Acta Phys. -Chim. Sin. ›› 2022, Vol. 38 ›› Issue (3): 2003022.doi: 10.3866/PKU.WHXB202003022
• ARTICLE • Previous Articles Next Articles
Wusong Zha1,2, Lianping Zhang2, Long Wen3, Jiachen Kang2, Qun Luo2,4,*(), Qin Chen3, Shangfeng Yang5, Chang-Qi Ma2,4,*()
Received:
2020-03-09
Accepted:
2020-04-06
Published:
2020-04-15
Contact:
Qun Luo,Chang-Qi Ma
E-mail:qluo2011@sinano.ac.cn;cqma2011@sinano.ac.cn
About author:
Email: cqma2011@sinano.ac.cn (C.M.)Supported by:
Wusong Zha, Lianping Zhang, Long Wen, Jiachen Kang, Qun Luo, Qin Chen, Shangfeng Yang, Chang-Qi Ma. Controllable Formation of PbI2 and PbI2(DMSO) Nano Domains in Perovskite Films through Precursor Solvent Engineering[J]. Acta Phys. -Chim. Sin. 2022, 38(3), 2003022. doi: 10.3866/PKU.WHXB202003022
"
DMF contenta | Layer thickness/nm | VOC/V | JSC/(mA·cm-2) | FF | PCEaverage/% b | PCEmax/% |
0% | 290 ± 11 | 1.01 | 18.83 ± 0.06 | 0.70 ± 0.01 | 13.07 ± 0.24 | 13.31 |
5% | 285 ± 13 | 0.98 | 19.30 ± 0.12 | 0.72 ± 0.00 | 13.53 ± 0.09 | 13.62 |
10% | 304 ± 14 | 1.00 | 19.51 ± 0.12 | 0.72 ± 0.01 | 13.85 ± 0.20 | 14.05 |
15% | 320 ± 12 | 1.02 | 19.49 ± 0.16 | 0.70 ± 0.02 | 13.60 ± 0.36 | 13.92 |
20% | 340 ± 14 | 1.00 | 19.12 ± 0.09 | 0.70 ± 0.01 | 13.32 ± 0.06 | 13.38 |
25% | 367 ± 9 | 0.99 | 19.29 ± 0.11 | 0.65 ± 0.02 | 12.23 ± 0.18 | 12.41 |
"
MAI: PbI2 a | Layer Thickness | Voc/V | Jsc/(mA·cm-2) | FF | PCEaverage/% b | PCEmax/% |
1.20M : 1.4M | 346 ± 8 | 1.05 | 17.78 ± 0.14 | 0.75 ± 0.01 | 14.04 ± 0.15 | 14.19 |
1.25M : 1.4M | 343 ± 10 | 1.02 | 18.03 ± 0.16 | 0.78 ± 0.00 | 14.13 ± 0.21 | 14.34 |
1.30M : 1.4M | 346 ± 9 | 1.02 | 18.73 ± 0.13 | 0.73 ± 0.01 | 13.84 ± 0.11 | 13.95 |
1.35M : 1.4M | 342 ± 13 | 0.85 | 18.10 ± 0.09 | 0.77 ± 0.01 | 11.71 ± 0.14 | 11.85 |
1.40M: 1.4M | 344 ± 11 | 0.72 | 17.76 ± 0.11 | 0.77 ± 0.00 | 9.77 ± 0.08 | 9.85 |
1.45M : 1.4M | 341 ± 10 | 1.00 | 19.76 ± 0.08 | 0.78 ± 0.01 | 15.51 ± 0.10 | 15.61 |
1 |
Saliba M. ; Correa-Baena J. P. ; Wolff C. M. ; Stolterfoht M. ; Phung N. ; Albrecht S. ; Neher D. ; Abate A. Chem. Mater. 2018, 30, 4193.
doi: 10.1021/acs.chemmater.8b0013 |
2 |
Zhumekenov A. A. ; Saidaminov M. I. ; Haque M. A. ; Alarousu E. ; Sarmah S. P. ; Murali B. ; Dursun I. ; Miao X. H. ; Abdelhady A. L. ; Wu T. ; et al ACS Energy Lett. 2016, 1, 32.
doi: 10.1021/acsenergylett.6b00002 |
3 | Liu, X.; Zhang, Y. F.; Shi, L.; Liu, Z. H.; Huang, J. L.; Yun, J. S.; Zeng, Y. Y.; Pu, A. B.; Sun, K. W.; Hameiri, Z.; et al. Adv. Energy Mater. 2018, 8. 1800138.1. doi: 10.1002/aenm.201800138 |
4 |
Ju D. X. ; Dang Y. Y. ; Zhu Z. L. ; Liu H. B. ; Chueh C. C. ; Li X. S. ; Wang L. ; Hu X. B. ; Jen A. K. Y. ; Tao X. T. Chem. Mater. 2018, 30, 1556.
doi: 10.1021/acs.chemmater.7b04565 |
5 |
Saliba M. ; Matsui T. ; Domanski K. ; Seo J. Y. ; Ummadisingu A. ; Zakeeruddin S. M. ; Correa-Baena J. P. ; Tress W. R. ; Abate A. ; Hagfeldt A. ; et al Science 2016, 354, 206.
doi: 10.1126/science.aah5557 |
6 |
He M. ; Zheng D. J. ; Wang M. Y. ; Lin C. J. ; Lin Z. Q. J. Mater. Chem. A 2014, 2, 5994.
doi: 10.1039/c3ta14160h |
7 |
Cai F. L. ; Yang L. Y. ; Yan Y. ; Zhang J. H. ; Qin F. ; Liu D. ; Cheng Y. B. ; Zhou Y. H. ; Wang T. J. Mater. Chem. A 2017, 5, 9402.
doi: 10.1039/c7ta02317k |
8 |
Jung E. H. ; Jeon N. J. ; Park E. Y. ; Moon C. S. ; Shin T. J. ; Yang T. Y. ; Noh J. H. ; Seo J. Nature 2019, 567, 511.
doi: 10.1038/s41586-019-1036-3 |
9 |
Wang Y. ; Zhou Y. Y. ; Zhang T. Y. ; Ju M. G. ; Zhang L. ; Kan M. ; Li Y. H. ; Zeng X. C. ; Padture N. P. ; Zhao Y. X. Mater. Horiz. 2018, 5, 868.
doi: 10.1039/c8mh00511g |
10 |
Gao L. L. ; Li C. X. ; Li C. J. ; Yang G. J. J. Mater. Chem. A 2017, 5, 1548.
doi: 10.1039/c6ta09565h |
11 |
Chang C. Y. ; Chang Y. C. ; Huang W. K. ; Liao W. C. ; Wang H. ; Yeh C. ; Tsai B. C. ; Huang Y. C. ; Tsao C. S. J. Mater. Chem. A 2016, 4, 7903.
doi: 10.1039/c6ta02581a |
12 |
Liu D. ; Zhou W. ; Tang H. ; Fu P. ; Ning Z. Sci. China Chem. 2018, 61, 1278.
doi: 10.1007/s11426-018-9250-6 |
13 |
Li S. ; Yang B. ; Wu R. ; Zhang C. ; Zhang C. ; Tang X. F. ; Liu G. ; Liu P. ; Zhou C. ; Gao Y. ; Meng J. Q. ; et al Org. Electron. 2016, 39, 304.
doi: 10.1016/j.orgel.2016.10.017 |
14 |
Xie M. ; Lu H. ; Zhang L. ; Wang J. ; Luo Q. ; Lin J. ; Ba L. ; Liu H. ; Shen W. ; Shi L. ; et al Sol. RRL 2018, 2, 1700184.
doi: 10.1002/solr.201700184 |
15 |
Wang J. ; Chen X. ; Jiang F. ; Luo Q. ; Zhang L. ; Tan M. ; Xie M. ; Xie M. ; Li Y. Q. ; Zhou Y. ; Su W. ; et al Sol. RRL 2018, 2, 1800118.
doi: 10.1002/solr.201800118 |
16 |
Yu J. C. ; Badgujar S. ; Jung E. D. ; Singh V. K. ; Kim D. W. ; Gierschner J. ; Lee E. ; Kim Y. S. ; Cho S. ; Kwon M. S. ; et al Adv. Mater. 2018, 31, 1805554.
doi: 10.1002/adma.201805554 |
17 |
Peng Y. ; Cheng Y. ; Wang C. ; Zhang C. ; Xia H. ; Huang K. ; Tong S. ; Hao X. ; Yang J. Org. Electron. 2018, 58, 153.
doi: 10.1016/j.orgel.2018.04.020 |
18 |
Stoddard R. J. ; Rajagopal A. ; Palmer R. L. ; Braly I. L. ; Jen A. K. Y. ; Hillhouse H. W. ACS Energy Lett. 2018, 3, 1261.
doi: 10.1021/acsenergylett.8b00576 |
19 |
Liu L. ; Huang S. ; Lu Y. ; Liu P. ; Zhao Y. ; Shi C. ; Zhang S. ; Wu J. ; Zhong H. ; Sui M. ; et al Adv. Mater. 2018, 30, e1800544.
doi: 10.1002/adma.201800544 |
20 |
Tang W. L. ; Bowring A. R. ; Meng A. C. ; McGehee M. D. ; McIntyre P. C. ACS Appl. Mater. Interfaces 2018, 10, 5485.
doi: 10.1021/acsami.7b15263 |
21 |
Sun H. X. ; Deng K. M. ; Zhu Y. Y. ; Liao M. ; Xiong J. ; Li Y. R. ; Li L. Adv. Mater. 2018, 30, 1801935.
doi: 10.1002/adma.201801935 |
22 |
Singh R. ; Kumar M. ; Shukla V. K. J. Electron. Mater. 2018, 47, 6894.
doi: 10.1007/s11664-018-6614-x |
23 |
Ng C. H. ; Lim H. N. ; Hayase S. ; Zainal Z. ; Huang N. M. Renew. Sust. Energy Rev. 2018, 90, 248.
doi: 10.1016/j.rser.2018.03.030 |
24 |
Mo J. J. ; Zhang C. F. ; Chang J. J. ; Yang H. F. ; Xi H. ; Chen D. Z. ; Lin Z. H. ; Lu G. ; Zhang J. C. ; Hao Y. J. Mater. Chem. A 2017, 5, 13032.
doi: 10.1039/c7ta01517h |
25 |
Kim Y. C. ; Jeon N. J. ; Noh J. H. ; Yang W. S. ; Seo J. ; Yun J. S. ; Ho-Baillie A. ; Huang S. J. ; Green M. A. ; Seidel J. ; et al Adv. Energy Mater. 2016, 6
doi: 10.1002/aenm.201502104 |
26 |
Gao F. ; Zhao Y. ; Zhang X. W. ; You J. B. Adv. Energy Mater. 2019, 10, 1902650.
doi: 10.1002/aenm.201902650 |
27 |
Aydin E. ; De Bastiani M. ; De Wolf S. Adv. Mater. 2019, 31, e1900428.
doi: 10.1002/adma.201900428 |
28 |
Jiang F. ; JiaRongng Y. ; Liu H. Adv. Funct. Mater 2016, 26, 8119.
doi: 10.1002/adfm.201603968 |
29 |
Jiang Q. ; Chu Z. ; Wang P. ; Yang X. ; Liu H. ; Wang Y. ; Yin Z. ; Wu J. ; Zhang X. ; You J. Adv. Mater. 2017, 29, 1703852.
doi: 10.1002/adma.201703852 |
30 |
Li J. J. ; Ma J. Y. ; Hu J. S. ; Wang D. ; Wan L. J. ACS Appl. Mater. Interfaces 2016, 8, 26002.
doi: 10.1021/acsami.6b07647 |
31 |
Carretero-Palacios S. ; Calvo M. E. ; Miguez H. J. Phys. Chem. C 2015, 119, 18635.
doi: 10.1021/acs.jpcc.5b06473 |
32 |
Song X. ; Wang W. W. ; Sun P. ; Ma W. L. ; Chen Z. K. Appl. Phys. Lett. 2015, 106, 033901.1.
doi: 10.1063/1.4906073 |
33 |
Jamal M. S. ; Bashar M. S. ; Hasan A. K. M. ; Almutairi Z. A. ; Alharbi H. F. ; Alharthi N. H. ; Karim M. R. ; Misran H. ; Amin N. ; Bin Sopian K. ; et al Renew. Sust. Energy Rev. 2018, 98, 469.
doi: 10.1016/j.rser.2018.09.016 |
34 |
Ansari M. I. H. ; Qurashi A. ; Nazeeruddin M. K. J. Photochem. Photobiol. C 2018, 35, 1.
doi: 10.1016/j.jphotochemrev.2017.11.002 |
35 |
Tan M. ; Ji G. ; Zhang L. ; Wang J. ; Wang C. ; Chen Q. ; Luo Q. ; Chen L. ; Ma C. Q. Org. Electron. 2018, 59, 358.
doi: 10.1016/j.orgel.2018.05.044 |
36 |
Yang W. S. ; Noh J. H. ; Jeon N. J. ; Kim Y. C. ; Ryu S. ; Seo J. ; Seok S. I. Science 2015, 348, 1234.
doi: 10.1002/admi.201500768 |
37 |
Bi D. Q. ; Yi C. Y. ; Luo J. S. ; Decoppet J. D. ; Zhang F. ; Zakeeruddin S. M. ; Li X. ; Hagfeldt A. ; Gratzel M. Nat. Energy 2016, 1, 16142.
doi: 10.1038/Nenergy.2016.142 |
38 |
Jo Y. ; Oh K. S. ; Kim M. ; Kim K. H. ; Lee H. ; Lee C. W. ; Kim D. S. Adv. Mater. Interfaces 2016, 3, 10.
doi: 10.1002/admi.201500768 |
39 | Xiong H. ; DeLuca G. ; Rui Y. C. ; Li Y. G. ; Reichmanis E. ; Zhang Q. H. ; Wang H. Z. Sol. Energy Mater. Sol. Cells 2017, 166, 167. |
40 |
Yin G. ; Zhao H. ; Jiang H. ; Yuan S. ; Niu T. ; Zhao K. ; Liu Z. ; Liu S. F. Adv.Funct. Mater. 2018, 28, 1803269.
doi: 10.1002/adfm.201803269 |
41 |
Said A. A. ; Xie J. ; Zhang Q. C. Small 2019, 15
doi: 10.1002/smll.201900854 |
42 |
Becker M. ; Wark M. Cryst. Growth Des. 2018, 18, 4790.
doi: 10.1021/acs.cgd.8b00686 |
43 | Wang Y. Q. ; Li L. ; Nie L. H. ; Li N. N. ; Shi C. W. Acta Phys. -Chim. Sin. 2016, 32, 2724. |
王艳青; 李龙; 聂林辉; 李楠楠; 史成武; 物理化学学报, 2016, 32, 2724.
doi: 10.3866/PKU.WHXB201607272 |
|
44 |
Soe C. M. M. ; Nie W. Y. ; Stoumpos C. C. ; Tsai H. ; Blancon J. C. ; Liu F. Z. ; Even J. ; Marks T. J. ; Mohite A. D. ; Kanatzidis M. G. Adv. Energy Mater. 2018, 8, 17009791.
doi: 10.1002/aenm.201700979 |
45 |
Alsari M. ; Bikondoa O. ; Bishop J. ; Abdi-Jalebi M. ; Ozer L. Y. ; Hampton M. ; Thompson P. ; Horantner M. T. ; Mahesh S. ; Greenland C. ; et al Energy Environ. Sci. 2018, 11, 383.
doi: 10.1039/c7ee03013d |
[1] | Yongtao Wen, Jing Li, Xiaofeng Gao, Congcong Tian, Hao Zhu, Guomu Yu, Xiaoli Zhang, Hyesung Park, Fuzhi Huang. Two-Step Sequential Blade-Coating Large-Area FA-Based Perovskite Thin Film via a Controlled PbI2 Microstructure [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2203048-0. |
[2] | Yue Lu, Yang Ge, Manling Sui. Degradation Mechanism of CH3NH3PbI3-based Perovskite Solar Cells under Ultraviolet Illumination [J]. Acta Phys. -Chim. Sin., 2022, 38(5): 2007088-. |
[3] | Guiying Xu, Rongming Xue, Moyao Zhang, Yaowen Li, Yongfang Li. Synthesis of Pyrazine-based Hole Transport Layer and Its Application in p-i-n Planar Perovskite Solar Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2008050-. |
[4] | Peiquan Song, Liqiang Xie, Lina Shen, Kaikai Liu, Yuming Liang, Kebin Lin, Jianxun Lu, Chengbo Tian, Zhanhua Wei. Stable Perovskite Solar Cells Using Compact Tin Oxide Layer Deposited through Electrophoresis [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2004038-. |
[5] | Yunfei Wang, Jianhua Liu, Mei Yu, Jinyan Zhong, Qisen Zhou, Junming Qiu, Xiaoliang Zhang. SnO2 Surface Halogenation to Improve Photovoltaic Performance of Perovskite Solar Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(3): 2006030-. |
[6] | Rui CHEN,Wei WANG,Tongle BU,Zhiliang KU,Jie ZHONG,Yong PENG,Shengqiang XIAO,Wei YOU,Fuzhi HUANG,Yibing CHENG,Zhengyi FU. Low-Cost Fullerene Derivative as an Efficient Electron Transport Layer for Planar Perovskite Solar Cells [J]. Acta Phys. -Chim. Sin., 2019, 35(4): 401-407. |
[7] | Peng HUANG,Ligang YUAN,Yaowen LI,Yi ZHOU,Bo SONG. L-3, 4-dihydroxyphenylalanine and Dimethyl Sulfoxide Codoped PEDOT:PSS as a Hole Transfer Layer: towards High-Performance Planar p-i-n Perovskite Solar Cells [J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1264-1271. |
[8] | Li-Gang XU, Wei QIU, Run-Feng CHEN, Hong-Mei ZHANG, Wei HUANG. Application of ZnO Electrode Buffer Layer in Perovskite Solar Cells [J]. Acta Physico-Chimica Sinica, 2018, 34(1): 36-48. |
[9] | Xue-Peng LIU,Fan-Tai KONG,Wang-Chao CHEN,Ting YU,Fu-Ling GUO,Jian CHEN,Song-Yuan DAI. Application of Organic Hole-Transporting Materials in Perovskite Solar Cells [J]. Acta Phys. -Chim. Sin., 2016, 32(6): 1347-1370. |
[10] | Li ZHOU,Jun ZHU,Ya-Feng XU,Zhi-Peng SHAO,Xu-Hui ZHANG,Jia-Jiu YE,Yang HUANG,Chang-Neng ZHANG,Song-Yuan DAI. Influence of Insulating Oxide Coatings on the Performance of Perovskite Solar Cells and the Interface Charge Recombination Dynamics [J]. Acta Phys. -Chim. Sin., 2016, 32(5): 1207-1213. |
[11] | Yan-Qing WANG,Long LI,Lin-Hui NIE,Nan-Nan LI,Cheng-Wu SHI. Organic-Inorganic Hybrid Perovskite Solar Cells Processed with Br or Cl Doping via a Two-Step Deposition [J]. Acta Phys. -Chim. Sin., 2016, 32(11): 2724-2730. |
[12] | Yaohsien. CHUNG,Mengying. BIAN,Mingxiao. ZHANG,Saisai. CHU,Zhijian. CHEN,Qihuang. GONG,Lixin. XIAO. Mesoscopic Optical Structure to Enhance the Out-Coupling Efficiency of Blue Top OLED [J]. Acta Phys. -Chim. Sin., 2015, 31(8): 1597-1601. |
[13] | BAI Xiao-Gong, SHI Yan-Tao, WANG Kai, DONG Qing-Shun, XING Yu-Jin, ZHANG Hong, WANG Liang, MA Ting-Li. Synthesis of CH3NH3SrxPb(1-x)I3 with Less Pb Content and Its Application in All-Solid Thin Film Solar Cells [J]. Acta Phys. -Chim. Sin., 2015, 31(2): 285-290. |
|