X. R. ; Qi Z. D. ; Jiang F. L. ; Liu Y. J. Solut. Chem. 2012, 41 (2), 351.
doi: 10.1007/s10953-012-9791-x |
[1] | Xinxuan Duan, Marshet Getaye Sendeku, Daoming Zhang, Daojin Zhou, Lijun Xu, Xueqing Gao, Aibing Chen, Yun Kuang, Xiaoming Sun. Tungsten-Doped NiFe-Layered Double Hydroxides as Efficient Oxygen Evolution Catalysts [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303055-. |
[2] | Yaowu Luo, Dingsheng Wang. Enhancing Heterogeneous Catalysis by Electronic Property Regulation of Single Atom Catalysts [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212020-0. |
[3] | Junwen Lu, Shunan Zhang, Haozhi Zhou, Chaojie Huang, Lin Xia, Xiaofang Liu, Hu Luo, Hui Wang. Ir Single Atoms and Clusters Supported on α-MoC as Catalysts for Efficient Hydrogenation of CO2 to CO [J]. Acta Phys. -Chim. Sin., 2023, 39(11): 2302021-. |
[4] | Changxiang Shao, Liangti Qu. Progress on Power Generation from Gas-Liquid Phase Transformation of Water [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2306004-. |
[5] | Mingliang Wu, Yehui Zhang, Zhanzhao Fu, Zhiyang Lyu, Qiang Li, Jinlan Wang. Structure-Activity Relationship of Atomic-Scale Cobalt-Based N-C Catalysts in the Oxygen Evolution Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2207007-0. |
[6] | Henan Mao, Xiaogong Wang. Key Factors Affecting Rheological Behavior of High-Concentration Graphene Oxide Dispersions and Population Balance Equation Model Analysis [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2004025-. |
[7] | Yuming Li, Haichao Liu. Selective Hydrogenolysis of Glycerol to 1, 3-Propanediol over Supported Platinum-Tungsten Oxide Catalysts [J]. Acta Phys. -Chim. Sin., 2022, 38(10): 2207014-. |
[8] | Xibao Li, Jiyou Liu, Juntong Huang, Chaozheng He, Zhijun Feng, Zhi Chen, Liying Wan, Fang Deng. All Organic S-Scheme Heterojunction PDI-Ala/S-C3N4 Photocatalyst with Enhanced Photocatalytic Performance [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2010030-. |
[9] | Congming Li, Kuo Chen, Xiaoyue Wang, Nan Xue, Hengquan Yang. Understanding the Role of Cu/ZnO Interaction in CO2 Hydrogenation to Methanol [J]. Acta Phys. -Chim. Sin., 2021, 37(5): 2009101-. |
[10] | Haifeng Que, Huaning Jiang, Xingguo Wang, Pengbo Zhai, Lingjia Meng, Peng Zhang, Yongji Gong. Utilization of the van der Waals Gap of 2D Materials [J]. Acta Phys. -Chim. Sin., 2021, 37(11): 2010051-. |
[11] | Zhiwei Wu, Weilu Ding, Yaqin Zhang, Yanlei Wang, Hongyan He. Interaction and Mechanism between Imidazolium Ionic Liquids and the Zwitterionic Amino Acid Tyr: a DFT Study [J]. Acta Phys. -Chim. Sin., 2021, 37(10): 2002021-. |
[12] | Miao Wang, Hongning Zheng, Fei Xu. Collagen-like Peptide Self-Assembly via Phenyl Isocyanate Induction [J]. Acta Phys. -Chim. Sin., 2021, 37(10): 1911039-. |
[13] | Zhaobi Xing,Zhijun Guo,Yuwei Zhang,Junling Liu,Yujie Wang,Guangyue Bai. Regulation of SDS on the Surface Charge Density of SB3-12 Micelles and Its Effect on Drug Dissolution [J]. Acta Physico-Chimica Sinica, 2020, 36(6): 1906006-. |
[14] | Fenfen Wang, Peng Wang, Hongyao Niu, Yingfeng Yu, Pingchuan Sun. Solid-State NMR Studies on Hydrogen Bonding Interactions and Structural Evolution in PAA/PEO Blends [J]. Acta Physico-Chimica Sinica, 2020, 36(4): 1912016-. |
[15] | Guanqing Sun, Zonglin Yi, To Ngai. Particle-Stabilized Interfaces and Their Interactions at Interfaces [J]. Acta Physico-Chimica Sinica, 2020, 36(10): 1910005-. |
|