Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (8): 2007086.doi: 10.3866/PKU.WHXB202007086
Special Issue: Two-Dimensional Photocatalytic Materials
• ARTICLE • Previous Articles Next Articles
Junhui Zhou, Zhimin Ao(), Taicheng An
Received:
2020-07-28
Accepted:
2020-08-28
Published:
2020-08-31
Contact:
Zhimin Ao
E-mail:zhimin.ao@gdut.edu.cn
About author:
Zhimin Ao, Email: zhimin.ao@gdut.edu.cnSupported by:
Junhui Zhou, Zhimin Ao, Taicheng An. DFT Study of the Decomposition Mechanism of H2S on V-Decorated Ti2CO2 Single-Atom Catalyst[J]. Acta Phys. -Chim. Sin. 2021, 37(8), 2007086. doi: 10.3866/PKU.WHXB202007086
Table 1
The binding energies Eb (eV), Hirshfeld charge (|e|), cohesive energy (eV) and electronegativity (eV) of 3 single atoms at different decorated sites on the Ti2CO2 monolayer."
Metal | Eb | Hirshfeld charge | Cohesive energy | Electronegativity | |||||
Site 1 | Site 2 | Site 3 | Site 1 | Site 2 | Site 3 | ||||
Ti | -6.990 | -6.276 | -6.278 | +0.650 | +0.690 | +0.710 | -4.850 | 3.460 | |
V | -5.384 | -4.644 | -4.644 | +0.530 | +0.580 | +0.580 | -5.310 | 3.640 | |
Cr | -3.878 | -2.947 | -2.741 | +0.610 | +0.630 | +0.600 | -4.100 | 3.720 |
Fig 3
Top and side views of the deformation electron density of Ti (a) and V (b) atom anchored on Ti2CO2 monolayer with an isovalue of ±0.032 a.u., where the cyan and red regions represent electron accumulation and loss, respectively (color online). PDOS of Ti/Ti2CO2 (c) and V/Ti2CO2 (d). The pink dashed line indicates the Fermi level."
Table 2
The adsorption energies Eads (eV) of HS*/H* on SACs surface, the bond length (nm) of the single atom and S atom, and the bond length (nm) between the S atom with the corresponding bonded H atom."
Eads/eV | LS-Metal/nm | LS-H/nm | |
H2S | - | - | 0.135 |
HS*/H*-Ti | -1.927 | 0.232 | 0.136 |
HS*/H*-V | -2.258 | 0.224 | 0.137 |
1 |
Faye O. ; Eduok U. ; Szpunar J. A. ; Beye A. C. Phys. E 2020, 117, 113794.
doi: 10.1016/j.physe.2019.113794 |
2 |
Nehaoua N. ; Belkada R. ; Tala-Ighil R. ; Thomas L. ; Mekki D. E. Mater. Res. Express 2018, 6, 025510.
doi: 10.1088/2053-1591/aaedc5 |
3 |
Zhang M. ; Fu Z. ; Yu Y. Appl. Surf. Sci. 2019, 473, 657.
doi: 10.1016/j.apsusc.2018.12.133 |
4 |
Cai Q. ; Wang F. ; He J. ; Dan M. ; Cao Y. ; Yu S. ; Zhou Y. Appl. Surf. Sci. 2020, 517, 146198.
doi: 10.1016/j.apsusc.2020.146198 |
5 |
Ruiz-Rodríguez L. ; Blasco T. ; Rodríguez-Castellón E. ; Nieto J. M. L. Catal. Today 2019, 333, 237.
doi: 10.1016/j.cattod.2018.07.050 |
6 |
Tajizadegan H. ; Rashidzadeh M. ; Jafari M. ; Ebrahimi-Kahrizsangi R. Chin. Chem. Lett. 2013, 24, 167.
doi: 10.1016/j.cclet.2013.01.027 |
7 |
Keshtkar S. ; Rashidi A. ; Kooti M. ; Askarieh M. ; Pourhashem S. ; Ghasemy E. ; Izadi N. Talanta 2018, 188, 531.
doi: 10.1016/j.talanta.2018.05.099 |
8 |
Chowdhuri A. ; Gupta V. ; Sreenivas K. ; Kumar R. ; Mozumdar S. ; Patanjali P. K. Appl. Phys. Lett. 2004, 84, 1180.
doi: 10.1063/1.1646760 |
9 |
Mirzaei A. ; Kim S. S. ; Kim H. W. J. Hazard. Mater. 2018, 357, 314.
doi: 10.1016/j.jhazmat.2018.06.015 |
10 |
Chen D. ; Zhang X. ; Tang J. ; Fang J. ; Li Y. ; Liu H. Appl. Phys. A 2018, 124, 404.
doi: 10.1007/s00339-018-1827-7 |
11 |
Jiang Z. ; Qin P. ; Fang T. Surf. Sci. 2015, 632, 195.
doi: 10.1016/j.susc.2014.07.020 |
12 |
Bagreev A. ; Menendez J. A. ; Dukhno I. ; Tarasenko Y. ; Bandosz T. J. Carbon 2004, 42, 469.
doi: 10.1016/j.carbon.2003.10.042 |
13 |
Bagreev A. ; Bandosz T. J. Ind. Eng. Chem. Res. 2005, 44, 530.
doi: 10.1021/ie049277o |
14 |
Wang F. ; Wei S. ; Zhang Z. ; Patzke G. R. ; Zhou Y. Phys. Chem. Chem. Phys. 2016, 18, 6706.
doi: 10.1039/c5cp06835e |
15 |
Ohtsuka Y. ; Tsubouchi N. ; Kikuchi T. ; Hashimoto H. Powder Technol. 2009, 190, 340.
doi: 10.1016/j.powtec.2008.08.012 |
16 |
De Crisci A. G. ; Moniri A. ; Xu Y. Int. J. Hydrog. Energy 2019, 44, 1299.
doi: 10.1016/j.ijhydene.2018.10.035 |
17 |
Reverberi A. P. ; Klemeš J. J. ; Varbanov P. S. ; Fabiano B. J. Cleaner Product. 2016, 136, 72.
doi: 10.1016/j.jclepro.2016.04.139 |
18 |
Dan M. ; Yu S. ; Li Y. ; Wei S. ; Xiang J. ; Zhou Y. J. Photochem. Photobiol. C 2020, 142, 100339.
doi: 10.1016/j.jphotochemrev.2019.100339 |
19 |
Dang X. ; Huang J. ; Kang L. ; Wu T. ; Zhang Q. Energy Procedia 2012, 16, 856.
doi: 10.1016/j.egypro.2012.01.137 |
20 |
Abbasi A. ; Sardroodi J. J. Surf. Interface 2017, 8, 15.
doi: 10.1016/j.surfin.2017.04.004 |
21 |
Gao X. ; Zhou Q. ; Wang J. ; Xu L. ; Zeng W. Nanomaterials 2020, 10, 299.
doi: 10.3390/nano10020299 |
22 |
Khodadadi Z. Phys. E 2018, 99, 261.
doi: 10.1016/j.physe.2018.02.022 |
23 |
Zhang H. ; Luo X. ; Song H. ; Lin X. ; Lu X. ; Tang Y. Appl. Surf. Sci. 2014, 317, 511.
doi: 10.1016/j.apsusc.2014.08.141 |
24 |
Zhao J. ; Pei Q. ; Tao F. Surf. Sci. 2015, 632, 195.
doi: 10.1016/j.susc.2014.07.020 |
25 |
Alfonso D. R. ; Cugini A. V. ; Sorescu D. C. Catal. Today 2005, 99, 315.
doi: 10.1016/j.cattod.2004.10.006 |
26 |
Jiang Z. ; Li M. ; Qin P. ; Fang T. Appl. Surf. Sci. 2014, 311, 40.
doi: 10.1016/j.apsusc.2014.04.197 |
27 |
Yu Y. ; Dixon-Warren S. ; Astle N. Chem. Phys. Lett. 1999, 312, 455.
doi: 10.1016/S0009-2614(99)00846-5 |
28 |
Zhou J. ; Liu G. ; Jiang Q. ; Zhao W. ; Ao Z. ; An T. Chin. J. Catal. 2020, 41, 1633.
doi: 10.1016/s1872-2067(20)63571-9 |
29 |
Zhang X. ; Lei J. ; Wu D. ; Zhao X. ; Jing Y. ; Zhou Z. J. Mater. Chem. A 2016, 4, 4871.
doi: 10.1039/c6ta00554c |
30 |
Cheng C. ; Zhang X. ; Wang M. ; Wang S. ; Yang Z. Phys. Chem. Chem. Phys. 2018, 20, 3504.
doi: 10.1039/c7cp07161b |
31 |
Jiang Q. G. ; Zhang J. F. ; Huang H. J. ; Wu Y. P. ; Ao Z. M. J. Mater. Chem. A 2020, 8, 287.
doi: 10.1039/c9ta08525d |
32 |
Jiang Q. G. ; Ao Z. M. ; Li S. ; Wen Z. RSC Adv. 2014, 4, 20290.
doi: 10.1039/c4ra01908c |
33 |
Su Y. ; Ao Z. ; Ji Y. ; Li G. ; An T. Appl. Surf. Sci. 2018, 450, 484.
doi: 10.1016/j.apsusc.2018.04.157 |
34 |
Liu G. ; Zhou J. ; Zhao W. ; Ao Z. ; An T. Chin. Chem. Lett. 2020, 31, 1966.
doi: 10.1016/j.cclet.2019.12.023 |
35 |
Guo Z. ; Zhou J. ; Sun Z. J. Mater. Chem. A 2017, 5, 23530.
doi: 10.1039/c7ta08665b |
36 |
Wen C. ; Zhu T. ; Li X. ; Li H. Chin. Chem. Lett. 2019, 31, 1000.
doi: 10.1016/j.cclet.2019.09.028 |
37 |
Naguib M. ; Mochalin V. N. ; Barsoum M. W. ; Gogotsi Y. Adv. Mater. 2014, 26, 992.
doi: 10.1002/adma.201304138 |
38 |
Ran J. ; Gao G. ; Li F. T. ; Ma T. Y. ; Du A. ; Qiao S. Z. Nat. Commun. 2017, 8, 13907.
doi: 10.1038/ncomms13907 |
39 |
Zhang X. ; Zhang Z. ; Li J. ; Zhao X. ; Wu D. ; Zhou Z. J. Mater. Chem. A 2017, 5, 12899.
doi: 10.1039/c7ta03557h |
40 |
Wang S. ; Li J. ; Du L. ; Cui C. Comp. Mater. Sci. 2014, 83, 290.
doi: 10.1016/j.commatsci.2013.11.025 |
41 |
Fredrickson K. D. ; Anasori B. ; Seh Z. W. ; Gogotsi Y. ; Vojvodic A. J. Phys. Chem. C 2016, 120, 28432.
doi: 10.1021/acs.jpcc.6b09109 |
42 |
Yu X. F. ; Li Y. C. ; Cheng J. B. ; Liu Z. B. ; Li Q. Z. ; Li W. Z. ; Yang X. ; Xiao B. ACS Appl. Mater. Interfaces 2015, 7, 13707.
doi: 10.1021/acsami.5b03737 |
43 |
Hong Ng V. ; Huang H. ; Zhou K. ; Lee P. S. ; Que W. ; Xu J. Z. ; Kong L. B. J. Mater. Chem. A 2017, 5, 3039.
doi: 10.1039/c6ta06772g |
44 |
Lei J. ; Zhang X. ; Zhou Z. Front. Phy. 2015, 10, 276.
doi: 10.1007/s11467-015-0493-x |
45 |
Naguib M. ; Kurtoglu M. ; Presser V. ; Lu J. ; Niu J. ; Heon M. ; Hultman L. ; Gogotsi Y. ; Barsoum M. W. Adv. Mater. 2011, 23, 4248.
doi: 10.1002/adma.201102306 |
46 |
Tang Q. ; Zhou Z. ; Shen P. J. Am. Chem. Soc. 2012, 134, 16909.
doi: 10.1021/ja308463r |
47 |
Zhang H. ; Yang G. ; Zuo X. ; Tang H. ; Yang Q. ; Li G. J. Mater. Chem. A 2016, 4, 12913.
doi: 10.1039/c6ta04628b |
48 |
Liu F. ; Zhou A. ; Chen J. ; Jia J. ; Zhou W. ; Wang L. ; Hu Q. Appl. Surf. Sci. 2017, 416, 781.
doi: 10.1016/j.apsusc.2017.04.239 |
49 |
Johnson L. R. ; Sridhar S. ; Zhang L. ; Fredrickson K. D. ; Raman A. S. ; Jang J. ; Leach C. ; Padmanabhan A. ; Price C. C. ; Frey N.C. ACS Catal. 2019, 10, 253.
doi: 10.1021/acscatal.9b01925 |
50 |
Zhou S. ; Yang X. ; Pei W. ; Liu N. ; Zhao J. Nanoscale 2018, 10, 10876.
doi: 10.1039/c8nr01090k |
51 |
Peng J. ; Chen X. ; Ong W. J. ; Zhao X. ; Li N. Chem 2019, 5, 18.
doi: 10.1016/j.chempr.2018.08.037 |
52 |
Parr R. G. ; Bartolotti L. J. Am. Chem. Soc. 1982, 104, 3801.
doi: 10.1021/ja00378a004 |
53 |
Delley B. J. Chem. Phys. 2000, 113, 7756.
doi: 10.1063/1.1316015 |
54 |
Perdew John P. ; Kieron Burke K. ; Ernzerhof M. Phys. Rev. Lett. 1996, 77, 3865.
doi: 10.1103/PhysRevLett.77.3865 |
55 |
Grimme S. J. Comput. Chem. 2006, 27, 1787.
doi: 10.1002/jcc.20495 |
56 |
Delley B. J. Chem. Phys. 1990, 92, 508.
doi: 10.1063/1.458452 |
57 |
Delley B. Phys. Rev. B 2002, 66, 155125.
doi: 10.1103/PhysRevB.66.155125 |
58 |
Halgren T. A. ; Lipscomb W. N. Chem. Phys. Lett. 1977, 49, 225.
doi: 10.1016/0009-2614(77)80574-5 |
59 |
Henkelman G. J. Chem. Phys. 2000, 113, 9901.
doi: 10.1063/1.1329672 |
60 |
Hirshfeld F. L. Theoret. Claim. Acta 1977, 44, 129.
doi: 10.1007/BF00549096 |
61 | Kittel, C. Introduction to Solid State Physics; Wiley: New York, NY, USA; 1976; pp. 48-50. |
62 |
Ling L. ; Zhang R. ; Han P. ; Wang B. Fuel Process. Technol. 2013, 106, 222.
doi: 10.1016/j.fuproc.2012.08.001 |
63 |
Lin C. ; Qin W. ; Dong C. Appl. Surf. Sci. 2016, 387, 720.
doi: 10.1016/j.apsusc.2016.06.104 |
64 | Young, D. Computational Chemistry: A Practical Guide for Applying Techniques to Real World Problems; Wiley: New York, NY, USA; 2001; pp. 145-158. |
[1] | Huan Liu, Yu Ma, Bin Cao, Qizhen Zhu, Bin Xu. Recent Progress of MXenes in Aqueous Zinc-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(5): 2210027-0. |
[2] | Lijun Zhang, Youlin Wu, Noritatsu Tsubaki, Zhiliang Jin. 2D/3D S-Scheme Heterojunction Interface of CeO2-Cu2O Promotes Ordered Charge Transfer for Efficient Photocatalytic Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2302051-. |
[3] | Xiaohui Cao, Chengyi Hou, Yaogang Li, Kerui Li, Qinghong Zhang, Hongzhi Wang. MXenes-Based Functional Fibers and Their Applications in the Intelligent Wearable Field [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2204058-. |
[4] | Yuqi Wang, Miaocheng Zhang, Wei Xu, Xinyi Shen, Fei Gao, Jiale Zhu, Xiang Wan, Xiaojuan Lian, Jianguang Xu, Yi Tong. Chemical Preparation of New Ti3C2 MXene and the Performance and Mechanism of Memristor Based on MXene [J]. Acta Phys. -Chim. Sin., 2022, 38(3): 1907076-. |
[5] | Zhimin Jiang, Qing Chen, Qiaoqing Zheng, Rongchen Shen, Peng Zhang, Xin Li. Constructing 1D/2D Schottky-Based Heterojunctions between Mn0.2Cd0.8S Nanorods and Ti3C2 Nanosheets for Boosted Photocatalytic H2 Evolution [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2010059-. |
[6] | Zhen Wei, Minjie Li, Wencong Lu. Theoretical Study of High-Efficiency Organic Dyes with Different Electron-Withdrawing Groups Based on R6 toward Dye-Sensitized Solar Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(10): 1905084-. |
[7] | Shihan Li,Zhenchao Zhao,Shikun Li,Youdong Xing,Weiping Zhang. Aluminum Distribution and Brønsted Acidity of Al-Rich SSZ-13 Zeolite: A Combined DFT Calculation and Solid-State NMR Study [J]. Acta Physico-Chimica Sinica, 2020, 36(4): 1903021-. |
[8] | Julia CONTRERAS-GARCíA,Weitao YANG. Perspective: Chemical Information Encoded in Electron Density [J]. Acta Phys. -Chim. Sin., 2018, 34(6): 567-580. |
[9] | Paul GEERLINGS,Frank DE PROFT,Stijn FIAS. Analogies between Density Functional Theory Response Kernels and Derivatives of Thermodynamic State Functions [J]. Acta Phys. -Chim. Sin., 2018, 34(6): 699-707. |
[10] | Ulises OROZCO-VALENCIA,L. GÁZQUEZ José,Alberto VELA. Reactivity of Indoles through the Eyes of a Charge-Transfer Partitioning Analysis [J]. Acta Phys. -Chim. Sin., 2018, 34(6): 692-698. |
[11] | Jyotirmoy DEB,Debolina PAUL,David PEGU,Utpal SARKAR. Adsorption of Hydrazoic Acid on Pristine Graphyne Sheet: A Computational Study [J]. Acta Phys. -Chim. Sin., 2018, 34(5): 537-542. |
[12] | Xiaoqin DING,Junjie DING,Dayu LI,Li PAN,Chengxin PEI. Toxicity Prediction of Organoph Osphorus Chemical Reactivity Compounds Based on Conceptual DFT [J]. Acta Phys. -Chim. Sin., 2018, 34(3): 314-322. |
[13] | Di YIN,Zongyang QIU,Pai LI,Zhenyu LI. A Molecular Dynamics Study of Carbon Dimerization on Cu(111) Surface with Optimized DFTB Parameters [J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1116-1123. |
[14] | Yun-Peng GUO,Jie FENG,Wen-Ying LI. Effect of Ni Doping on Electron Transfer in Ni/MgO Catalysts [J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1796-1802. |
[15] | Wei-Yun XU,Li-Li WANG,Yi-Ming MI,Xin-Xin ZHAO. Effect of Adsorption of Fe Atoms on the Structure and Properties of WS2 Monolayer [J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1765-1772. |
|