Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (6): 2010030.doi: 10.3866/PKU.WHXB202010030
Special Issue: Design and Fabrication of Advanced Photocatalyst
• ARTICLE • Previous Articles Next Articles
Xibao Li1,2,*(), Jiyou Liu1, Juntong Huang1, Chaozheng He3,*(), Zhijun Feng1, Zhi Chen1, Liying Wan1, Fang Deng2,*()
Received:
2020-10-15
Accepted:
2020-11-18
Published:
2020-11-24
Contact:
Xibao Li,Chaozheng He,Fang Deng
E-mail:lixibao@nchu.edu.cn;hecz2019@xatu.edu.cn;40030@nchu.edu.cn
About author:
Email: 40030@nchu.edu.cn; +86-18079113269 (F.D.)Supported by:
Xibao Li, Jiyou Liu, Juntong Huang, Chaozheng He, Zhijun Feng, Zhi Chen, Liying Wan, Fang Deng. All Organic S-Scheme Heterojunction PDI-Ala/S-C3N4 Photocatalyst with Enhanced Photocatalytic Performance[J]. Acta Phys. -Chim. Sin. 2021, 37(6), 2010030. doi: 10.3866/PKU.WHXB202010030
1 |
Long Z. ; Li Q. ; Wei T. ; Zhang G. ; Ren Z. J. Hazard. Mater. 2020, 395, 122599.
doi: 10.1016/j.jhazmat.2020.122599 |
2 |
Liu J. ; Luo X. ; Sun Y. ; Tsang D. ; Qi J. ; Zhang W. ; Li N. ; Yin M. ; Wang J. ; Lippold H. ; et al Environ. Int. 2019, 126, 771.
doi: 10.1016/j.envint.2019.01.076 |
3 |
Li X. ; Xiong J. ; Gao X. ; Ma J. ; Chen Z. ; Kang B. ; Liu J. ; Li H. ; Feng Z. ; Huang J. J. Hazard. Mater. 2020, 387, 121690.
doi: 10.1016/j.jhazmat.2019.121690 |
4 |
Li Y. ; Zhou M. ; Cheng B. ; Shao Y. J. Mater. Sci. Technol. 2020, 56, 1.
doi: 10.1016/j.jmst.2020.04.028 |
5 |
Li Y. ; Zhou X. ; Xing Y. Appl. Surf. Sci. 2020, 506, 144933.
doi: 10.1016/j.apsusc.2019.144933 |
6 |
Benlin D. ; Tu X. ; Zhao W. ; Wang X. ; Leung D. ; Xu J. Chemosphere 2018, 211, 10.
doi: 10.1016/j.chemosphere.2018.07.131 |
7 |
Ma D. ; Yang L. ; Sheng Z. ; Chen Y. Chem. Eng. J. 2021, 405, 126538.
doi: 10.1016/j.cej.2020.126538 |
8 |
Zhang H. ; Ji Q. ; Lai L. ; Yao G. ; Lai B. Chin. Chem. Lett. 2019, 30 (5), 1129.
doi: 10.1016/j.cclet.2019.01.025 |
9 |
Chen L. ; Tian L. ; Zhao X. ; Hu Z. ; Fan J. ; Lv K. Arab. J. Chem. 2020, 13 (2), 4404.
doi: 10.1016/j.arabjc.2019.08.011 |
10 |
Ma J. ; Dai J. ; Duan Y. ; Zhang J. ; Qiang L. ; Xue J. Renew. Energ. 2020, 156, 1008.
doi: 10.1016/j.renene.2020.04.104 |
11 |
Zheng Y. ; Cheng B. ; Fan J. ; Yu J. ; Ho W. J. Hazard. Mater. 2021, 403, 123559.
doi: 10.1016/j.jhazmat.2020.123559 |
12 |
Liang H. ; Hua P. ; Zhou Y. ; Fu Z. ; Tang J. ; Niu J. Chin. Chem. Lett. 2019, 30 (12), 2245.
doi: 10.1016/j.cclet.2019.05.046 |
13 |
Xu Y. ; Ma Y. ; Ji X. ; Huang S. ; Xia J. ; Xie M. ; Yan J. ; Xu H. ; Li H. Appl. Surf. Sci. 2019, 464, 552.
doi: 10.1016/j.apsusc.2018.09.103 |
14 | Wang Y. ; Zhang S. ; Ge Y. ; Wang C. ; Hu J. ; Liu H. Acta Phys. -Chim. Sin. 2020, 36 (8), 1905083. |
王艺蒙; 张申平; 葛宇; 王臣辉; 胡军; 刘洪来; 物理化学学报, 2020, 36 (8), 1905083.
doi: 10.3866/PKU.WHXB201905083 |
|
15 |
Ding H. ; Han D. ; Han Y. ; Liang Y. ; Liu X. ; Li Z. ; Zhu S. ; Wu S. J. Hazard. Mater. 2020, 393, 122423.
doi: 10.1016/j.jhazmat.2020.122423 |
16 |
Xia P. ; Cao S. ; Zhu B. ; Liu M. ; Shi M. ; Yu J. ; Zhang Y. Angew. Chem. Int. Ed. 2020, 59 (13), 5218.
doi: 10.1002/anie.201916012 |
17 |
Zou J. ; Zhang G. ; Xu X. Appl. Catal. A 2018, 563, 73.
doi: 10.1016/j.apcata.2018.06.030 |
18 |
Mishra A. ; Mehta A. ; Basu S. ; Shetti N. P. ; Reddy K. R. ; Aminabhavi T. M. Carbon 2019, 149, 693.
doi: 10.1016/j.carbon.2019.04.104 |
19 |
Fu J. ; Xu Q. ; Low J. ; Jiang C. ; Yu J. Appl. Catal. B 2019, 243, 556.
doi: 10.1016/j.apcatb.2018.11.011 |
20 |
Yang Y. ; Zhang D. ; Xiang Q. Nanoscale 2019, 11 (40), 18797.
doi: 10.1039/C9NR07242J |
21 |
He F. ; Meng A. ; Cheng B. ; Ho W. ; Yu J. Chin. J. Catal. 2020, 41, 9.
doi: 10.1016/S1872-2067(19)63382-6 |
22 |
Luo J. ; Lin Z. ; Zhao Y. ; Jiang S. ; Song S. Chin. J. Catal. 2020, 41 (1), 122.
doi: 10.1016/S1872-2067(19)63490-X |
23 |
Xiong J. ; Li X. ; Huang J. ; Gao X. ; Chen Z. ; Liu J. ; Li H. ; Kang B. ; Yao W. ; Zhu Y. Appl. Catal. B 2020, 266, 118602.
doi: 10.1016/j.apcatb.2020.118602 |
24 |
Zhang H. ; Jia L. ; Wu P. ; Xu R. ; He J. ; Jiang W. Appl. Surf. Sci. 2020, 527, 146584.
doi: 10.1016/j.apsusc.2020.146584 |
25 |
Wu T. ; Liu X. ; Liu Y. ; Cheng M. ; Liu Z. ; Zeng G. ; Shao B. ; Liang Q. ; Zhang W. ; He Q. ; et al Coord. Chem. Rev. 2020, 403, 213097.
doi: 10.1016/j.ccr.2019.213097 |
26 |
Xu F. ; Meng K. ; Cheng B. ; Wang S. ; Xu J. ; Yu J. Nat. Commun. 2020, 11 (1), 4613.
doi: 10.1038/s41467-020-18350-7 |
27 |
Pan B. ; Wu Y. ; Qin J. ; Wang C. Catal. Today 2019, 335, 208.
doi: 10.1016/j.cattod.2018.11.017 |
28 |
He F. ; Zhu B. ; Cheng B. ; Yu J. ; Ho W. ; Macyk W. Appl. Catal. B 2020, 272, 119006.
doi: 10.1016/j.apcatb.2020.119006 |
29 |
Xie Q. ; He W. ; Liu S. ; Li C. ; Zhang J. ; Wong P. K. Chin. J. Catal. 2020, 41 (1), 140.
doi: 10.1016/S1872-2067(19)63481-9 |
30 |
Cao S. ; Fan B. ; Feng Y. ; Chen H. ; Jiang F. ; Wang X. Chem. Eng. J. 2018, 353, 147.
doi: 10.1016/j.cej.2018.07.116 |
31 |
Hasija V. ; Raizada P. ; Sudhaik A. ; Sharma K. ; Kumar A. ; Singh P. ; Jonnalagadda S. B. ; Thakur V. K. Appl. Mater. Today 2019, 15, 494.
doi: 10.1016/j.apmt.2019.04.003 |
32 |
Jia J. ; Jiang C. ; Zhang X. ; Li P. ; Xiong J. ; Zhang Z. ; Wu T. ; Wang Y. Appl. Surf. Sci. 2019, 495, 143524.
doi: 10.1016/j.apsusc.2019.07.266 |
33 |
Wang Z. ; Chen Y. ; Zhang L. ; Cheng B. ; Yu J. ; Fan J. J. Mater. Sci. Technol. 2020, 56, 143.
doi: 10.1016/j.jmst.2020.02.062 |
34 |
Miyake G. M. ; Theriot J. C. Macromolecules 2014, 47 (23), 8255.
doi: 10.1021/ma502044f |
35 |
Patel N. R. ; Kelly C. B. ; Siegenfeld A. P. ; Molander G. A. ACS Catal. 2017, 7 (3), 1766.
doi: 10.1021/acscatal.6b03665 |
36 |
Yu F. ; Yu Z. ; Xu Z. ; Xiong J. ; Fan Q. ; Feng X. ; Tao Y. ; Hua J. ; Luo F. Mol. Syst. Des. Eng. 2020, 5 (4), 882.
doi: 10.1039/C9ME00181F |
37 |
Li Y. ; Li X. ; Zhang H. ; Fan J. ; Xiang Q. J. Mater. Sci. Technol. 2020, 56, 69.
doi: 10.1016/j.jmst.2020.03.033 |
38 | Li Y. ; Zhang M. ; Zhou L. ; Yang S. ; Wu Z. ; Ma Y. Acta Phys. -Chim. Sin. 2021, 37, 2009030. |
李云锋; 张敏; 周亮; 杨思佳; 武占省; 马玉花; 物理化学学报, 2021, 37, 2009030.
doi: 10.3866/PKU.WHXB202009030 |
|
39 |
Xu Q. ; Dekun M. ; Yang S. ; Tian Z. ; Cheng B. ; Fan J. Appl. Surf. Sci. 2019, 495, 143555.
doi: 10.1016/j.apsusc.2019.143555 |
40 |
Xia J. ; Chai L. ; Tian T. ; Li H. ; Hao F. ; Cui Y. ; Wang Y. ; Li M. ; Zhu Y. Powder Technol. 2020, 373, 488.
doi: 10.1016/j.powtec.2020.06.071 |
41 |
Xu Y. ; Ge F. ; Chen Z. ; Huang S. ; Wei W. ; Xie M. ; Xu H. ; Li H. Appl. Surf. Sci. 2019, 469, 739.
doi: 10.1016/j.apsusc.2018.11.062 |
42 | Li X. ; Wang B. ; Yin W. ; Di J. ; Xia J. ; Zhu W. ; Li H. Acta Phys. -Chim. Sin. 2020, 36 (3), 1902001. |
李小为; 王彬; 尹文轩; 狄俊; 夏杰祥; 朱文帅; 李华明; 物理化学学报, 2020, 36 (3), 1902001.
doi: 10.3866/PKU.WHXB201902001 |
|
43 |
Qin D. ; Xia Y. ; Li Q. ; Yang C. ; Qin Y. ; Lv K. J. Mater. Sci. Technol. 2020, 56, 206.
doi: 10.1016/j.jmst.2020.03.034 |
44 |
Qin Y. ; Li H. ; Lu J. ; Feng Y. ; Meng F. ; Ma C. ; Yan Y. ; Meng M. Appl. Catal. B 2020, 277, 119254.
doi: 10.1016/j.apcatb.2020.119254 |
45 |
Zhang Q. ; Jiang L. ; Wang J. ; Zhu Y. ; Pu Y. ; Dai W. Appl. Catal. B 2020, 277, 119122.
doi: 10.1016/j.apcatb.2020.119122 |
46 |
Miao H. ; Yang J. ; Peng G. ; Li H. ; Zhu Y. Sci. Bull. 2019, 64 (13), 896.
doi: 10.1016/j.scib.2019.05.006 |
47 |
Gao X. ; Gao K. ; Fu F. ; Liang C. ; Li Q. ; Liu J. ; Gao L. ; Zhu Y. Appl. Catal. B 2020, 265, 118562.
doi: 10.1016/j.apcatb.2019.118562 |
48 |
Zhang K. ; Wang J. ; Jiang W. ; Yao W. ; Yang H. ; Zhu Y. Appl. Catal. B 2018, 232, 175.
doi: 10.1016/j.apcatb.2018.03.059 |
49 |
Dai W. ; Jiang L. ; Wang J. ; Pu Y. ; Zhu Y. ; Wang Y. ; Xiao B. Chem. Eng. J. 2020, 397, 125476.
doi: 10.1016/j.cej.2020.125476 |
50 |
Gao Q. ; Xu J. ; Wang Z. ; Zhu Y. Appl. Catal. B 2020, 271, 118933.
doi: 10.1016/j.apcatb.2020.118933 |
51 |
Xu Q. ; Zhang L. ; Cheng B. ; Fan J. ; Yu J. Chem 2020, 6 (7), 1543.
doi: 10.1016/j.chempr.2020.06.010 |
52 |
Li Z. ; Wu Z. ; He R. ; Wan L. ; Zhang S. J. Mater. Sci. Technol. 2020, 56, 151.
doi: 10.1016/j.jmst.2020.02.061 |
53 |
Wang J. ; Wang G. ; Cheng B. ; Yu J. ; Fan J. Chin. J. Catal. 2021, 42 (1), 56.
doi: 10.1016/S1872-2067(20)63634-8 |
54 |
Chen Y. ; Su F. ; Xie H. ; Wang R. ; Ding C. ; Huang J. ; Xu Y. ; Ye L. Chem. Eng. J. 2021, 404, 126498.
doi: 10.1016/j.cej.2020.126498 |
55 |
Chen J. ; Liu T. ; Zhang H. ; Wang B. ; Zheng W. ; Wang X. ; Li J. ; Zhong J. Appl. Surf. Sci. 2020, 527, 146788.
doi: 10.1016/j.apsusc.2020.146788 |
56 |
Wang J. ; Zhang Q. ; Deng F. ; Luo X. ; Dionysiou D. D. Chem. Eng. J. 2020, 379, 122264.
doi: 10.1016/j.cej.2019.122264 |
57 |
Zheng Y. ; Liu Y. ; Guo X. ; Chen Z. ; Zhang W. ; Wang Y. ; Tang X. ; Zhang Y. ; Zhao Y. J. Mater. Sci. Technol. 2020, 41, 117.
doi: 10.1016/j.jmst.2019.09.018 |
58 |
Li Q. ; Zhao W. ; Zhai Z. ; Ren K. ; Wang T. ; Guan H. ; Shi H. J. Mater. Sci. Technol. 2020, 56, 216.
doi: 10.1016/j.jmst.2020.03.038 |
59 |
Xia Y. ; Tian Z. ; Heil T. ; Meng A. ; Cheng B. ; Cao S. ; Yu J. ; Antonietti M. Joule 2019, 3 (11), 2792.
doi: 10.1016/j.joule.2019.08.011 |
60 |
Mohammad A. ; Khan M. E. ; Cho M. H. J. Alloy. Compd. 2020, 816, 152522.
doi: 10.1016/j.jallcom.2019.152522 |
61 |
Chen Z. ; Hu Z. ; Zhu D. ; Feng Z. ; Li X. ; Huang J. ; Shen X. J. Alloy. Compd. 2020, 847, 155560.
doi: 10.1016/j.jallcom.2020.155560 |
62 |
Moon G. -H. ; Kim W. ; Bokare A. D. ; Sung N. -E. ; Choi W. Energ. Environ. Sci. 2014, 7 (12), 4023.
doi: 10.1039/C4EE02757D |
63 |
Hu L. ; Liu X. ; Dalgleish S. ; Matsushita M. M. ; Yoshikawa H. ; Awaga K. J. Mater. Chem. C 2015, 3 (20), 5122.
doi: 10.1039/C5TC00414D |
64 |
Hu Z. ; Huang J. ; Luo Y. ; Liu M. ; Li X. ; Yan M. ; Ye Z. ; Chen Z. ; Feng Z. ; Huang S. Electrochim. Acta 2019, 319, 293.
doi: 10.1016/j.electacta.2019.06.178 |
65 |
Chen G. ; Wang Y. ; Shen Q. ; Xiong X. ; Ren S. ; Dai G. ; Wu C. Ceram. Int. 2020, 46 (13), 21304.
doi: 10.1016/j.ceramint.2020.05.224 |
66 |
Almeida R. ; Banerjee A. ; Chakraborty S. ; Almeida J. ; Ahuja R. ChemPhysChem 2018, 19 (1), 148.
doi: 10.1002/cphc.201700768 |
67 |
Wang X. ; Meng J. ; Yang X. ; Hu A. ; Yang Y. ; Guo Y. ACS Appl. Mater. Interfaces 2019, 11 (1), 588.
doi: 10.1021/acsami.8b151 |
[1] | Zhongqi Zan, Xibao Li, Xiaoming Gao, Juntong Huang, Yidan Luo, Lu Han. 0D/2D Carbon Nitride Quantum Dots (CNQDs)/BiOBr S-Scheme Heterojunction for Robust Photocatalytic Degradation and H2O2 Production [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2209016-. |
[2] | Cheng Luo, Qing Long, Bei Cheng, Bicheng Zhu, Linxi Wang. A DFT Study on S-Scheme Heterojunction Consisting of Pt Single Atom Loaded G-C3N4 and BiOCl for Photocatalytic CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2212026-. |
[3] | Keyu Zhang, Yunfeng Li, Shidan Yuan, Luohong Zhang, Qian Wang. Review of S-Scheme Heterojunction Photocatalyst for H2O2 Production [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2212010-. |
[4] | Na Lu, Xuedong Jing, Yao Xu, Wei Lu, Kuichao Liu, Zhenyi Zhang. Effective Cascade Modulation of Charge-Carrier Kinetics in the Well-Designed Multi-Component Nanofiber System for Highly-Efficient Photocatalytic Hydrogen Generation [J]. Acta Phys. -Chim. Sin., 2023, 39(4): 2207045-0. |
[5] | Yao Xie, Qitao Zhang, Hongli Sun, Zhenyuan Teng, Chenliang Su. Semiconducting Polymers for Photosynthesis of H2O2: Spatial Separation and Synergistic Utilization of Photoredox Centers [J]. Acta Phys. -Chim. Sin., 2023, 39(11): 2301001-. |
[6] | Fangxin Yin, Pinquan Qin, Jingsan Xu, Shaowen Cao. Methylene Blue Incorporated Donor-Acceptor g-C3N4 Nanosheet Photocatalyst for H2 Production [J]. Acta Phys. -Chim. Sin., 2023, 39(11): 2212062-. |
[7] | Zhuonan Lei, Xinyi Ma, Xiaoyun Hu, Jun Fan, Enzhou Liu. Enhancement of Photocatalytic H2-Evolution Kinetics through the Dual Cocatalyst Activity of Ni2P-NiS-Decorated g-C3N4 Heterojunctions [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2110049-. |
[8] | Gaowei Han, Feiyan Xu, Bei Cheng, Youji Li, Jiaguo Yu, Liuyang Zhang. Enhanced Photocatalytic H2O2 Production over Inverse Opal ZnO@Polydopamine S-Scheme Heterojunctions [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2112037-. |
[9] | Liang Zhou, Yunfeng Li, Yongkang Zhang, Liewei Qiu, Yan Xing. A 0D/2D Bi4V2O11/g-C3N4 S-Scheme Heterojunction with Rapid Interfacial Charges Migration for Photocatalytic Antibiotic Degradation [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2112027-. |
[10] | Xiaoqing Jia, Xiaoyu Bai, Zhezhe Ji, Yi Li, Yan Sun, Xueyue Mi, Sihui Zhan. Insight into the Effective Removal of Ciprofloxacin Using a Two-Dimensional Layered NiO/g-C3N4 Composite in Fe-Free Photo-Electro-Fenton System [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2010042-. |
[11] | Yiwen Chen, Lingling Li, Quanlong Xu, Düren Tina, Jiajie Fan, Dekun Ma. Controllable Synthesis of g-C3N4 Inverse Opal Photocatalysts for Superior Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2009080-. |
[12] | Xingang Fei, Haiyan Tan, Bei Cheng, Bicheng Zhu, Liuyang Zhang. 2D/2D Black Phosphorus/g-C3N4 S-Scheme Heterojunction Photocatalysts for CO2 Reduction Investigated using DFT Calculations [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2010027-. |
[13] | Zhiliang Jin, Yanbing Li, Xuqiang Hao. Ni, Co-Based Selenide Anchored g-C3N4 for Boosting Photocatalytic Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2021, 37(10): 1912033-. |
[14] | Liang Wang,Chenglu Zhu,Lisha Yin,Wei Huang. Construction of Pt-M (M = Co, Ni, Fe)/g-C3N4 Composites for Highly Efficient Photocatalytic H2 Generation [J]. Acta Physico-Chimica Sinica, 2020, 36(7): 1907001-. |
[15] | Fanghong Qin, Ting Wan, Jiangyuan Qiu, Yihui Wang, Biyuan Xiao, Zaiyin Huang. Temperature Effects on Photocatalytic Heat Changes and Kinetics via In Situ Photocalorimetry-Fluorescence Spectroscopy [J]. Acta Physico-Chimica Sinica, 2020, 36(6): 1905087-. |
|