Acta Physico-Chimica Sinica ›› 2020, Vol. 36 ›› Issue (1): 1906014.doi: 10.3866/PKU.WHXB201906014
Special Issue: Special Issue in Honor of Academician Youqi Tang on the Occasion of His 100th Birthday
• Article • Previous Articles Next Articles
Zhiming Pan,Minghui Liu,Pingping Niu,Fangsong Guo,Xianzhi Fu,Xinchen Wang*()
Received:
2019-06-04
Accepted:
2019-07-11
Published:
2019-07-19
Contact:
Xinchen Wang
E-mail:xcwang@fzu.edu.cn
Supported by:
Zhiming Pan,Minghui Liu,Pingping Niu,Fangsong Guo,Xianzhi Fu,Xinchen Wang. Photocatalytic CO2 Reduction Using Ni2P Nanosheets[J].Acta Physico-Chimica Sinica, 2020, 36(1): 1906014.
1 |
Asadi M. ; Kim K. ; Liu C. ; Addepalli A. V. ; Abbasi P. ; Yasaei P. ; Phillips P. ; Behranginia A. ; Cerrato J. M. ; Haasch R. ; et al Science 2016, 353, 467.
doi: 10.1126/science.aaf4767 |
2 |
Wang S. ; Wang X. Angew. Chem. Int. Ed. 2016, 55, 2308.
doi: 10.1002/anie.201507145 |
3 |
Qin J. ; Wang S. ; Ren H. ; Hou Y. ; Wang X. Appl. Catal. B 2015, 179, 1.
doi: 10.1016/j.apcatb.2015.05.005 |
4 |
Wang Y. ; Zhang Z. ; Zhang L. ; Luo Z. ; Shen J. ; Lin H. ; Long J. ; Wu J. C. S. ; Fu X. ; Wang X. ; et al J. Am. Chem. Soc. 2018, 140, 14595.
doi: 10.1021/jacs.8b09344 |
5 |
Pan Z. ; Zheng Y. ; Guo F. ; Niu P. ; Wang X. ChemSusChem 2017, 10, 87.
doi: 10.1002/cssc.201600850 |
6 |
Liang F. ; Lindberg P. ; Lindblad P. Sustain. Energy Fuels 2018, 2, 2583.
doi: 10.1039/C8SE00281A |
7 | Pan, Z.; Zhang, G.; Wang, X. Angew. Chem. Int. Ed. 2019, 58, 7102, 7102. doi: 10.1002/anie.201902634 |
8 |
Lan Z. A. ; Wang X. C. Acta Phys. -Chim. Sin. 2017, 33, 457.
doi: 10.3866/PKU.WHXB201701061 |
蓝志安; 王心晨. 物理化学学报, 2017, 33, 457.
doi: 10.3866/PKU.WHXB201701061 |
|
9 |
Kuriki R. ; Sekizawa K. ; Ishitani O. ; Maeda K. Angew. Chem. Int. Ed. 2015, 54, 2406.
doi: 10.1002/anie.201411170 |
10 |
Wu L. Y. ; Mu Y. F. ; Guo X. X. ; Zhang W. ; Zhang Z. M. ; Zhang M. ; Lu T. B. Angew. Chem. Int. Ed. 2019, 58, 9491.
doi: 10.1002/anie.201904537 |
11 |
Zhai Q. ; Xie S. ; Fan W. ; Zhang Q. ; Wang Y. ; Deng W. ; Wang Y. Angew. Chem. Int. Ed. 2013, 52, 5776.
doi: 10.1002/anie.201301473 |
12 |
Shown I. ; Samireddi S. ; Chang Y. C. ; Putikam R. ; Chang P. H. ; Sabbah A. ; Fu F. Y. ; Chen W. F. ; Wu C. I. ; Yu T. Y. ; et al Nat. Commun. 2018, 9, 169.
doi: 10.1038/s41467-017-02547-4 |
13 |
Qin J. ; Wang S. ; Wang X. Appl. Catal. B 2017, 209, 476.
doi: 10.1016/j.apcatb.2017.03.018 |
14 |
Kuriki R. ; Matsunaga H. ; Nakashima T. ; Wada K. ; Yamakata A. ; Ishitani O. ; Maeda K. J. Am. Chem. Soc. 2016, 138, 5159.
doi: 10.1021/jacs.6b01997 |
15 |
Kang Q. ; Wang T. ; Li P. ; Liu L. ; Chang K. ; Li M. ; Ye J. Angew. Chem. 2015, 127, 855.
doi: 10.1002/ange.201409183 |
16 |
Cometto C. ; Kuriki R. ; Chen L. ; Maeda K. ; Lau T. C. ; Ishitani O. ; Robert M. J. Am. Chem. Soc. 2018, 140, 7437.
doi: 10.1021/jacs.8b04007 |
17 |
Pei Z. ; Li H. ; Huang Y. ; Xue Q. ; Huang Y. ; Zhu M. ; Wang Z. ; Zhi C. Energy Environ. Sci. 2017, 10, 742.
doi: 10.1039/C6EE03265F |
18 |
Wang S. ; Guan B. Y. ; Lou X. W. Energy Environ. Sci. 2018, 11, 306.
doi: 10.1039/C7EE02934A |
19 |
Zheng Y. ; Lin L. ; Ye X. ; Guo F. ; Wang X. Angew. Chem. Int. Ed. 2014, 53, 11926.
doi: 10.1002/anie.201407319 |
20 |
Wang S. ; Wang X. Appl. Catal. B 2015, 162, 494.
doi: 10.1016/j.apcatb.2014.07.026 |
21 |
Kuriki R. ; Yamamoto M. ; Higuchi K. ; Yamamoto Y. ; Akatsuka M. ; Lu D. ; Yagi S. ; Yoshida T. ; Ishitani O. ; Maeda K. Angew. Chem. Int. Ed. 2017, 56, 4867.
doi: 10.1002/anie.201701627 |
22 |
Ouyang T. ; Wang H. J. ; Huang H. H. ; Wang J. W. ; Guo S. ; Liu W. J. ; Zhong D. C. ; Lu T. B. Angew. Chem. Int. Ed. 2018, 57, 16480.
doi: 10.1002/anie.201811010 |
23 |
Ouyang T. ; Huang H. H. ; Wang J. W. ; Zhong D. C. ; Lu T. B. Angew. Chem. Int. Ed. 2017, 56, 738.
doi: 10.1002/anie.201610607 |
24 |
Wang S. ; Wang X. Angew. Chem. Int. Ed. 2015, 55, 2308.
doi: 10.1002/anie.201507145 |
25 |
Fu J. ; Zhu B. ; Jiang C. ; Cheng B. ; You W. ; Yu J. Small 2017, 13, 1603938.
doi: 10.1002/smll.201603938 |
26 |
Apaydin D. H. ; Portenkirchner E. ; Jintanalert P. ; Strauss M. ; Luangchaiyaporn J. ; Sariciftci N. S. ; Thamyongkit P. Sustain. Energy Fuels 2018, 2, 2747.
doi: 10.1039/C8SE00422F |
27 |
Yang Y. ; Ajmal S. ; Zheng X. ; Zhang L. Sustain. Energy Fuels 2018, 2, 510.
doi: 10.1039/C7SE00371D |
28 |
Carenco S. ; Portehault D. ; Boissière C. ; Mézailles N. ; Sanchez C. Adv. Mater. 2014, 26, 371.
doi: 10.1002/adma.201303198 |
29 |
Shi Y. ; Zhang B. Chem. Soc. Rev. 2016, 45, 1529.
doi: 10.1039/C5CS00434A |
30 |
Liu Q. ; Tian J. ; Cui W. ; Jiang P. ; Cheng N. ; Asiri A. M. ; Sun X. Angew. Chem. 2014, 126, 6828.
doi: 10.1002/ange.201404161 |
31 |
Tian J. ; Liu Q. ; Asiri A. M. ; Sun X. J. Am. Chem. Soc. 2014, 136, 7587.
doi: 10.1021/ja503372r |
32 |
Li D. ; Baydoun H. ; Verani C. N. ; Brock S. L. J. Am. Chem. Soc. 2016, 138, 4006.
doi: 10.1021/jacs.6b01543 |
33 |
Yu X. Y. ; Feng Y. ; Guan B. ; Lou X. W. ; Paik U. Energy Environ. Sci. 2016, 9, 1246.
doi: 10.1039/C6EE00100A |
34 |
Stern L. A. ; Feng L. ; Song F. ; Hu X. Energy Environ. Sci. 2015, 8, 2347.
doi: 10.1039/C5EE01155H |
35 |
Pan Z. ; Niu P. ; Hou Y. ; Fang Y. ; Liu M. ; Wang X. ChemSusChem 2019, 12, 1911.
doi: 10.1002/cssc.201801691 |
36 |
Indra A. ; Acharjya A. ; Menezes P. W. ; Merschjann C. ; Hollmann D. ; Schwarze M. ; Aktas M. ; Friedrich A. ; Lochbrunner S. ; Thomas A. ; et al Angew. Chem. Int. Ed. 2017, 56, 1653.
doi: 10.1002/anie.201611605 |
37 |
Sun Z. ; Zheng H. ; Li J. ; Du P. Energy Environ. Sci. 2015, 8, 2668.
doi: 10.1039/C5EE01310K |
38 |
Sun X. ; Lu L. ; Zhu Q. ; Wu C. ; Yang D. ; Chen C. ; Han B. Angew. Chem. Int. Ed. 2018, 57, 2427.
doi: 10.1002/anie.201712221 |
39 |
Calvinho K. U. D. ; Laursen A. B. ; Yap K. M. K. ; Goetjen T. A. ; Hwang S. ; Murali N. ; Mejia-Sosa B. ; Lubarski A. ; Teeluck K. M. ; Hall E. S. ; et al Energy Environ. Sci. 2018, 11, 2550.
doi: 10.1039/C8EE00936H |
40 |
Fu Z. C. ; Xu R. C. ; Moore J. T. ; Liang F. ; Nie X. C. ; Mi C. ; Mo J. ; Xu Y. ; Xu Q. Q. ; Yang Z. ; et al Chem. Eur. J. 2018, 24, 4273.
doi: 10.1002/chem.201800335 |
41 |
Wang S. ; Guan B. Y. ; Lu Y. ; Lou X. W. D. J. Am. Chem. Soc. 2017, 139, 17305.
doi: 10.1021/jacs.7b10733 |
42 |
Wang S. ; Guan B. Y. ; Lou X. W. D. J. Am. Chem. Soc. 2018, 140, 5037.
doi: 10.1021/jacs.8b02200 |
43 |
Chen Y. ; Jia G. ; Hu Y. ; Fan G. ; Tsang Y. H. ; Li Z. ; Zou Z. Sustain. Energy Fuels 2017, 1, 1875.
doi: 10.1039/C7SE00344G |
44 |
Li F. ; Chen L. ; Knowles G. P. ; MacFarlane D. R. ; Zhang J. Angew. Chem. Int. Ed. 2017, 56, 505.
doi: 10.1002/anie.201608279 |
45 |
Tu W. ; Zhou Y. ; Liu Q. ; Tian Z. ; Gao J. ; Chen X. ; Zhang H. ; Liu J. ; Zou Z. Adv. Funct. Mater. 2012, 22, 1215.
doi: 10.1002/adfm.201102566 |
46 |
Cao S. ; Shen B. ; Tong T. ; Fu J. ; Yu J. Adv. Funct. Mater. 2018, 28, 1800136.
doi: 10.1002/adfm.201800136 |
47 |
Ou H. ; Lin L. ; Zheng Y. ; Yang P. ; Fang Y. ; Wang X. Adv. Mater. 2017, 29, 1700008.
doi: 10.1002/adma.201700008 |
48 |
Pu Z. ; Wei S. ; Chen Z. ; Mu S. Appl. Catal. B 2016, 196, 193.
doi: 10.1016/j.apcatb.2016.05.027 |
49 |
Gao C. ; Meng Q. ; Zhao K. ; Yin H. ; Wang D. ; Guo J. ; Zhao S. ; Chang L. ; He M. ; Li Q. ; et al Adv. Mater. 2016, 28, 6485.
doi: 10.1002/adma.201601387 |
50 |
Jiang J. ; Zhao K. ; Xiao X. ; Zhang L. J. Am. Chem. Soc. 2012, 134, 4473.
doi: 10.1021/ja210484t |
51 |
Yu J. ; Low J. ; Xiao W. ; Zhou P. ; Jaroniec M. J. Am. Chem. Soc. 2014, 136, 8839.
doi: 10.1021/ja5044787 |
52 |
Jia J. ; Qian C. ; Dong Y. ; Li Y. F. ; Wang H. ; Ghoussoub M. ; Butler K. T. ; Walsh A. ; Ozin G. A. Chem. Soc. Rev. 2017, 46, 4631.
doi: 10.1039/C7CS00026J |
53 |
Li F. ; Xue M. ; Li J. ; Ma X. ; Chen L. ; Zhang X. ; MacFarlane D. R. ; Jie Z. Angew. Chem. Int. Ed. 2017, 56, 14718.
doi: 10.1002/anie.201710038 |
54 |
Zhao Y. ; Chen G. ; Bian T. ; Zhou C. ; Waterhouse G. I. N. ; Wu L. Z. ; Tung C. H. ; Smith L. J. ; O'Hare D. ; Zhang T. Adv. Mater. 2015, 27, 7824.
doi: 10.1002/adma.201503730 |
55 |
Yao T. ; Liu L. ; Xiao C. ; Zhang X. ; Liu Q. ; Wei S. ; Xie Y. Angew. Chem. Int. Ed. 2013, 52, 7554.
doi: 10.1002/anie.201302891 |
56 |
Popczun E. J. ; McKone J. R. ; Read C. G. ; Biacchi A. J. ; Wiltrout A. M. ; Lewis N. S. ; Schaak R. E. J. Am. Chem. Soc. 2013, 135, 9267.
doi: 10.1021/ja403440e |
57 |
Tang C. ; Zhang R. ; Lu W. ; Wang Z. ; Liu D. ; Hao S; Du ; G . ; Asiri A.M. ; Sun X. Angew. Chem. Int. Ed. 2017, 56, 842.
doi: 10.1002/anie.201608899 |
58 |
Bai Y. ; Zhang H. ; Li X. ; Liu L. ; Xu H. ; Qiu H. ; Wang Y. Nanoscale 2015, 7, 1446.
doi: 10.1039/C4NR05862C |
59 |
Wang S. ; Wang X. Appl. Catal. B 2015, 162, 494.
doi: 10.1016/j.apcatb.2014.07.026 |
60 |
Chen Y. ; Wang B. ; Lin S. ; Zhang Y. ; Wang X. J. Phys. Chem. C 2014, 118, 29981.
doi: 10.1021/jp510187c |
61 |
Wang S. ; Hou Y. ; Wang X. ACS Appl. Mater. Interfaces 2015, 7, 4327.
doi: 10.1021/am508766s |
[1] | Ganchang Lei, Yong Zheng, Yanning Cao, Lijuan Shen, Shiping Wang, Shijing Liang, Yingying Zhan, Lilong Jiang. Deactivation Mechanism of COS Hydrolysis over Potassium Modified Alumina [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2210038-0. |
[2] | Weifeng Xia, Chengyu Ji, Rui Wang, Shilun Qiu, Qianrong Fang. Metal-Free Tetrathiafulvalene Based Covalent Organic Framework for Efficient Oxygen Evolution Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212057-0. |
[3] | Qianwei Song, Guanchao He, Huilong Fei. Photothermal Catalytic Conversion Based on Single Atom Catalysts: Fundamentals and Applications [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212038-0. |
[4] | Fengyu Gao, Hengheng Liu, Xiaolong Yao, Zaharaddeen Sani, Xiaolong Tang, Ning Luo, Honghong Yi, Shunzheng Zhao, Qingjun Yu, Yuansong Zhou. Spherical MnxCo3−xO4−ƞ Spinel with Mn-Enriched Surface as High-Efficiency Catalysts for Low-Temperature Selective Catalytic Reduction of NOx by NH3 [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212003-0. |
[5] | Guoyong Xue, Jing Li, Junchao Chen, Daiqian Chen, Chenji Hu, Lingfei Tang, Bowen Chen, Ruowei Yi, Yanbin Shen, Liwei Chen. A Single-Ion Polymer Superionic Conductor [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2205012-0. |
[6] | Yanhui Yu, Peng Rao, Suyang Feng, Min Chen, Peilin Deng, Jing Li, Zhengpei Miao, Zhenye Kang, Yijun Shen, Xinlong Tian. Atomic Co Clusters for Efficient Oxygen Reduction Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2210039-0. |
[7] | Shuai Chen, Chuang Yu, Qiyue Luo, Chaochao Wei, Liping Li, Guangshe Li, Shijie Cheng, Jia Xie. Research Progress of Lithium Metal Halide Solid Electrolytes [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2210032-0. |
[8] | Yao Chen, Cun Chen, Xuesong Cao, Zhenyu Wang, Nan Zhang, Tianxi Liu. Recent Advances in Defect and Interface Engineering for Electroreduction of CO2 and N2 [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2212053-0. |
[9] | Qu Zhuoyan, Zhang Xiaoyin, Xiao Ru, Sun Zhenhua, Li Feng. Application of Organosulfur Compounds in Lithium-Sulfur Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2301019-0. |
[10] | . Silver Nanoparticle-Modified 2D MOF Nanosheets for Photothermally Enhanced Silver Ion Release Antibacterial Treatment [J]. Acta Phys. -Chim. Sin., 2023, 39(7): 2211043-0. |
[11] | Hangyu Lu, Ruilin Hou, Shiyong Chu, Haoshen Zhou, Shaohua Guo. Progress on Modification Strategies of Layered Lithium-Rich Cathode Materials for High Energy Lithium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(7): 2211057-0. |
[12] | . Giant Enhancement of Optical Second Harmonic Generation in Hollow-Core Fiber Integrated with GaSe Nanoflakes [J]. Acta Phys. -Chim. Sin., 2023, 39(7): 2212028-0. |
[13] | . Transforming the Charge Transfer Mechanism in the In2O3/CdSe-DETA Nanocomposite from Type-I to S-Scheme to Improve Photocatalytic Activity and Stability During Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2208030-0. |
[14] | . Overall Utilization of Photoexcited Charges for Simultaneous Photocatalytic Redox Reactions [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2209037-0. |
[15] | . S-Scheme Heterojunction of Cu2O Polytope-Modified BiOI Sheet for Efficient Visible-Light-Driven CO2 Conversion under Water Vapor [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2210003-0. |
|