Acta Physico-Chimica Sinica ›› 2020, Vol. 36 ›› Issue (9): 1911057.doi: 10.3866/PKU.WHXB201911057
Special Issue: Precise Nanosynthesis
Previous Articles Next Articles
Kaixuan Li1,2, Tailong Zhang1,3, Huizeng Li1, Mingzhu Li1,2,*(), Yanlin Song1,2,*()
Received:
2020-02-18
Published:
2020-03-02
Contact:
Mingzhu Li,Yanlin Song
E-mail:mingzhu@iccas.ac.cn;ylsong@iccas.ac.cn
Supported by:
Kaixuan Li, Tailong Zhang, Huizeng Li, Mingzhu Li, Yanlin Song. The Precise Assembly of Nanoparticles[J]. Acta Physico-Chimica Sinica 2020, 36(9), 1911057. doi: 10.3866/PKU.WHXB201911057
Fig 1
The self-assembly morphology of isotropic nanoparticles (a) Schematic view of the assembled structures with the isotropic nanoparticles; (b) SEM images of precise assembled structures with controlled gold nanospheres; (c) TEM images of specific plasmonic nanostructures with different nanoparticles; (d) Schematic view and TEM images of the single nanoparticle chain assembled from 15 nm Fe3O4 nanoparticles; (e) SEM and TEM (inset) images of long-range-ordered monolayer assemblies. (b) Reprinted with permission from Ref. 65. Copyright 2011 American Chemical Society. (c) Reprinted with permission from Ref. 67. Copyright 1998 American Chemical Society. (d) Reprinted with permission from Ref. 72. Copyright 2016 American Chemical Society. (e) Reprinted with permission from Ref. 73. Copyright 2007 American Chemical Society. "
Fig 2
The self-assembly morphology of anisotropic nanoparticles (a) Schematic illustration the assembly of Pt cubic nanocrystal in 1D and 2D; (b) SEM images of the assemblies with the silver nanocubes of a mean edge length of (97 ± 6) nm and. The number of faces on each cube that were rendered hydrophobic is indicated in the bottom right corner of each panel, the remaining faces on the cube were rendered hydrophilic. (c) Schematic representations and TEM image of the assembled structures based on side-by-side alignments. (d) Schematic representations and TEM image of the assembled structures based on end-to-end alignments that are created by Au nanorods. (a) Reprinted with permission from Ref. 90. Copyright 2019 American Chemical Society. (b) Reprinted with permission from Ref. 91. Copyright 2008 John Wiley and Sons. (c, d) Reprinted with permission from Ref. 97. Copyright 2008 American Chemical Society. "
Fig 3
The programming self-assembly of nanoparticles induced by DNA molecular templates (a) Illustration of the rolling process. (b) TEM images of the rectangular DNA origami dressed with two chains of AuNPs. (c) TEM images of the tubular DNA origami dressed with AuNPs, which form 3D AuNP helices. (d) Left: Schematic model (inset) and corresponding TEM images of the self-assembled LH gold nanorods (AuNRs) and gold nanoparticles (AuNPs) nanostructures. Right: Schematic model (inset) and corresponding TEM images of the self-assembled RH AuNR and AuNP nanostructures. Scale bars in the insets are 25 nm. (e) The measured CD spectra of the LH and RH helical superstructures and the corresponding bifacial structures. (a–c) Reprinted with permission from Ref. 140. Copyright 2012 American Chemical Society. (d, e) Reprinted with permission from Ref. 136. Copyright 2017 John Wiley and Sons."
Fig 4
The precise assembly regulated by the external field (a, b) The transport and trapping behavior of nanospheres (500 nm in diameter) controlled by optical tweezer in a plasmon enhanced two-dimensional optical lattice. (c) TEM images of AuNRs assembly under parallel EF. Insets are the cartoons showing the assembly of AuNRs. (d) Schematic representation of the assembly of magnetite particles in the presence of a magnetizing field and the large-scale 1D assemblies under magnetic guiding. (e) SEM images of 1D assemblies with controllable particle number. (a, b) Reprinted with permission from Ref. 152. Copyright 2013 American Chemical Society. (c) Reprinted with permission from Ref. 154. Copyright 2016 American Chemical Society. (d, e) Reprinted with permission from Ref. 157. Copyright 2018 John Wiley and Sons."
Fig 5
The regulation of nanoparticles assembly by confining evaporation (a) Schematic diagram of the confined evaporation for generating stripe patterns of CdSe QDs on a silicon wafer. (b) The velocity profile of the translation stage for manipulating the stick-and-slip motion of the contact line. Schematic illustration of QD deposition at intermittent stopping times (ⅰ) and slipping of the contact line upon stage translation (ⅱ). (c) A fluorescent microscopy image of grid patterns. Scale bar, 200 μm. (d) Schematic diagram depicting the flexible-blade flow-coating process. Inset: illustration of a NP ribbon. (e) AFM image of OA-QD ribbons showing well-ordered structures. Inset: SEM image of the edge of a NP ribbon showing approximately monolayer particle packing (scale bar: 50 nm). (a–c) Reprinted with permission from Ref. 164. Copyright 2010 John Wiley and Sons. (c) Reprinted with permission from Ref. 165. Copyright 2010 John Wiley and Sons."
Fig 6
The precise assembly of nanoparticles by nanoscale template (a-d) Representative SEM images of nanoparticle dimers consisting of concave cubes (a: face-to-face; b: edge-to-edge) and nanoprism bowties (c, d) confined by the topographical templates. Scale bars, 500 nm. (e–g) Schematic drawings of the pulling force to form intimate contact. (a–g) Reprinted with permission from Ref. 172. Copyright 2006 American Chemical Society."
Fig 7
The precise regulation of nanoparticles assembly by microscale template (a) Schematic of the liquid-based nanoparticles assembly induced by the microscale template and SEM images of the assembled morphologies. (b) Schematic of the precise assembly of particles by modulating the viscosity of the system and SEM images from linear to zigzag patterns. Scale bar, 2 μm. (c) The laser scanning confocal microscope images and the inset SEM images show the dual-ring assembly patterns by the co-assembly of binary particles. (d) The programmed co-assembly of one-dimensional binary assembled superstructures and the corresponding SEM images. (a) Reprinted with permission from Ref. 177. Copyright 2014 John Wiley and Sons. (b) Reprinted with permission from Ref. 180. Copyright 2017 John Wiley and Sons. (c) Reprinted with permission from Ref. 181. Copyright 2018 John Wiley and Sons. (d) Reprinted with permission from Ref. 182. Copyright 2017 American Chemical Society."
Fig 8
The fine regulation of 3D nanoparticles assembly by electrohydrodynamic jet printing (a) Schematic illustration of electrohydrodynamic jet system. (b) Waveform of applied voltage to print 3D structures. (c-d) SEM images of 3D wall structures made of anthracene and TIPS-pentacene. (c) Side (left) and top (right) views of a helix-shaped anthracene pillar and side (bottom) view of inclined TIPS-pentacene wall. All scale bars are 10 µm. (d) Side (left) and top (right) views of a zigzag-shaped anthracene pillar and side (bottom) view of "3D"-shaped TIPS-pentacene wall. All scale bars are 10 µm. (a–d) Reprinted with permission from Ref. 187. Copyright 2015 John Wiley and Sons."
Fig 9
The precise assembly of particles by controlling the evaporation of droplet (a, b) Schematic illustration of inkjet printing of silver-nanoparticle patterns induced by the coffee-ring effect and their morphology. (c) The assembly of colloidal photonic crystals with narrow stopbands controlled by the low-adhesive superhydrophobic substrates. (d) Direct-write colloidal assembly of macroscale freestanding colloidal crystal structures. (a-b) Reprinted with permission from Ref. 190. Copyright 2013 John Wiley and Sons. (c) Reprinted with permission from Ref. 191. Copyright 2012 American Chemical Society. (d) Reprinted with permission from Ref. 192. Copyright 2018 John Wiley and Sons."
Fig 10
The optical properties of the precise assemblies and the application in detection (a) The resonance and corresponding SEM images of 1D clusters of various sizeselectric, magnetic, and Fano-like resonances of different assembled clusters. (b) Unpolarized Raman spectra of individual bowtie nanostructures with two different Raman probe molecules. Scale bars, 50 nm. (a) Reprinted with permission from Ref. 199. Copyright 2013 American Chemical Society. (b) Reprinted with permission from Ref. 201. Copyright 2018 John Wiley and Sons. "
Fig 11
The plasmon excititation modes of the precise assemblies and the application in display (a) Scattering spectra of a single gold NR at different polarization angles. (b, c) Dark-field images at 0° (left) and 90° (right) polarization angles of the letters "A" and "u" assembled from gold NR arrays with perpendicular orientations. Insets: corresponding scanning electron microscope images of parts of the arrays containing the letters "A" (b) and "u" (c) respectively. Scale bar, 300 nm. (d) Schematic illustration of the plasma-assisted LbL assembly process and SEM image of the first monolayer of Au nanoparticles after plasma treatment. (e) Optical reflection from AgNP (6 nm in diameter) films with thicknesses of 1, 3, 5, 7, 9, 11, 13, and 15 ML in sequence. (a-c) Reprinted with permission from Ref. 202. Copyright 2018 American Chemical Society. (d, e) Reprinted with permission from Ref. 203. Copyright 2010 American Chemical Society. "
Fig 12
The regulation of magnetic circular dichroism (MCD) by the precise assemblies (a, b) CD spectra (top curves) and UV-Vis-NIR spectra (bottom curves) of side by side (SS) assembly (red curves in (a)) or end to end assembly (EE) (pink curves in (b)) by GNRs. Blue curves stand for the corresponding spectra of dispersed GNRs, as reference. Inside are TEM images of SS GNR assembly and EE GNR assembly. Scale bars, 50 nm. (c) Scheme showing the symmetry of TSPR (left) or LSPR (right) mode in single gold nanorods. (d) Diagram of the effect of geometry factor on magnetoplasmonic CD signal upon tuning the aspect ratio or assembly conformation. (a–d) Reprinted with permission from Ref. 215. Copyright 2017 American Chemical Society. "
1 |
Vigderman L. ; Khanal B. P. ; Zubarev E. R. Adv. Mater. 2012, 24, 4811.
doi: 10.1002/adma.201201690 |
2 |
Parab H. J. ; Jung C. ; Lee J. H. ; Park H. G. Biosens. Bioelectron. 2010, 26, 667.
doi: 10.1016/j.bios.2010.06.067 |
3 |
Cademartiri L. ; Ozin G. A. Adv. Mater. 2009, 21, 1013.
doi: 10.1002/adma.200801836 |
4 | Tang Z. Acta Phys. -Chim. Sin. 2018, 34, 121. |
唐智勇. 物理化学学报, 2018, 34, 121.
doi: 10.3866/PKU.WHXB201707261 |
|
5 |
Yi G. C. ; Wang C. R. ; Park W. I. Semicond. Sci. Technol. 2005, 20, S22.
doi: 10.1088/0268-1242/20/4/003 |
6 |
Parmenter K. E. ; Milstein F. J. Non-Cryst. Solids 1998, 223, 179.
doi: 10.1016/s0022-3093(97)00430-4 |
7 |
Nie Z. ; Petukhova A. ; Kumacheva E. Nat. Nanotech. 2010, 5, 15.
doi: 10.1038/nnano.2009.453 |
8 |
Alvarez-Puebla R. A. ; Agarwal A. ; Manna P. ; Khanal B. P. ; Aldeanueva-Potel P. ; Carbo-Argibay E. ; Pazos-Perez N. ; Vigderman L. ; Zubarev E. R. ; Kotov N. A. ; et al Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 8157.
doi: 10.1073/pnas.1016530108 |
9 |
Alvarez-Puebla R. A. ; Zubarev E. R. ; Kotov N. A. ; Liz-Marzan L. M. Nano Today 2012, 7, 6.
doi: 10.1016/j.nantod.2011.11.001 |
10 |
Auguie B. ; Lorenzo Alonso-Gomez J. ; Guerrero-Martinez A. ; Liz-Marzan L. M. J. Phys. Chem. Lett. 2011, 2, 846.
doi: 10.1021/jz200279x |
11 |
Zhang C. L. ; Lv K. P. ; Cong H. P. ; Yu S. H. Small 2012, 8, 648.
doi: 10.1002/smll.201102230 |
12 |
Huynh W. U. ; Dittmer J. J. ; Alivisatos A. P. Science 2002, 295, 2425.
doi: 10.1126/science.1069156 |
13 | Liu M. Acta Phys. -Chim. Sin. 2019, 35, 1041. |
刘鸣华. 物理化学学报, 2019, 35, 1041.
doi: 10.3866/PKU.WHXB201905045 |
|
14 | Zhan J. ; Feng F. ; Xu M. ; Yao L. ; Ge M. Acta Phys. -Chim. Sin. 2020, 36, 1905076. |
展金秀; 冯峰; 许敏; 姚立; 葛茂发. 物理化学学报, 2020, 36, 1905076.
doi: 10.3866/PKU.WHXB201905076 |
|
15 |
Liz-Marzan L. M. Langmuir 2006, 22, 32.
doi: 10.1021/la0513353 |
16 |
Buxton G. A. ; Balazs A. C. Mol. Simul. 2004, 30, 249.
doi: 10.1080/08927020310001659142 |
17 |
Liu Q. ; Cui Y. ; Gardner D. ; Li X. ; He S. ; Smalyukh I. I. Nano Lett. 2010, 10, 1347.
doi: 10.1021/nl9042104 |
18 |
Kneipp K. ; Kneipp H. ; Kneipp J. Acc. Chem. Res. 2006, 39, 443.
doi: 10.1021/ar050107x |
19 |
Jiang Z. ; Wen G. ; Luo Y. ; Zhang X. ; Liu Q. ; Liang A. Sci. Rep. 2014, 4
doi: 10.1038/srep05323 |
20 |
Jain P. K. ; Eustis S. ; El-Sayed M. A. J. Phys. Chem. B 2006, 110, 18243.
doi: 10.1021/jp063879z |
21 |
Damasceno P. F. ; Engel M. ; Glotzer S. C. Science 2012, 337, 453.
doi: 10.1126/science.1220869 |
22 |
Dujardin E. ; Hsin L. B. ; Wang C. R. C. ; Mann S. Chem. Commun. 2001, 1264.
doi: 10.1039/b102319p |
23 |
Evans J. S. ; Beier C. N. ; Smalyukh I. I. J. Appl. Phys. 2011, 110
doi: 10.1063/1.3620550 |
24 |
Huang Z. ; Meng G. ; Huang Q. ; Chen B. ; Zhu C. ; Zhang Z. J. Raman Spectrosc. 2013, 44, 240.
doi: 10.1002/jrs.4184 |
25 |
Wang D. ; Hore M. J. A. ; Ye X. ; Zheng C. ; Murray C. B. ; Composto R. J. Soft Matter 2014, 10, 3404.
doi: 10.1039/c3sm52514g |
26 |
Paramasivam I. ; Jha H. ; Liu N. ; Schmuki P. Small 2012, 8, 3073.
doi: 10.1002/smll.201200564 |
27 |
Bao Y. ; Fong H. ; Jiang C. J. Phys. Chem. C 2013, 117, 21490.
doi: 10.1021/jp4074703 |
28 |
Xiao J. ; Li Z. ; Ye X. ; Ma Y. ; Qi L. Nanoscale 2014, 6, 996.
doi: 10.1039/c3nr05343a |
29 |
Wei W. ; Chen K. ; Ge G. Adv. Mater. 2013, 25, 3863.
doi: 10.1002/adma.201301181 |
30 |
Wang R. Y. ; Wang H. ; Wu X. ; Ji Y. ; Wang P. ; Qu Y. ; Chung T. S. Soft Matter 2011, 7, 8370.
doi: 10.1039/c1sm05590a |
31 |
Ba J. H. ; Polleux J. ; Antonietti M. ; Niederberger M. Adv. Mater. 2005, 17, 2509.
doi: 10.1002/adma.200501018 |
32 |
Huang X. ; El-Sayed I. H. ; Qian W. ; El-Sayed M. A. Nano Lett. 2007, 7, 1591.
doi: 10.1021/nl070472c |
33 |
Brezesinski T. ; Wang J. ; Polleux J. ; Dunn B. ; Tolbert S. H. J. Am. Chem. Soc. 2009, 131, 1802.
doi: 10.1021/ja8057309 |
34 |
Wang M. ; Yin Y. J. Am. Chem. Soc. 2016, 138, 6315.
doi: 10.1021/jacs.6b02346 |
35 |
Erb R. M. ; Libanori R. ; Rothfuchs N. ; Studart A. R. Science 2012, 335, 199.
doi: 10.1126/science.1210822 |
36 |
Ahniyaz A. ; Sakamoto Y. ; Bergstrom L. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 17570.
doi: 10.1073/pnas.0704210104 |
37 |
Aleksandrovic V. ; Greshnykh D. ; Randjelovic I. ; Froemsdorf A. ; Kornowski A. ; Roth S. V. ; Klinke C. ; Weller H. ACS Nano 2008, 2, 1123.
doi: 10.1021/nn800147a |
38 |
Alivisatos A. P. J. Phys. Chem. 1996, 100, 13226.
doi: 10.1021/jp9535506 |
39 |
Min Y. ; Akbulut M. ; Kristiansen K. ; Golan Y. ; Israelachvili J. Nat. Mater. 2008, 7, 527.
doi: 10.1038/nmat2206 |
40 |
Wang Q. H. ; Kalantar-Zadeh K. ; Kis A. ; Coleman J. N. ; Strano M. S. Nat. Nanotech. 2012, 7, 699.
doi: 10.1038/nnano.2012.193 |
41 |
Cheng W. ; Ju Y. ; Payamyar P. ; Primc D. ; Rao J. ; Willa C. ; Koziej D. ; Niederberger M. Angew. Chem. Int. Ed. 2015, 54, 340.
doi: 10.1002/anie.201408617 |
42 |
Cheng W. ; Niederberger M. Langmuir 2016, 32, 2474.
doi: 10.1021/acs.langmuir.5b04512 |
43 | Han B. Acta Phys. -Chim. Sin. 2019, 35, 455. |
韩布兴. 物理化学学报, 2019, 35, 455.
doi: 10.3866/PKU.WHXB201807063 |
|
44 | Tang Z. Acta Phys. -Chim. Sin. 2019, 35, 557. |
唐智勇. 物理化学学报, 2019, 35, 557.
doi: 10.3866/PKU.WHXB201809010 |
|
45 |
Kagan C. R. ; Lifshitz E. ; Sargent E. H. ; Talapin D. V. Science 2016, 353, aac5523.
doi: 10.1126/science.aac5523 |
46 |
Dasgupta N. P. ; Sun J. ; Liu C. ; Brittman S. ; Andrews S. C. ; Lim J. ; Gao H. ; Yan R. ; Yang P. Adv. Mater. 2014, 26, 2137.
doi: 10.1002/adma.201305929 |
47 |
Butler S. Z. ; Hollen S. M. ; Cao L. ; Cui Y. ; Gupta J. A. ; Gutierrez H. R. ; Heinz T. F. ; Hong S. S. ; Huang J. ; Ismach A. F. ; et al ACS Nano 2013, 7, 2898.
doi: 10.1021/nn400280c |
48 |
Fu X. ; Chen L. ; Li J. ; Lin M. ; You H. ; Wang W. Biosens. Bioelectron. 2012, 34, 227.
doi: 10.1016/j.bios.2012.02.008 |
49 |
Choi J.-H. ; Wang H. ; Oh S. J. ; Paik T. ; Jo P. S. ; Sung J. ; Ye X. ; Zhao T. ; Diroll B. T. ; Murray C. B. ; et al Science 2016, 352, 205.
doi: 10.1126/science.aad0371 |
50 |
Arciniegas M. P. ; Kim M. R. ; De Graaf J. ; Brescia R. ; Marras S. ; Miszta K. ; Dijkstra M. ; van Roij R. ; Manna L. Nano Lett. 2014, 14, 1056.
doi: 10.1021/nl404732m |
51 |
Baker J. L. ; Widmer-Cooper A. ; Toney M. F. ; Geissler P. L. ; Alivisatos A. P. Nano Lett. 2010, 10, 195.
doi: 10.1021/nl903187v |
52 |
Balazs A. C. ; Emrick T. ; Russell T. P. Science 2006, 314, 1107.
doi: 10.1126/science.1130557 |
53 |
Boal A. K. ; Ilhan F. ; DeRouchey J. E. ; Thurn-Albrecht T. ; Russell T. P. ; Rotello V. M. Nature 2000, 404, 746.
doi: 10.1038/35008037 |
54 |
Fava D. ; Nie Z. ; Winnik M. A. ; Kumacheva E. Adv. Mater. 2008, 20, 4318.
doi: 10.1002/adma.200702786 |
55 |
Fava D. ; Winnik M. A. ; Kumacheva E. Chem. Commun. 2009, 2571.
doi: 10.1039/b901412h |
56 | Zhu J. ; Dong Y. ; Zhang S. ; Fan Z. Acta Phys. -Chim. Sin. 2020, 36, 1903052. |
朱家瑶; 董玥; 张苏; 范壮军. 物理化学学报, 2020, 36, 1903052.
doi: 10.3866/PKU.WHXB201903052 |
|
57 |
Ferrier R. C. ; Lee H. S. ; Hore M. J. A. ; Caporizzo M. ; Eckmann D. M. ; Composto R. J. Langmuir 2014, 30, 1906.
doi: 10.1021/la404588w |
58 |
Boles M. A. ; Engel M. ; Talapin D. V. Chem. Rev. 2016, 116, 11220.
doi: 10.1021/acs.chemrev.6b00196 |
59 |
Xu Z. C. ; Shen C. M. ; Xiao C. W. ; Yang T. Z. ; Chen S. T. ; Hu-Lin L. ; Gao H. J. Chem. Phys. Lett. 2006, 432, 222.
doi: 10.1016/j.cplett.2006.10.056 |
60 |
Dessombz A. ; Chiche D. ; Davidson P. ; Panine P. ; Chaneac C. ; Jolivet J. P. J. Am. Chem. Soc. 2007, 129, 5904.
doi: 10.1021/ja0684491 |
61 |
Thorkelsson K. ; Bai P. ; Xu T. Nano Today 2015, 10, 48.
doi: 10.1016/j.nantod.2014.12.005 |
62 |
Sajanlal P. R. ; Sreeprasad T. S. ; Samal A. K. ; Pradeep T. Nano Rev. Exper. 2011, 2, 5883.
doi: 10.3402/nano.v2i0.5883 |
63 |
Ye X. ; Chen J. ; Engel M. ; Millan J. A. ; Li W. ; Qi L. ; Xing G. ; Collins J. E. ; Kagan C. R. ; Li J. ; et al Nat. Chem. 2013, 5, 466.
doi: 10.1038/nchem.1651 |
64 |
Clark T. D. ; Tien J. ; Duffy D. C. ; Paul K. E. ; Whitesides G. M. J. Am. Chem. Soc. 2001, 123, 7677.
doi: 10.1021/ja010634l |
65 |
Barrow S. J. ; Funston A. M. ; Gómez D. E. ; Davis T. J. ; Mulvaney P. Nano Lett. 2011, 11, 4180.
doi: 10.1021/nl202080a |
66 |
Barrow S. J. ; Funston A. M. ; Wei X. ; Mulvaney P. Nano Today 2013, 8, 138.
doi: 10.1016/j.nantod.2013.02.005 |
67 |
Mucic R. C. ; Storhoff J. J. ; Mirkin C. A. ; Letsinger R. L. J. Am. Chem. Soc. 1998, 120, 12674.
doi: 10.1021/ja982721s |
68 |
Zhang S. Y. ; Regulacio M. D. ; Han M. Y. Chem. Soc. Rev. 2014, 43, 2301.
doi: 10.1039/c3cs60397k |
69 |
Tang Z. Y. ; Kotov N. A. Adv. Mater. 2005, 17, 951.
doi: 10.1002/adma.200401593 |
70 |
Wang T. ; Zhuang J. ; Lynch J. ; Chen O. ; Wang Z. ; Wang X. ; LaMontagne D. ; Wu H. ; Wang Z. ; Cao Y. C. Science 2012, 338, 358.
doi: 10.1126/science.1224221 |
71 |
Wei Q. H. ; Su K. H. ; Durant S. ; Zhang X. Nano Lett. 2004, 4, 1067.
doi: 10.1021/nl049604h |
72 |
Zhang X. ; Lv L. ; Ji L. ; Guo G. ; Liu L. ; Han D. ; Wang B. ; Tu Y. ; Hu J. ; Yang D. ; et al J. Am. Chem. Soc. 2016, 138, 3290.
doi: 10.1021/jacs.6b00055 |
73 |
Park Y. K. ; Yoo S. H. ; Park S. Langmuir 2007, 23, 10505.
doi: 10.1021/la701445a |
74 |
Bigioni T. P. ; Lin X. M. ; Nguyen T. T. ; Corwin E. I. ; Witten T. A. ; Jaeger H. M. Nat. Mater. 2006, 5, 265.
doi: 10.1038/nmat1611 |
75 |
Huang X. ; Neretina S. ; El-Sayed M. A. Adv. Mater. 2009, 21, 4880.
doi: 10.1002/adma.200802789 |
76 |
Liu K. ; Zhao N. ; Kumacheva E. Chem. Soc. Rev. 2011, 40, 656.
doi: 10.1039/c0cs00133c |
77 |
Hore M. J. A. ; Composto R. J. Macromolecules 2014, 47, 875.
doi: 10.1021/ma402179w |
78 |
Hore M. J. A. ; Frischknecht A. L. ; Composto R. J. ACS Macro Lett. 2012, 1, 115.
doi: 10.1021/mz200031g |
79 |
Chen H. ; Shao L. ; Li Q. ; Wang J. Chem. Soc. Rev. 2013, 42, 2679.
doi: 10.1039/c2cs35367a |
80 |
Huynh W. U. ; Peng X. G. ; Alivisatos A. P. Adv. Mater. 1999, 11, 923.
doi: 10.1002/(sici)1521-4095(199908)11:11<923::aid-adma923>3.0.co;2-t |
81 |
Guerrero-Martinez A. ; Auguie B. ; Lorenzo Alonso-Gomez J. ; Dzolic Z. ; Gomez-Grana S. ; Zinic M. ; Magdalena Cid M. ; Liz-Marzan L. M. Angew. Chem. Int. Ed. 2011, 50, 5499.
doi: 10.1002/anie.201007536 |
82 |
Hore M. J. A. ; Composto R. J. ACS Nano 2010, 4, 6941.
doi: 10.1021/nn101725j |
83 |
Kim J. ; Peretti J. ; Lahlil K. ; Boilot J. P. ; Gacoin T. Adv. Mater. 2013, 25, 3295.
doi: 10.1002/adma.201300594 |
84 |
Jana N. R. ; Gearheart L. A. ; Obare S. O. ; Johnson C. J. ; Edler K. J. ; Mann S. ; Murphy C. J. J. Mater. Chem. 2002, 12, 2909.
doi: 10.1039/b205225c |
85 |
Kneipp J. ; Kneipp H. ; Kneipp K. Chem. Soc. Rev. 2008, 37, 1052.
doi: 10.1039/b708459p |
86 |
Greeneltch N. G. ; Blaber M. G. ; Schatz G. C. ; Van Duyne R. P. J. Phys. Chem. C 2013, 117, 2554.
doi: 10.1021/jp310846j |
87 |
Glotzer S. C. ; Solomon M. J. Nat. Mater. 2007, 6, 557.
doi: 10.1038/nmat1949 |
88 |
Henzie J. ; Gruenwald M. ; Widmer-Cooper A. ; Geissler P. L. ; Yang P. Nat. Mater. 2012, 11, 131.
doi: 10.1038/nmat3178 |
89 |
Hermanson K. D. ; Lumsdon S. O. ; Williams J. P. ; Kaler E. W. ; Velev O. D. Science 2001, 294, 1082.
doi: 10.1126/science.1063821 |
90 |
Zhu E. ; Wang S. ; Yan X. ; Sobani M. ; Ruan L. ; Wang C. ; Liu Y. ; Duan X. ; Heinz H. ; Huang Y. J. Am. Chem. Soc. 2019, 141, 1498.
doi: 10.1021/jacs.8b08023 |
91 |
Rycenga M. ; McLellan J. M. ; Xia Y. Adv. Mater. 2008, 20, 2416.
doi: 10.1002/adma.200800360 |
92 |
Gao B. ; Arya G. ; Tao A. R. Nat. Nanotech. 2012, 7, 433.
doi: 10.1038/nnano.2012.83 |
93 |
Sun Y. ; Xia Y. Science 2002, 298, 2176.
doi: 10.1126/science.1077229 |
94 |
Guerrero-Martinez A. ; Perez-Juste J. ; Carbo-Argibay E. ; Tardajos G. ; Liz-Marzan L. M. Angew. Chem. Int. Ed. 2009, 48, 9484.
doi: 10.1002/anie.200904118 |
95 |
Gupta M. K. ; Koenig T. ; Near R. ; Nepal D. ; Drummy L. F. ; Biswas S. ; Naik S. ; Vaia R. A. ; El-Sayed M. A. ; Tsukruk V. V. Small 2013, 9, 2979.
doi: 10.1002/smll.201300248 |
96 |
Horsch M. A. ; Zhang Z. ; Glotzer S. C. Soft Matter 2010, 6, 945.
doi: 10.1039/b917403f |
97 |
Park H. S. ; Agarwal A. ; Kotov N. A. ; Lavrentovich O. D. Langmuir 2008, 24, 13833.
doi: 10.1021/la803363m |
98 |
Wang L. ; Zhu Y. ; Xu L. ; Chen W. ; Kuang H. ; Liu L. ; Agarwal A. ; Xu C. ; Kotov N. A. Angew. Chem. Int. Ed. 2010, 49, 5472.
doi: 10.1002/anie.200907357 |
99 |
Correa-Duarte M. A. ; Perez-Juste J. ; Sanchez-Iglesias A. ; Giersig M. ; Liz-Marzan L. M. Angew. Chem. Int. Ed. 2005, 44, 4375.
doi: 10.1002/anie.200500581 |
100 |
Figuerola A. ; Franchini I. R. ; Fiore A. ; Mastria R. ; Falqui A. ; Bertoni G. ; Bals S. ; Van Tendeloo G. ; Kudera S. ; Cingolani R. ; et al Adv. Mater. 2009, 21, 550.
doi: 10.1002/adma.200801928 |
101 |
Gole A. ; Murphy C. J. Langmuir 2005, 21, 10756.
doi: 10.1021/la0512704 |
102 |
Zhu Y. ; Qu C. ; Kuang H. ; Xu L. ; Liu L. ; Hua Y. ; Wang L. ; Xu C. Biosens. Bioelectron. 2011, 26, 4387.
doi: 10.1016/j.bios.2011.04.046 |
103 |
Sun B. ; Sirringhaus H. J. Am. Chem. Soc. 2006, 128, 16231.
doi: 10.1021/ja065242z |
104 |
Liu K. ; Zhao N. ; Kumacheva E. Chem. Soc. Rev. 2011, 40, 656.
doi: 10.1039/C0CS00133C |
105 |
Zhao N. ; Liu K. ; Greener J. ; Nie Z. ; Kumacheva E. Nano Lett. 2009, 9, 3077.
doi: 10.1021/nl901567a |
106 |
Hamon C. ; Bizien T. ; Artzner F. ; Even-Hernandez P. ; Marchi V. J. Colloid Interface Sci. 2014, 424, 90.
doi: 10.1016/j.jcis.2014.03.002 |
107 |
Hamon C. ; Postic M. ; Mazari E. ; Bizien T. ; Dupuis C. ; Even-Hernandez P. ; Jimenez A. ; Courbin L. ; Gosse C. ; Artzner F. ; et al ACS Nano 2012, 6, 4137.
doi: 10.1021/nn3006027 |
108 |
Sreeprasad T. S. ; Samal A. K. ; Pradeep T. Langmuir 2008, 24, 4589.
doi: 10.1021/la703523s |
109 |
Horsch M. A. ; Zhang Z. L. ; Glotzer S. C. Phys. Rev. Lett. 2005, 056105.
doi: 10.1103/PhysRevLett.95.056105 |
110 |
Hu X. G. ; Cheng W. L. ; Wang T. ; Wang Y. L. ; Wang E. K. ; Dong S. J. J. Phys. Chem. B 2005, 109, 19385.
doi: 10.1021/jp052706r |
111 |
Wang J. ; Zhang P. ; Li C. M. ; Li Y. F. ; Huang C. Z. Biosens. Bioelectron. 2012, 34, 197.
doi: 10.1016/j.bios.2012.02.001 |
112 |
Khanal B. P. ; Zubarev E. R. Angew. Chem. Int. Ed. 2007, 46, 2195.
doi: 10.1002/anie.200604889 |
113 |
Kim F. ; Kwan S. ; Akana J. ; Yang P. D. J. Am. Chem. Soc. 2001, 123, 4360.
doi: 10.1021/ja0059138 |
114 |
Caswell K. K. ; Wilson J. N. ; Bunz U. H. F. ; Murphy C. J. J. Am. Chem. Soc. 2003, 125, 13914.
doi: 10.1021/ja037969i |
115 |
Goodman M. D. ; Zhao L. ; DeRocher K. A. ; Wang J. ; Mallapragada S. K. ; Lin Z. ACS Nano 2010, 4, 2043.
doi: 10.1021/nn1002584 |
116 |
He J. ; Zhang Q. ; Gupta S. ; Emrick T. ; Russell T. R. ; Thiyagarajan P. Small 2007, 3, 1214.
doi: 10.1002/smll.200700055 |
117 |
Liu Q. ; Tang J. ; Zhang Y. ; Martinez A. ; Wang S. ; He S. ; White T. J. ; Smalyukh I. I. Phys. Rev. E 2014, 052505.
doi: 10.1103/PhysRevE.89.052505 |
118 |
Shaw S. ; Cademartiri L. Adv. Mater. 2013, 25, 4829.
doi: 10.1002/adma.201300850 |
119 |
Pacholski C. ; Kornowski A. ; Weller H. Angew. Chem. Int. Ed. 2002, 41, 1188.
doi: 10.1002/1521-3773(20020402)41:7<1188::aid-anie1188>3.0.co;2-5 |
120 |
Choueiri R. M. ; Galati E. ; Therien-Aubin H. ; Klinkova A. ; Larin E. M. ; Querejeta-Fernandez A. ; Han L. ; Xin H. L. ; Gang O. ; Zhulina E. B. ; et al Nature 2016, 538, 79.
doi: 10.1038/nature19089 |
121 |
Claridge S. A. ; Castleman A. W. Jr. ; Khanna S. N. ; Murray C. B. ; Sen A. ; Weiss P. S. ACS Nano 2009, 3, 244.
doi: 10.1021/nn800820e |
122 |
Costi R. ; Saunders A. E. ; Banin U. Angew. Chem. Int. Ed. 2010, 49, 4878.
doi: 10.1002/anie.200906010 |
123 |
Shaw S. ; Yuan B. ; Tian X. ; Miller K. J. ; Cote B. M. ; Colaux J. L. ; Migliori A. ; Panthani M. G. ; Cademartiri L. Adv. Mater. 2016, 28, 8892.
doi: 10.1002/adma.201601872 |
124 |
Tang Z. ; Zhang Z. ; Wang Y. ; Glotzer S. C. ; Kotov N. A. Science 2006, 314, 274.
doi: 10.1126/science.1128045 |
125 |
Yang M. ; Chan H. ; Zhao G. ; Bahng J. H. ; Zhang P. ; Kral P. ; Kotov N. A. Nat. Chem. 2017, 9, 287.
doi: 10.1038/nchem.2641 |
126 |
Xia Y. ; Trung Dac N. ; Yang M. ; Lee B. ; Santos A. ; Podsiadlo P. ; Tang Z. ; Glotzer S. C. ; Kotov N. A. Nat. Nanotech. 2011, 6, 580.
doi: 10.1038/nnano.2011.121 |
127 |
Lu C. ; Tang Z. Adv. Mater. 2016, 28, 1096.
doi: 10.1002/adma.201502869 |
128 |
Zhang Z. ; Tang Z. ; Kotov N. A. ; Glotzer S. C. Nano Lett. 2007, 7, 1670.
doi: 10.1021/nl0706300 |
129 |
Knorowski C. ; Travesset A. J. Am. Chem. Soc. 2014, 136, 653.
doi: 10.1021/ja406241n |
130 |
Vial S. ; Nykypanchuk D. ; Yager K. G. ; Tkachenko A. V. ; Gang O. ACS Nano 2013, 7, 5437.
doi: 10.1021/nn401413b |
131 |
Kao J. ; Thorkelsson K. ; Bai P. ; Rancatore B. J. ; Xu T. Chem. Soc. Rev. 2013, 42, 2654.
doi: 10.1039/c2cs35375j |
132 |
Kudryavtsev Y. V. ; Govorun E. N. ; Litmanovich A. D. ; Fischer H. R. Macromol. Theory Simul. 2004, 13, 392.
doi: 10.1002/mats.200400002 |
133 |
Jones M. R. ; Macfarlane R. J. ; Lee B. ; Zhang J. ; Young K. L. ; Senesi A. J. ; Mirkin C. A. Nat. Mater. 2010, 9, 913.
doi: 10.1038/nmat2870 |
134 |
Kang C. C. ; Lai C. W. ; Peng H. C. ; Shyue J. J. ; Chou P. T. ACS Nano 2008, 2, 750.
doi: 10.1021/nn800020h |
135 |
Tan S. J. ; Campolongo M. J. ; Luo D. ; Cheng W. Nat. Nanotech. 2011, 6, 268.
doi: 10.1038/nnano.2011.49 |
136 |
Shen C. ; Lan X. ; Zhu C. ; Zhang W. ; Wang L. ; Wang Q. Adv. Mater. 2017, 29, 1606533.
doi: 10.1002/adma.201606533 |
137 |
Chen G. ; Gibson K. J. ; Liu D. ; Rees H. C. ; Lee J. H. ; Xia W. ; Lin R. ; Xin H. L. ; Gang O. ; Weizmann Y. Nat. Mater. 2019, 18, 169.
doi: 10.1038/s41563-018-0231-1 |
138 |
Tian Y. ; Wang T. ; Liu W. ; Xin H. L. ; Li H. ; Ke Y. ; Shih W. M. ; Gang O. Nat. Nanotech. 2015, 10, 637.
doi: 10.1038/nnano.2015.105 |
139 |
Liu X. ; Zhang F. ; Jing X. ; Pan M. ; Liu P. ; Li W. ; Zhu B. ; Li J. ; Chen H. ; Wang L. ; et al Nature 2018, 559, 593.
doi: 10.1038/s41586-018-0332-7 |
140 |
Shen X. ; Song C. ; Wang J. ; Shi D. ; Wang Z. ; Liu N. ; Ding B. J. Am. Chem. Soc. 2012, 134, 146.
doi: 10.1021/ja209861x |
141 |
Kolmakov A. ; Moskovits M. Ann. Rev. Mater. Res. 2004, 34, 151.
doi: 10.1146/annurev.matsci.34.040203.112141 |
142 |
Kraenzlin N. ; Niederberger M. Mater. Horiz. 2015, 2, 359.
doi: 10.1039/c4mh00244j |
143 |
Franks G. V. ; Tallon C. ; Studart A. R. ; Sesso M. L. ; Leo S. J. Am. Ceram. Soc. 2017, 100, 458.
doi: 10.1111/jace.14705 |
144 |
Henzie J. ; Barton J. E. ; Stender C. L. ; Odom T. W. Acc. Chem. Res. 2006, 39, 249.
doi: 10.1021/ar050013n |
145 |
Nepal D. ; Onses M. S. ; Park K. ; Jespersen M. ; Thode C. J. ; Nealey P. F. ; Vaia R. A. ACS Nano 2012, 6, 5693.
doi: 10.1021/nn301824u |
146 |
Jiang L. ; Chen X. ; Lu N. ; Chi L. Acc. Chem. Res. 2014, 47, 3009.
doi: 10.1021/ar500196r |
147 |
Xu L. ; Ma W. ; Wang L. ; Xu C. ; Kuang H. ; Kotov N. A. Chem. Soc. Rev. 2013, 42, 3114.
doi: 10.1039/c3cs35460a |
148 |
Grier D. G. Nature 2003, 424, 810.
doi: 10.1038/nature01935 |
149 |
Velev O. D. ; Bhatt K. H. Soft Matter 2006, 2, 738.
doi: 10.1039/b605052b |
150 |
Singamaneni S. ; Bliznyuk V. N. ; Binek C. ; Tsymbal E. Y. J. Mater. Chem. 2011, 21, 16819.
doi: 10.1039/c1jm11845e |
151 |
Srivastava S. ; Santos A. ; Critchley K. ; Kim K. -S. ; Podsiadlo P. ; Sun K. ; Lee J. ; Xu C. ; Lilly G. D. ; Glotzer S. C. ;et al Science 2010, 327, 1355.
doi: 10.1126/science.1177218 |
152 |
Chen K. Y. ; Lee A. T. ; Hung C. C. ; Huang J. S. ; Yang Y. T. Nano Lett. 2013, 13, 4118.
doi: 10.1021/nl4016254 |
153 |
Mittal M. ; Furst E. M. Adv. Funct. Mater. 2009, 19, 3271.
doi: 10.1002/adfm.200900908 |
154 |
Wang K. ; Jin S. M. ; Xu J. ; Liang R. ; Shezad K. ; Xue Z. ; Xie X. ; Lee E. ; Zhu J. ACS Nano 2016, 10, 4954.
doi: 10.1021/acsnano.6b00487 |
155 |
Ryan K. M. ; Mastroianni A. ; Stancil K. A. ; Liu H. ; Alivisatos A. P. Nano Lett. 2006, 6, 1479.
doi: 10.1021/nl060866o |
156 |
Singh G. ; Chan H. ; Baskin A. ; Gelman E. ; Repnin N. ; Kral P. ; Klajn R. Science 2014, 345, 1149.
doi: 10.1126/science.1254132 |
157 |
Gao M. ; Kuang M. ; Li L. ; Liu M. ; Wang L. ; Song Y. Small 2018, 14, 1800117.
doi: 10.1002/smll.201800117 |
158 |
Xiao F. X. ; Pagliaro M. ; Xu Y. J. ; Liu B. Chem. Soc. Rev. 2016, 45, 3088.
doi: 10.1039/c5cs00781j |
159 |
Li C. ; Zhao M. ; Zhou X. ; Li H. ; Wang Y. ; Hu X. ; Li M. ; Shi L. ; Song Y. Adv. Opt. Mater. 2018, 6, 1800651.
doi: 10.1002/adom.201800651 |
160 |
Richardson J. J. ; Cui J. ; Bjornmalm M. ; Braunger J. A. ; Ejima H. ; Caruso F. Chem. Rev. 2016, 116, 14828.
doi: 10.1021/acs.chemrev.6b00627 |
161 |
Kinge S. ; Crego-Calama M. ; Reinhoudt D. N. ChemPhysChem 2008, 9, 20.
doi: 10.1002/cphc.200700475 |
162 |
Tao A. R. ; Huang J. ; Yang P. Acc. Chem. Res. 2008, 41, 1662.
doi: 10.1021/ar8000525 |
163 |
Tebbe M. ; Mayer M. ; Glatz B. A. ; Hanske C. ; Probst P. T. ; Mueller M. B. ; Karg M. ; Chanana M. ; Koenig T. A. F. ; Kuttner C. ; et al Faraday Discuss. 2015, 181, 243.
doi: 10.1039/c4fd00236a |
164 |
Kim H. S. ; Lee C. H. ; Sudeep P. ; Emrick T. ; Crosby A. J. Adv. Mater. 2010, 22, 4600.
doi: 10.1002/adma.201001892 |
165 |
Lee D. Y. ; Pham J. T. ; Lawrence J. ; Lee C. H. ; Parkos C. ; Emrick T. ; Crosby A. J. Adv. Mater. 2013, 25, 1248.
doi: 10.1002/adma.201203719 |
166 |
Chen C. F. ; Tzeng S. D. ; Chen H. Y. ; Lin K. J. ; Gwo S. J. Am. Chem. Soc. 2008, 130, 824.
doi: 10.1021/ja0773610 |
167 |
Huang J. X. ; Kim F. ; Tao A. R. ; Connor S. ; Yang P. D. Nat. Mater. 2005, 4, 896.
doi: 10.1038/nmat1517 |
168 |
Huang J. ; Tao A. R. ; Connor S. ; He R. ; Yang P. Nano Lett. 2006, 6, 524.
doi: 10.1021/nl060235u |
169 |
Malaquin L. ; Kraus T. ; Schmid H. ; Delamarche E. ; Wolf H. Langmuir 2007, 23, 11513.
doi: 10.1021/la700852c |
170 |
Hughes R. A. ; Menumerov E. ; Neretina S. Nanotechnology 2017, 28, 282002.
doi: 10.1088/1361-6528/aa77ce |
171 |
Flauraud V. ; Mastrangeli M. ; Bernasconi G. D. ; Butet J. ; Alexander D. T. L. ; Shahrabi E. ; Martin O. J. F. ; Brugger J. Nat. Nanotech. 2017, 12, 73.
doi: 10.1038/nnano.2016.179 |
172 |
Zhou Y. ; Zhou X. ; Park D. J. ; Torabi K. ; Brown K. A. ; Jones M. R. ; Zhang C. ; Schatz G. C. ; Mirkin C. A. Nano Lett. 2014, 14, 2157.
doi: 10.1021/nl500471g |
173 |
Lin Q.-Y. ; Mason J. A. ; Li Z. ; Zhou W. ; O'Brien M. N. ; Brown K. A. ; Jones M. R. ; Butun S. ; Lee B. ; Dravid V. P. ; et al Science 2018, 359, 669.
doi: 10.1126/science.aaq0591 |
174 |
Kraus T. ; Malaquin L. ; Schmid H. ; Riess W. ; Spencer N. D. ; Wolf H. Nat. Nanotech. 2007, 2, 570.
doi: 10.1038/nnano.2007.262 |
175 |
Hwang J. K. ; Cho S. ; Dang J. M. ; Kwak E. B. ; Song K. ; Moon J. ; Sung M. M. Nat. Nanotech. 2010, 5, 742.
doi: 10.1038/nnano.2010.175 |
176 |
Paik T. ; Yun H. ; Fleury B. ; Hong S.-H. ; Jo P. S. ; Wu Y. ; Oh S. -J. ; Cargnello M. ; Yang H. ; Murray C. B. ; et al Nano Lett. 2017, 17, 1387.
doi: 10.1021/acs.nanolett.6b04279 |
177 |
Su B. ; Zhang C. ; Chen S. ; Zhang X. ; Chen L. ; Wu Y. ; Nie Y. ; Kan X. ; Song Y. ; Jiang L. Adv. Mater. 2014, 26, 2501.
doi: 10.1002/adma.201305249 |
178 |
Li Z. ; Huang Z. ; Yang Q. ; Su M. ; Zhou X. ; Li H. ; Li L. ; Li F. ; Song Y. Adv. Opt. Mater. 2017, 5
doi: 10.1002/adom.201700751 |
179 |
Hou J. ; Zhang H. ; Yang Q. ; Li M. ; Song Y. ; Jiang L. Angew. Chem. Int. Ed. 2014, 53, 5791.
doi: 10.1002/anie.201400686 |
180 |
Guo D. ; Li C. ; Wang Y. ; Li Y. ; Song Y. Angew. Chem. Int. Ed. 2017, 56, 15348.
doi: 10.1002/anie.201709115 |
181 |
Guo D. ; Zheng X. ; Wang X. ; Li H. ; Li K. ; Li Z. ; Song Y. Angew. Chem. Int. Ed. 2018, 57, 16126.
doi: 10.1002/anie.201810728 |
182 |
Guo D. ; Li Y. ; Zheng X. ; Li F. ; Chen S. ; Li M. ; Yang Q. ; Li H. ; Song Y. J. Am. Chem. Soc. 2018, 140, 18.
doi: 10.1021/jacs.7b09738 |
183 |
Yang Q. ; Deng M. ; Li H. ; Li M. ; Zhang C. ; Shen W. ; Li Y. ; Guo D. ; Song Y. Nanoscale 2015, 7, 421.
doi: 10.1039/c4nr04656k |
184 |
Chen S. ; Su M. ; Zhang C. ; Gao M. ; Bao B. ; Yang Q. ; Su B. ; Song Y. Adv. Mater. 2015, 27, 3928.
doi: 10.1002/adma.201500225 |
185 |
Park J. -U. ; Hardy M. ; Kang S. J. ; Barton K. ; Adair K. ; Mukhopadhyay D. K. ; Lee C. Y. ; Strano M. S. ; Alleyne A. G. ; Georgiadis J. G. ; et al Nat. Mater. 2007, 6, 782.
doi: 10.1038/nmat1974 |
186 |
Galliker P. ; Schneider J. ; Eghlidi H. ; Kress S. ; Sandoghdar V. ; Poulikakos D. Nat. Commun. 2012, 3
doi: 10.1038/ncomms1891 |
187 |
An B. W. ; Kim K. ; Lee H. ; Kim S. Y. ; Shim Y. ; Lee D. Y. ; Song J. Y. ; Park J. U. Adv. Mater. 2015, 27, 4322.
doi: 10.1002/adma.201502092 |
188 |
Li H. ; Fang W. ; Li Y. ; Yang Q. ; Li M. ; Li Q. ; Feng X. Q. ; Song Y. Nat. Commun. 2019, 10
doi: 10.1038/s41467-019-08919-2 |
189 |
Kuang M. ; Wang J. ; Bao B. ; Li F. ; Wang L. ; Jiang L. ; Song Y. Adv. Opt. Mater. 2014, 2, 34.
doi: 10.1002/adom.201300369 |
190 |
Zhang Z. ; Zhang X. ; Xin Z. ; Deng M. ; Wen Y. ; Song Y. Adv. Mater. 2013, 25, 6714.
doi: 10.1002/adma.201303278 |
191 |
Huang Y. ; Zhou J. ; Su B. ; Shi L. ; Wang J. ; Chen S. ; Wang L. ; Zi J. ; Song Y. ; Jiang L. J. Am. Chem. Soc. 2012, 134, 17053.
doi: 10.1021/ja304751k |
192 |
Tan A. T. L. ; Beroz J. ; Kolle M. ; Hart J. Adv. Mater. 2018, 30
doi: 10.1002/adma.201803620 |
193 |
Peng K. Q. ; Wang X. ; Li L. ; Hu Y. ; Lee S. T. Nano Today 2013, 8, 75.
doi: 10.1016/j.nantod.2012.12.009 |
194 |
Pileni M. P. Acc. Chem. Res. 2007, 40, 685.
doi: 10.1021/ar6000582 |
195 |
Zhu Z. ; Guo J. ; Liu W. ; Li Z. ; Han B. ; Zhang W. ; Tang Z. Angew. Chem. Int. Ed. 2013, 52, 13571.
doi: 10.1002/anie.201305389 |
196 |
Gwo S. ; Chen H. Y. ; Lin M. H. ; Sun L. ; Li X. Chem. Soc. Rev. 2016, 45, 5672.
doi: 10.1039/c6cs00450d |
197 |
Li Z. ; Zhu Z. ; Liu W. ; Zhou Y. ; Han B. ; Gao Y. ; Tang Z. J. Am. Chem. Soc. 2012, 134, 3322.
doi: 10.1021/ja209981n |
198 |
Gong J. ; Li G. ; Tang Z. Nano Today 2012, 7, 564.
doi: 10.1016/j.nantod.2012.10.008 |
199 |
Chen T. ; Pourmand M. ; Feizpour A. ; Cushman B. ; Reinhard B. R. M. J. Phys. Chem. Lett. 2013, 4, 2147.
doi: 10.1021/jz401066g |
200 |
Fan J. A. ; Wu C. ; Bao K. ; Bao J. ; Bardhan R. ; Halas N. J. ; Manoharan V. N. ; Nordlander P. ; Shvets G. ; Capasso F. Science 2010, 328, 1135.
doi: 10.1126/science.1187949 |
201 |
Zhan P. ; Wen T. ; Wang Z. g. ; He Y. ; Shi J. ; Wang T. ; Liu X. ; Lu G. ; Ding B. Angew. Chem. Int. Ed. 2018, 57, 2846.
doi: 10.1002/anie.201712749 |
202 |
Zhang H. ; Cadusch J. ; Kinnear C. ; James T. ; Roberts A. ; Mulvaney P. ACS Nano 2018, 12, 7529.
doi: 10.1021/acsnano.8b02932 |
203 |
Lin M. H. ; Chen H. Y. ; Gwo S. J. Am. Chem. Soc. 2010, 132, 11259.
doi: 10.1021/ja103722p |
204 |
Xu L. ; Gao Y. ; Kuang H. ; Liz-Marzan L. M. ; Xu C. Angew. Chem. Int. Ed. 2018, 57, 10544.
doi: 10.1002/anie.201805640 |
205 |
Ma W. ; Kuang H. ; Xu L. ; Ding L. ; Xu C. ; Wang L. ; Kotov N. A. Nat. Commun. 2013, 4
doi: 10.1038/ncomms3689 |
206 |
Tan C. ; Qi X. ; Liu Z. ; Zhao F. ; Li H. ; Huang X. ; Shi L. ; Zheng B. ; Zhang X. ; Xie L. ; et al J. Am. Chem. Soc. 2015, 137, 1565.
doi: 10.1021/ja511471b |
207 |
Ma W. ; Xu L. ; De Moura A. F. ; Wu X. ; Kuang H. ; Xu C. ; Kotov N. A. Chem. Rev. 2017, 117, 8041.
doi: 10.1021/acs.chemrev.6b00755 |
208 |
Lee H. E. ; Ahn H. Y. ; Mun J. ; Lee Y. Y. ; Kim M. ; Cho N. H. ; Chang K. ; Kim W. S. ; Rho J. ; Nam K. T. Nature 2018, 556, 360.
doi: 10.1038/s41586-018-0034-1 |
209 |
Yan W. ; Xu L. ; Xu C. ; Ma W. ; Kuang H. ; Wang L. ; Kotov N. A. J. Am. Chem. Soc. 2012, 134, 15114.
doi: 10.1021/ja3066336 |
210 |
Sang Y. ; Han J. ; Zhao T. ; Duan P. ; Liu M. Adv. Mater. 2019, 1900110.
doi: 10.1002/adma.201900110 |
211 |
Zhou Y. ; Marson R. L. ; van Anders G. ; Zhu J. ; Ma G. ; Ercius P. ; Sun K. ; Yeom B. ; Glotzer S. C. ; Kotov N. A. ACS Nano 2016, 10, 3248.
doi: 10.1021/acsnano.5b05983 |
212 |
Shi L. ; Zhu L. ; Guo J. ; Zhang L. ; Shi Y. ; Zhang Y. ; Hou K. ; Zheng Y. ; Zhu Y. ; Lv J. ; et al Angew. Chem. Int. Ed. 2017, 56, 15397.
doi: 10.1002/anie.201709827 |
213 |
Ma W. ; Kuang H. ; Wang L. ; Xu L. ; Chang W. -S. ; Zhang H. ; Sun M. ; Zhu Y. ; Zhao Y. ; Liu L. ; et al Sci. Rep. 2013, 3, 1394.
doi: 10.1038/srep01934 |
214 |
Han B. ; Gao X. ; Lv J. ; Tang Z. Adv. Mater. 2018, 1801491.
doi: 10.1002/adma.201801491 |
215 |
Han B. ; Gao X. ; Shi L. ; Zheng Y. ; Hou K. ; Lv J. ; Guo J. ; Zhang W. ; Tang Z. Nano Lett. 2017, 17, 6083.
doi: 10.1021/acs.nanolett.7b02583 |
[1] | Ganyin Yuan, Zheng Xi, Chu Wang, Xiaohuan Sun, Jie Han, Rong Guo. Construction of Supramolecular Chiral Polyaniline-Gold Nanocomposite as Nanozyme for Enantioselective Catalysis [J]. Acta Phys. -Chim. Sin., 2023, 39(7): 2212061-0. |
[2] | Erjun Lu, Junqian Tao, Can Yang, Yidong Hou, Jinshui Zhang, Xinchen Wang, Xianzhi Fu. Carbon-Encapsulated Pd/TiO2 for Photocatalytic H2 Evolution Integrated with Photodehydrogenative Coupling of Amines to Imines [J]. Acta Phys. -Chim. Sin., 2023, 39(4): 2211029-0. |
[3] | Jun Xie, Yuheng Jiang, Siyang Li, Peng Xu, Qiang Zheng, Xiaoyu Fan, Hailin Peng, Zhiyong Tang. Stable Photocatalytic Coupling of Methane to Ethane with Water Vapor Using TiO2 Supported Ultralow Loading AuPd Nanoparticles [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2306037-. |
[4] | Yue Yang, Jiawei Zhu, Pengyan Wang, Haimi Liu, Weihao Zeng, Lei Chen, Zhixiang Chen, Shichun Mu. NH2-MIL-125 (Ti) Derived Flower-Like Fine TiO2 Nanoparticles Implanted in N-doped Porous Carbon as an Anode with High Activity and Long Cycle Life for Lithium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2106002-. |
[5] | Zhicong Sun, Ergui Luo, Qinglei Meng, Xian Wang, Junjie Ge, Changpeng Liu, Wei Xing. High-Performance Palladium-Based Catalyst Boosted by Thin-Layered Carbon Nitride for Hydrogen Generation from Formic Acid [J]. Acta Phys. -Chim. Sin., 2022, 38(3): 2003035-. |
[6] | Yue-Jiao Zhang, Yue-Zhou Zhu, Jian-Feng Li. Application of Raman Spectroscopy in Fuel Cell [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2004052-. |
[7] | Lin Lv, Liyang Zhang, Xuebing He, Hong Yuan, Shuxin Ouyang, Tierui Zhang. Energy-Efficient Hydrogen Production via Electrochemical Methanol Oxidation Using a Bifunctional Nickel Nanoparticle-Embedded Carbon Prism-Like Microrod Electrode [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2007079-. |
[8] | Yao Xiao, Yu Pei, Yifan Hu, Ruguang Ma, Deyi Wang, Jiacheng Wang. Co2P@P-Doped 3D Porous Carbon for Bifunctional Oxygen Electrocatalysis [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009051-. |
[9] | Qian Li, Pingping Ding, Yaping Wang, Xuepin Liao, Bi Shi. Preparation of a Rare Earth Natural Leather X-ray Protection Material and Its Properties [J]. Acta Phys. -Chim. Sin., 2021, 37(10): 2001046-. |
[10] | Hantao Sun, Jianhui Liao, Shimin Hou. Single-Molecule Field-Effect Transistors with Graphene Electrodes and Covalent Pyrazine Linkers [J]. Acta Phys. -Chim. Sin., 2021, 37(10): 1906027-. |
[11] | Menggang Li, Zhonghong Xia, Yarong Huang, Lu Tao, Yuguang Chao, Kun Yin, Wenxiu Yang, Weiwei Yang, Yongsheng Yu, Shaojun Guo. Rh-Doped PdCu Ordered Intermetallics for Enhanced Oxygen Reduction Electrocatalysis with Superior Methanol Tolerance [J]. Acta Physico-Chimica Sinica, 2020, 36(9): 1912049-. |
[12] | Jian Zhang, Liang Wang, Zhiyi Wu, Chengtao Wang, Zerui Su, Feng-Shou Xiao. Rational Design of a Core-Shell Rh@Zeolite Catalyst for Selective Diene Hydrogenation [J]. Acta Phys. -Chim. Sin., 2020, 36(9): 1912001-. |
[13] | Danye Liu,Dong Chen,Hui Liu,Jun Yang. Inside-Out Migration of Noble Metals in Ag2S Nanoparticles [J]. Acta Physico-Chimica Sinica, 2020, 36(7): 1906069-. |
[14] | Xiaolong Tang,Shenghui Zhang,Jing Yu,Chunxiao Lü,Yuqing Chi,Junwei Sun,Yu Song,Ding Yuan,Zhaoli Ma,Lixue Zhang. Preparation of Platinum Catalysts on Porous Titanium Nitride Supports by Atomic Layer Deposition and Their Catalytic Performance for Oxygen Reduction Reaction [J]. Acta Physico-Chimica Sinica, 2020, 36(7): 1906070-. |
[15] | Yi Ji, Lixin Liang, Changmiao Guo, Xinhe Bao, Tatyana Polenova, Guangjin Hou. Zero-Quantum Homonuclear Recoupling Symmetry Sequences in Solid-State Fast MAS NMR Spectroscopy [J]. Acta Physico-Chimica Sinica, 2020, 36(4): 1905029-. |
|