Acta Phys. -Chim. Sin. ›› 2022, Vol. 38 ›› Issue (4): 2005007.doi: 10.3866/PKU.WHXB202005007
• ARTICLE • Previous Articles Next Articles
Feiyu Lin1,2,3, Ying Yang1,2,3,*(), Congtan Zhu1,2,3, Tian Chen1,2,3, Shupeng Ma1,2,3, Yuan Luo1,2,3, Liu Zhu4,5, Xueyi Guo1,2,3
Received:
2020-05-05
Accepted:
2020-06-02
Published:
2020-06-08
Contact:
Ying Yang
E-mail:muyicaoyang@csu.edu.cn
About author:
Ying Yang, Email: muyicaoyang@csu.edu.cn; Tel.: +86-731-88877863Supported by:
Feiyu Lin, Ying Yang, Congtan Zhu, Tian Chen, Shupeng Ma, Yuan Luo, Liu Zhu, Xueyi Guo. Fabrication of Stable CsPbI2Br Perovskite Solar Cells in the Humid Air[J]. Acta Phys. -Chim. Sin. 2022, 38(4), 2005007. doi: 10.3866/PKU.WHXB202005007
Fig 5
(a) Stability of perovskite films prepared by different mesoporous layer thickness in air (RH < 35%); UV-Vis spectra of the stability of perovskite films prepared with different mesoporous layer thickness in air: (b) 732 nm, (c) 236 nm; (d) X-ray diffraction patterns of perovskite films deposited in air at different times; (e) stability test chart of perovskite solar cells prepared under different thicknesses of mesoporous layers."
1 |
Hodes G. Science 2013, 342, 317.
doi: 10.1126/science.1245473 |
2 |
Kulbak M. ; Gupta S. ; Kedem N. ; Levine I. ; Bendikov T. ; Hodes G. ; Cahen D. J. Phys. Chem. Lett. 2016, 7, 167.
doi: 10.1021/acs.jpclett.5b02597 |
3 |
Lee M. ; Teuscher J. ; Miyasaka T. ; Murakami T. N. ; Snaith H. J. Science 2013, 338, 643.
doi: 10.1126/science.1228604 |
4 |
Heo J. H. ; Im S. H. ; Noh J. H. ; Mandal T. N. ; Lim C. S. ; Chang J. A. ; Lee Y. H. ; Kim H. J. ; Sarkar A. Nat. Photonics 2013, 7, 486.
doi: 10.1038/NPHOTON.2013.80 |
5 | Chen R. ; Wang W. ; Bu T. L. ; Ku Z. L. ; Zhong J. ; Peng Y. ; Xiao S. Q. ; You W. ; Huang F. Z. ; Cheng Y. B. ; Fu Z. Y. Acta Phys. -Chim. Sin. 2019, 35, 401. |
陈瑞; 王维; 卜童乐; 库治良; 钟杰; 彭勇; 肖生强; 尤为; 黄福志; 程一兵; 傅正义. 物理化学学报, 2019, 35, 401.
doi: 10.3866/PKU.WHXB201803131 |
|
6 | Ding L. M. ; Cheng Y. B. ; Tang J. Acta Phys. -Chim. Sin. 2018, 34, 449. |
丁黎明; 程一兵; 唐江. 物理化学学报, 2018, 34, 449.
doi: 10.3866/PKU.WHXB201710121 |
|
7 | Huang P. ; Yuan L. G. ; Li Y. W. ; Zhou Y. ; Song B. Acta Phys. -Chim. Sin. 2018, 34, 1264. |
黄鹏; 元利刚; 李耀文; 周祎; 宋波. 物理化学学报, 2018, 34, 1264.
doi: 10.3866/PKU.WHXB201804096 |
|
8 |
Yang Y. ; Chen T. ; Pan D. Q. ; Gao J. ; Zhu C. T. ; Lin F. Y. ; Zhou C. H. ; Tai Q. D. ; Xiao S. ; Yuan Y. B. ; et al Nano Energy 2020, 67, 104246.
doi: 10.1016/j.nanoen.2019.104246 |
9 | NREL Best Research-Cell Efficiencies. https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200406.pdf (accessed April 6, 2020). |
10 |
Nam J. K. ; Chai S. U. ; Cha W. ; Choi Y. J. ; Kim W. ; Jung M. S. ; Kwon J. ; Kim D. ; Park J. H. Nano Lett. 2017, 17, 2028.
doi: 10.1021/acs.nanolett.7b00050 |
11 |
Wang Y. ; Zhang T. ; Kan M. ; Zhao Y. J. Am. Chem. Soc. 2018, 140, 12345.
doi: 10.1021/jacs.8b07927 |
12 |
Liu C. ; Li W. ; Chen J. ; Fan J. ; Mai Y. ; Schropp R. E. Nano Energy 2017, 41, 75.
doi: 10.1016/j.nanoen.2017.08.048 |
13 |
Hu Y. ; Bai F. ; Liu X. ; Ji Q. ; Miao X. ; Qiu T. ; Zhang S. ACS Energy Lett. 2017, 2, 2219.
doi: 10.1021/acsenergylett.7b00508 |
14 |
Duan J. ; Zhao Y. ; Yang X. ; Wang Y. ; He B. ; Tang Q. Adv. Energy. Mater. 2018, 8, 1802346.
doi: 10.1002/aenm.201802346 |
15 |
Lim K. G. ; Ahn S. ; Kim Y. H. ; Qi Y. B. ; Lee T. W. Energy Environ Sci. 2016, 9, 932.
doi: 10.1039/c5ee03560k |
16 |
Jena A. K. ; Kulkarni A. ; Sanehira Y. ; Ikegami M. ; Miyasaka T. Chem. Mater. 2018, 30, 6668.
doi: 10.1021/acs.chemmater.8b01808 |
17 |
Swarnkar A. ; Marshall A. R. ; Sanehira E. M. ; Chernomordik B. D. ; Moore D. T. ; Chirstians J. A. ; Chakrabarti T. ; Luther J. M. Science 2016, 354, 92.
doi: 10.1126/science.aag2700 |
18 |
Zhang J. R. ; Hodes G. ; Jin Z. ; Liu S. Z. Angew. Chem. -Int. Edit. 2019, 58, 15596.
doi: 10.1002/anie.201901081 |
19 |
Fu L. ; Zhang Y. ; Li B. ; Zhou S. ; Zhang L. ; Yin L.W. J. Mater. Chem. A 2018, 6, 13263.
doi: 10.1039/c8ta02899k |
20 |
Bai D. L. ; Zhang J. R. ; Jin Z. W. ; Bian H. ; Wang K. ; Wang H. R. ; Liang L. ; Wang Q. ; Liu S. Z. ACS Energy Lett. 2018, 3, 970.
doi: 10.1021/acsenergylett.8b00270 |
21 |
Liu C. ; Li W. Z. ; Zhang C. ; Ma Y. P. ; Fan J. D. ; Mai Y. H. J. Am. Chem. Soc. 2018, 140, 3825.
doi: 10.1021/jacs.7b13229 |
22 |
Meng X. Y. ; Wang Z. ; Qian W. ; Zhu Z. L. ; Zhang T. ; Bai Y. ; Hu C. ; Xiao S. ; Yang Y. L. ; Yang S. H. J. Phys. Chem. Lett. 2019, 10, 194.
doi: 10.1021/acs.jpclett.8b03742 |
23 |
Zhang T. ; Li H. ; Liu S. S. ; Wang X. K. ; Gong X. ; Sun Q. ; Shen Y. ; Wang M.K. J. Phys. Chem. Lett. 2019, 10, 200.
doi: 10.1021/acs.jpclett.8b03481 |
24 |
Nam J. K. ; Jung M. S. ; Chai S. U. ; Choi Y. J. ; Kim D. ; Park J. H. J. Phys. Chem. Lett. 2017, 8, 2936.
doi: 10.1021/acs.jpclett.7b01067 |
25 |
Zhang H. ; Nazeeruddin M. K. ; Choy W. C. H. Adv. Mater. 2019, 31, 1805702.
doi: 10.1002/adma.201805702 |
26 |
Olthof S. ; Meerholz K. Sci. Rep. 2017, 7, 40267.
doi: 10.1038/srep40267 |
27 |
Zhu Z. L. ; Bai Y. ; Liu X. ; Chueh C. C. ; Yang S. H. ; Jen A. K. Adv. Mater. 2016, 28, 6478.
doi: 10.1002/adma.201600619 |
28 |
Lau C. F. J. ; Zhang M. ; Deng X. ; Zheng J. ; Bing J. ; Ma Q. ; Kim J. ; Hu L. ; Green M. A. ; Huang J. S. ; Ho-Baillie A. ACS Energy Lett. 2017, 2, 2319.
doi: 10.1021/acsenergylett.7b00751 |
29 |
Chen W. J. ; Chen H. Y. ; Xu G. Y. ; Xue R. M. ; Wang S. H. ; Li Y. W. ; Li Y. F. Joule 2019, 3, 191.
doi: 10.1016/j.joule.2018.10.011 |
30 |
Zhen C. ; Wu T. T. ; Chen R. Z. ; Wang L. Z. ; Liu G. ; Cheng H. M. ACS Sustainable Chem. Eng. 2019, 7, 4586.
doi: 10.1021/acssuschemeng.8b06580 |
31 |
Qiao G. X. ; Zeng Z. ; Gao J. W. ; Tang Y. P. ; Wang Q. M. J. Alloys Compd. 2019, 771, 418.
doi: 10.1016/j.jallcom.2018.08.322 |
32 |
Kim H. S. ; Park N. G. J. Phys. Chem. Lett. 2014, 5, 2927.
doi: 10.1021/jz501392m |
33 |
Lindblad R. ; Bi D. Q. ; Park B. W. ; Oscarsson J. ; Gorgoi M. ; Siegbahn H. ; Odelius M. ; Johansson E. M.J. ; Rensmo H. J. Phys. Chem. Lett. 2014, 5, 648.
doi: 10.1021/jz402749f |
34 |
Park B. ; Johansson E. M. J. ; Philippe B. ; Gustafsson T. ; Sveinbjornsson K. ; Hagfeldt A. ; Boschloo G. Chem. Mater. 2014, 26, 4466.
doi: 10.1021/cm501541p |
35 |
Zhang S. ; Wu S. ; Chen W. ; Zhu H. ; Xiong Z. ; Yang Z. ; Chen C. ; Chen R. ; Han L. ; Chen W. Mater. Today Energy 2018, 8, 125.
doi: 10.1016/j.mtener.2018.03.006 |
36 |
Sutton R. J. ; Eperson G. E. ; Miranda E.S. ; Parrott B. A. ; Kamino J. B. ; Patel M. T. ; Horantner M. B. ; Johnston A. A. ; Moore D. T. Adv. Energy Mater. 2016, 6, 1502458.
doi: 10.1002/aenm.201502458 |
37 |
Dong C. ; Han X. ; Zhao Y. ; Li J. ; Chang L. ; Zhao W. Sol. RRL 2018, 2, 1800139.
doi: 10.1002/solr.201800139 |
38 |
Luo P. ; Xia W. ; Zhou S. ; Sun L. ; Cheng J. ; Xu C. ; Lu Y. J. Phys. Chem. Lett. 2016, 7, 3603.
doi: 10.1021/acs.jpclett.6b01576 |
39 |
Mariotti S. ; Hutter O. S. ; Phillips L. J. ; Yates P. J. ; Kundu B. ; Durose K. ACS Appl. Mater. Interfaces 2018, 10, 3750.
doi: 10.1021/acsami.7b14039 |
40 |
Sun W. F. ; Choy K. L. ; Wang M. Q. Molecules 2019, 24, 3466.
doi: 10.3390/molecules24193466 |
41 |
Rong Y. G. ; Liu L. F. ; Mei A. Y. ; Li X. ; Han H. W. Adv. Energy Mater. 2015, 5, 1501066.
doi: 10.1002/aenm.201501066 |
42 |
Bai D. L. ; Bian H. ; Jin Z. W. ; Wang H. R. ; Meng L. N. ; Wang Q. ; Liu S. Z. Nano Energy 2018, 52, 408.
doi: 10.1016/j.nanoen.2018.08.012 |
43 |
Yan L. ; Xue Q. F. ; Liu M. Y. ; Zhu Z. L. ; Tian J. J. ; Li Z. C. ; Chen Z. ; Chen Z. M. ; Yan H. ; Yip H. L. ; Cao Y. Adv. Mater. 2018, 30, 1802509.
doi: 10.1002/adma.201802509 |
44 |
Xiang W. ; Wang Z. ; Kubicki D. J. ; Tress W. G. ; Luo J. S. ; Daniel P. ; Akin S. ; Emsley L. ; Zhou J. ; Dietler G. ; et al Joule 2019, 3, 205.
doi: 10.1016/j.joule.2018.10.008 |
45 |
Wang Q. ; Moser J. E. ; Grätzel M. J. Phys. Chem. B 2005, 109, 14945.
doi: 10.1021/jp052768h |
46 |
Guerrero A. ; Garcia-Belmonte G. ; Mora-Sero I. ; Bisquert J. ; Kang S. Y. ; Jacobsson T. J. ; Correa-Baena J. P. ; Hagfeldt A. J. Phys. Chem. C 2016, 120, 8023.
doi: 10.1021/acs.jpcc.6b01728 |
47 |
Giustino F. ; Snaith H. J. ACS Energy Lett. 2016, 1, 1233.
doi: 10.1021/acsenergylett.6b00499 |
48 |
Xiang W. ; Tress W. Adv. Mater. 2019, 31, 31.
doi: 10.1002/adma.201902851 |
49 |
Beal R. E. ; Slotcavage D. J. ; Leijtens T. ; Bowring A. R. ; Belisle R. A. ; Nguyen W. H. ; Burkhard G. F. ; Hoke E. T. ; McGehee M. D. J. Phys. Chem. Lett. 2016, 7, 746.
doi: 10.1021/acs.jpclett.6b00002 |
50 |
Li W. ; Rothmann M. U. ; Liu A. ; Wang Z. Y. ; Zhang Y. P. ; Pascoe A. R. ; Lu J. F. ; Jiang L. C. ; Chen Y. ; Huang F. Z. ; et al Adv. Energy Mater. 2017, 7, 1700946.
doi: 10.1002/aenm.201700946 |
[1] | Chang Lan, Yuyi Chu, Shuo Wang, Changpeng Liu, Junjie Ge, Wei Xing. Research Progress of Proton-Exchange Membrane Fuel Cell Cathode Nonnoble Metal M-Nx/C-Type Oxygen Reduction Catalysts [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2210036-0. |
[2] | Qiuju Liang, Yinxia Chang, Chaowei Liang, Haolei Zhu, Zibin Guo, Jiangang Liu. Application of Crystallization Kinetics Strategy in Morphology Control of Solar Cells based on Nonfullerene Blends [J]. Acta Phys. -Chim. Sin., 2023, 39(7): 2212006-0. |
[3] | Mingxu Zhang, Qisen Zhou, Xinyi Mei, Jingxuan Chen, Junming Qiu, Xiuzhi Li, Shuang Li, Mubing Yu, Chaochao Qin, Xiaoliang Zhang. Colloidal Quantum Dot Solids with a Diminished Epitaxial PbI2 Matrix for Efficient Infrared Solar Cells [J]. Acta Phys. -Chim. Sin., 2023, 39(3): 2210002-0. |
[4] | Yongtao Wen, Jing Li, Xiaofeng Gao, Congcong Tian, Hao Zhu, Guomu Yu, Xiaoli Zhang, Hyesung Park, Fuzhi Huang. Two-Step Sequential Blade-Coating Large-Area FA-Based Perovskite Thin Film via a Controlled PbI2 Microstructure [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2203048-0. |
[5] | Feng Wu, Qing Li, Lai Chen, Zirun Wang, Gang Chen, Liying Bao, Yun Lu, Shi Chen, Yuefeng Su. An Optimized Synthetic Process for the Substitution of Cobalt in Nickel-Rich Cathode Materials [J]. Acta Phys. -Chim. Sin., 2022, 38(5): 2007017-. |
[6] | Yue Lu, Yang Ge, Manling Sui. Degradation Mechanism of CH3NH3PbI3-based Perovskite Solar Cells under Ultraviolet Illumination [J]. Acta Phys. -Chim. Sin., 2022, 38(5): 2007088-. |
[7] | Wusong Zha, Lianping Zhang, Long Wen, Jiachen Kang, Qun Luo, Qin Chen, Shangfeng Yang, Chang-Qi Ma. Controllable Formation of PbI2 and PbI2(DMSO) Nano Domains in Perovskite Films through Precursor Solvent Engineering [J]. Acta Phys. -Chim. Sin., 2022, 38(3): 2003022-. |
[8] | Zhiyang Chen, Yating Tang, Ze Lü, Xiaohan Meng, Qianwei Liang, Jianguo Feng. Citronella Oil Nanoemulsion: Formulation, Characterization, Antibacterial Activity, and Cytotoxicity [J]. Acta Phys. -Chim. Sin., 2022, 38(12): 2205053-. |
[9] | Xiaoyun Xu, Hongbo Wu, Shijie Liang, Zheng Tang, Mengyang Li, Jing Wang, Xiang Wang, Jin Wen, Erjun Zhou, Weiwei Li, Zaifei Ma. Quantum Efficiency and Voltage Losses in P3HT: Non-fullerene Solar Cells [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2201039-. |
[10] | Jiashun Liang, Xuan Liu, Qing Li. Principles, Strategies, and Approaches for Designing Highly Durable Platinum-based Catalysts for Proton Exchange Membrane Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2010072-. |
[11] | Leiduan Hao, Zhenyu Sun. Metal Oxide-Based Materials for Electrochemical CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009033-. |
[12] | Chao Zheng, Aqiang Liu, Chenghao Bi, Jianjun Tian. SCN-doped CsPbI3 for Improving Stability and Photodetection Performance of Colloidal Quantum Dots [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2007084-. |
[13] | Zihao Zang, Hansheng Li, Xianyuan Jiang, Zhijun Ning. Progress and Perspective of Tin Perovskite Solar Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2007090-. |
[14] | Yuan Yin, Zhendong Guo, Gaoyuan Chen, Huifeng Zhang, Wan-Jian Yin. Recent Progress in Defect Tolerance and Defect Passivation in Halide Perovskite Solar Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2008048-. |
[15] | Peiquan Song, Liqiang Xie, Lina Shen, Kaikai Liu, Yuming Liang, Kebin Lin, Jianxun Lu, Chengbo Tian, Zhanhua Wei. Stable Perovskite Solar Cells Using Compact Tin Oxide Layer Deposited through Electrophoresis [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2004038-. |
|