Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (4): 2008051.doi: 10.3866/PKU.WHXB202008051
Special Issue: Metal Halide Perovskite Optoelectronic Material and Device
• REVIEW • Previous Articles Next Articles
Jiaxin Wang, Weili Shen, Jinning Hu, Jun Chen(), Xiaoming Li, Haibo Zeng()
Received:
2020-08-19
Accepted:
2020-09-11
Published:
2020-09-16
Contact:
Jun Chen,Haibo Zeng
E-mail:chenjun@njust.edu.cn;zeng.haibo@njust.edu.cn
About author:
Email:zeng.haibo@njust.edu.cn (H.Z.)Supported by:
Jiaxin Wang, Weili Shen, Jinning Hu, Jun Chen, Xiaoming Li, Haibo Zeng. Mechanisms and Applications of Laser Action on Lead Halide Perovskites[J]. Acta Phys. -Chim. Sin. 2021, 37(4), 2008051. doi: 10.3866/PKU.WHXB202008051
Fig 1
The unstable change of laser-irradiated lead halide perovskite and the application of laser technology in perovskite field. (a) Laser equipment of lead halide perovskite; (b) structure of ABX3 lead halide perovskite; (c) laser accelerates perovskite degradation; (d) laser irradiation repairs perovskite defects; (e) laser induces perovskite segregation; (f) laser causes perovskite phase transition; (g) laser irradiation changes the grain size of perovskite; (h) laser irradiation controls the film; (i) laser irradiation controls the optoelectronic devices; (j) schematic illustration of the Laser direct writing process and patterning example. (c) Reproduced with permission 28, Copyright 2016, American Chemical Society. (f) Reproduced with permission 29, Copyright 2018, AIP Publishing. (h, i) Reproduced with permission 30, Copyright 2016, American Chemical Society. (j) Reproduced with permission 31, Copyright 2017, John Wiley and Sons."
Fig 3
Changes in photoluminescence over time under illumination and in the dark. (a) A series of time-resolved PL decays from a MAPbI3 film measured in vacuo over time under illumination at 300 K. (b) The integrated PL intensity after leaving the sample in the dark for different lengths of time. In each case, the sample is first illuminated to reach a stabilized PL intensity and then the laser is switched off for the given interval. The PL intensity is plotted relative to the stabilized emission before switching the laser off. The dashed line shows the intensity of the initial PL intensity when first illuminating the sample relative to the emission level it reaches upon stabilization; (c–e) XPS spectra corresponding to Cs 3d (c), Pb 4f (d), and Br 3d (e) of nonirradiated CsPbBr3 QDs and 400 nm-irradiated CsPbBr3 QDs. (a, b) Reproduced with permission 37, Copyright 2016, Royal Society of Chemistry. (c–e) Reproduced with permission 27, Copyright 2019, American Chemical Society."
Fig 4
Data comparison diagrams of nonirradiated and irradiated CsPbBr3 perovskite films. TR-PL decays for perovskite films with 400 nm-irradiated (a) and 800 nm-irradiated (b) CsPbBr3 QDs; (c) competing dynamic processes in nonirradiated and irradiated perovskite QDs, dashed lines within the gap represent trap states; (d) transient absorption data of nonirradiated and irradiated CsPbBr3 QDs. Experimental data (symbol) and fit (solid lines) are shown for nonirradiated (red), 400 nm-irradiated (blue), and 800 nm-irradiated (purple) QDs. The time constants were obtained from multiexponential fitting of the data. Reproduced with permission 27, Copyright 2019, American Chemical Society."
Fig 5
(a) Normalized PL spectra of the perovskite in pristine condition and after 90 s of continuous laser scanning excitation; (b) PL intensities of Br-phase (530–580 nm) and I-phase (620–720 nm) as a function of time (0–630 s: continuous laser scanning; 630–850 s: recovery in the dark); and (c–f) Br-phase PL and I-phase 2D PL mapping at different time intervals marked in (b). Reproduced with permission 46, Copyright 2019, John Wiley and Sons."
Fig 6
Photon-induced reshaping in CsPbBr3 nanocrystals: (a) schematic illustration of the proposed photon-induced reshaping process; (b) UV-Vis absorption and PL spectra and (c) TEM images of the studied CsPbBr3 nanocrystals under laser irradiation with wavelengths of 1064, 532 and 355 nm. The nanosecond-pulsed laser irradiation time was set to 3 h with a repetition rate of 10 Hz and energy intensity of 100 mJ·cm?2. Reproduced with permission 54, Copyright 2019, American Chemical Society."
Fig 7
(a) Schematic diagram of the pulsed laser deposition configuration and the process (Argon plus hydrogen ambient); (b) schematic diagram of an improved syndepositional system. (a) Reproduced with permission 57, Copyright 2017, AIP Publishing. (b) Reproduced with permission 56, Copyright 2016, American Chemical Society."
Fig 8
(a) Schematic description of perovskite film formation process, precursor solution was spread onto PEDOT:PSS coated glass/ITO substrate, thin-film was formed by spin-coating, then, the film is exposed to laser beam scan. (b) Scanning electron microscopy (SEM) of perovskite films at different laser scanning power and scanning speed. (a) Reproduced with permission 52, Copyright 2018, American Chemical Society. (b) Reproduced with permission 30, Copyright 2016, American Chemical Society."
Fig 9
(a) Schematic illustrating the fabrication procedure for the perovskite CsPbBr3 thin films; (b) schematic of perovskite CsPbX3 QDs after laser irradiation. The CsPbBr3 perovskite thin film was performed during spin-coating of the perovskite precursor solution, followed by drying at ambient conditions for 20 min. The inset in Fig. (a) shows the cubic perovskite structure of CsPbX3 (left) and UV-Vis absorption and PL emission spectra of CsPbBr3 QDs (right); Fig. (b) displays the defects may be partially removed and the PL is enhanced in the perovskite QDs. Reproduced with permission 27, Copyright 2019, American Chemical Society."
Fig 10
(a) Schematic diagram of perovskite solar cells; (b) J–V characteristics of the device with best PCE; (c) J–V curve of a flexible solar cell fabricated on ITO coated PEN substrate (inset: photo of the flexible solar cell fabricated by employing the laser crystallization); (d) a solar concentrator for spectral conversion with high enviro nmental stability based on elaborately spatial-designed perovskite CsPbBr3 nanocrystals in glass using femtosecond laser writing. (a) Reproduced with permission 60, Copyright 2019, American Chemical Society. (b) Reproduced with permission 56, Copyright 2016, American Chemical Society. (c) Reproduced with permission 30, Copyright 2016, American Chemical Society. (d) Reproduced with permission 72, Copyright 2020, American Chemical Society."
Fig 11
(a) The relationship between scanning power, speed and LED performance; (b) the schematic diagram of the configuration of the prototype LED device, and the right is the photograph of blue LEDs under the operation of 5mA; (c) CIE coordinates of the white LECs with the CsPb(Br/I)3-NC CCLs scanned with 2.2 mW of laser power (black square). The corresponding CCTs and D.C. are labeled as well. (a) Reproduced with permission 52, Copyright 2016, American Chemical Society. (b) Reproduced with permission 27, Copyright 2019, American Chemical Society. (c) Reproduced with permission 73, Copyright 2017, John Wiley and Sons."
Fig 12
Laser direct writing perovskite crystals and patterning treatment. (a) Schematic diagram of laser direct writing and patterning perovskite crystals; (b) the laser directly writes the CsPbBr3 quantum dot, and then the "NUST" pattern is observed under ultraviolet irradiation; (c) effect of relative moving speed of laser beam on patterning result of MAPbBr3 perovskite crystals. (b) Reproduced with permission 31, Copyright 2017, John Wiley and Sons. (c) Reproduced with permission 81, Copyright 2017, John Wiley and Sons."
Fig 13
(a) Fan patterning of mixed halide of FAPbI3 and FAPbBr3 with increasing laser power; (b) AFM images of thick nanosheets without laser irradiation; (c) brightfield microscopic image of the fan-shaped pattern obtained after laser direct writing; (d) fluorescence photomicrographs of nanosheets during laser direct writing, two colors of red and green can be observed. Reproduced with permission 91, Copyright 2019, American Chemical Society."
Fig 14
Laser direct writing luminescence CsPb(Cl/Br)3 NCs and its erasable three-dimensional patterning process. Optical images showing fluorescence of a CsPbBr3 QD pattern after (a) annealing, (b) erasing and (c) recovery, respectively. Reproduced with permission96, Copyright 2020, American Chemical Society."
1 |
Stranks S. D. ; Eperon G. E. ; Grancini G. ; Menelaou C. ; Alcocer M. J. ; Leijtens T. ; Herz L. M. ; Petrozza A. ; Snaith H. J. Science 2013, 342, 341.
doi: 10.1126/science.1243982 |
2 |
Xing G. ; Mathews N. ; Sun S. ; Lim S. S. ; Lam Y. M. ; Grätzel M. ; Mhaisalkar S. ; Sum T. C. Science 2013, 342, 344.
doi: 10.1126/science.1243167 |
3 |
Yang G. ; Tao H. ; Qin P. ; Ke W. ; Fang G. J. Mater. Chem. A 2016, 4, 3970.
doi: 10.1039/c5ta09011c |
4 |
Yantara N. ; Bhaumik S. ; Yan F. ; Sabba D. ; Dewi H. A. ; Mathews N. ; Boix P. P. ; Demir H. V. ; Mhaisalkar S. J. Phys. Chem. Lett. 2015, 6, 4360.
doi: 10.1021/acs.jpclett.5b02011 |
5 |
Xiao Z. ; Kerner R. A. ; Zhao L. ; Tran N. L. ; Lee K. M. ; Koh T. W. ; Scholes G. D. ; Rand B. P. Nat. Photon. 2017, 11, 108.
doi: 10.1038/nphoton.2016.269 |
6 |
Cho H. ; Jeong S. H. ; Park M. H. ; Kim Y. H. ; Wolf C. ; Lee C. L. ; Heo J. H. ; Sadhanala A. ; Myoung N. ; Yoo S. Science 2015, 350, 1222.
doi: 10.1126/science.aad1818 |
7 |
Saparov B. ; Mitzi D. B. Chem. Rev. 2016, 116, 4558.
doi: 10.1021/acs.chemrev.5b00715 |
8 | Galasso, F. S. Structure, Properties and Preparation of Perovskite-Type Compounds; International Series of Monographs in Solid State Physics: Elsevier, Pergamon, 2013; pp. 1–209. |
9 |
Grätzel M. Nat. Mater. 2014, 13, 838.
doi: 10.1038/nmat4065 |
10 | Chen S. ; Shang R. ; Wang B. W. ; Wang Z. M. ; Gao S. Acta Phys. -Chim. Sin. 2020, 36, 1907012. |
陈洒; 商冉; 王炳武; 王哲明; 高松. 物理化学学报, 2020, 36, 1907012.
doi: 10.3866/PKU.WHXB201907012 |
|
11 | Chen R. ; Wang W. ; Bu T. L. ; Ku Z. L. ; Zhong J. ; Peng Y. ; Xiao S. Q. ; You W. ; Huang F. Z. ; Cheng Y. B. ; Fu Z. Y. Acta Phys. -Chim. Sin. 2019, 35, 401. |
陈瑞; 王维; 卜童乐; 库治良; 钟杰; 彭勇; 肖生强; 尤为; 黄福志; 程一兵; 傅正义. 物理化学学报, 2019, 35, 401.
doi: 10.3866/PKU.WHXB201803131 |
|
12 |
Li X. ; Wu Y. ; Zhang S. ; Cai B. ; Gu Y. ; Song J. ; Zeng H. Adv. Funct. Mater. 2016, 26, 2435.
doi: 10.1002/adfm.201600109 |
13 |
Leijtens T. ; Eperon G. E. ; Pathak S. ; Abate A. ; Lee M. M. ; Snaith H. J. Nat. Commun. 2013, 4, 1.
doi: 10.1038/ncomms3885 |
14 |
Niu G. ; Guo X. ; Wang L. J. Mater. Chem. A 2015, 3, 8970.
doi: 10.1039/c4ta04994b |
15 |
Saliba M. ; Matsui T. ; Seo J. Y. ; Domanski K. ; Correa-Baena J. P. ; Nazeeruddin M. K. ; Zakeeruddin S. M. ; Tress W. ; Abate A. ; Hagfeldt A. Energy Environ. Sci. 2016, 9, 1989.
doi: 10.1039/c5ee03874j |
16 | Ge Y. ; Mou X. L. ; Lu Y. ; Sui M. L. Acta Phys. -Chim. Sin. 2020, 36, 1905039. |
葛杨; 牟许霖; 卢岳; 隋曼龄. 物理化学学报, 2020, 36, 1905039.
doi: 10.3866/PKU.WHXB201905039 |
|
17 |
Kojima A. ; Teshima K. ; Shirai Y. ; Miyasaka T. J. Am. Chem. Soc. 2009, 131, 6050.
doi: 10.1021/ja809598r |
18 |
Christians J. A. ; Miranda Herrera P. A. ; Kamat P. V. J. Am. Chem. Soc. 2015, 137, 1530.
doi: 10.1021/ja511132a |
19 |
Shirayama M. ; Kato M. ; Miyadera T. ; Sugita T. ; Fujiseki T. ; Hara S. ; Kadowaki H. ; Murata D. ; Chikamatsu M. ; Fujiwara H. J. Appl. Phys. 2016, 119, 115501.
doi: 10.1063/1.4943638 |
20 |
Noh J. H. ; Im S. H. ; Heo J. H. ; Mandal T. N. ; Seok S. I. Nano Lett. 2013, 13, 1764.
doi: 10.1021/nl400349b |
21 |
Aristidou N. ; Sanchez-Molina I. ; Chotchuangchutchaval T. ; Brown M. ; Martinez L. ; Rath T. ; Haque S. A. Angew. Chem. Int. Ed. 2015, 54, 8208.
doi: 10.1002/ange.201503153 |
22 |
Berhe T. A. ; Su W. N. ; Chen C. H. ; Pan C. J. ; Cheng J. H. ; Chen H. M. ; Tsai M. C. ; Chen L. Y. ; Dubale A. A. ; Hwang B. J. Energy Environ. Sci. 2016, 9, 323.
doi: 10.1039/c5ee02733k |
23 |
Aristidou N. ; Eames C. ; Sanchez-Molina I. ; Bu X. ; Kosco J. ; Islam M. S. ; Haque S. A. Nat. Commun. 2017, 8, 1.
doi: 10.1038/ncomms15218 |
24 |
Nickel N. H. ; Lang F. ; Brus V. V. ; Shargaieva O. ; Rappich J. Adv. Electron. Mater. 2017, 3, 1700158.
doi: 10.1002/aelm.201700158 |
25 |
Li Y. ; Xu X. ; Wang C. ; Ecker B. ; Yang J. ; Huang J. ; Gao Y. J. Phys. Chem. C 2017, 121, 3904.
doi: 10.1021/acs.jpcc.6b11853 |
26 |
Huang F. ; Jiang L. ; Pascoe A. R. ; Yan Y. ; Bach U. ; Spiccia L. ; Cheng Y. B. Nano Energy 2016, 27, 509.
doi: 10.1016/j.nanoen.2016.07.033 |
27 |
Zhang Y. ; Zhu H. ; Zheng J. ; Chai G. ; Song Z. ; Chen Y. ; Liu Y. ; He S. ; Shi Y. ; Tang Y. J. Phys. Chem. C 2019, 123, 4502.
doi: 10.1021/acs.jpcc.8b11353 |
28 |
Merdasa A. ; Bag M. ; Tian Y. ; Källman E. ; Dobrovolsky A. ; Scheblykin I. G. J. Phys. Chem. C 2016, 120, 10711.
doi: 10.1021/acs.jpcc.6b03512 |
29 |
dos Reis R. ; Yang H. ; Ophus C. ; Ercius P. ; Bizarri G. ; Perrodin D. ; Shalapska T. ; Bourret E. ; Ciston J. ; Dahmen U. Appl. Phys. Lett. 2018, 112, 071901.
doi: 10.1063/1.5017537 |
30 |
Jeon T. ; Jin H. M. ; Lee S. H. ; Lee J. M. ; Park H. I. ; Kim M. K. ; Lee K. J. ; Shin B. ; Kim S. O. ACS Nano 2016, 10, 7907.
doi: 10.1021/acsnano.6b03815 |
31 |
Chen J. ; Wu Y. ; Li X. ; Cao F. ; Gu Y. ; Liu K. ; Liu X. ; Dong Y. ; Ji J. ; Zeng H. Adv. Mater. Technol. 2017, 2, 1700132.
doi: 10.1002/admt.201700132 |
32 | Wang J. F. ; Lin D. X. ; Yuan Y. B. Acta Phys. Sin. 2019, 68, 158801. |
王继飞; 林东旭; 袁永波. 物理学报, 2019, 68, 158801.
doi: 10.7498/aps.68.20190853 |
|
33 |
Abdelmageed G. ; Jewell L. ; Hellier K. ; Seymour L. ; Luo B. ; Bridges F. ; Zhang J. Z. ; Carter S. Appl. Phys. Lett. 2016, 109, 233905.
doi: 10.1063/1.4967840 |
34 |
Tang X. ; Brandl M. ; May B. ; Levchuk I. ; Hou Y. ; Richter M. ; Chen H. ; Chen S. ; Kahmann S. ; Osvet A. J. Mater. Chem. A 2016, 4, 15896.
doi: 10.1039/c6ta06497c |
35 |
Yin W. J. ; Shi T. ; Yan Y. Appl. Phys. Lett. 2014, 104, 063903.
doi: 10.1063/1.4864778 |
36 |
Yamada Y. ; Nakamura T. ; Endo M. ; Wakamiya A. ; Kanemitsu Y. J. Am. Chem. Soc. 2014, 136, 11610.
doi: 10.1021/ja506624n |
37 |
Mosconi E. ; Meggiolaro D. ; Snaith H. J. ; Stranks S. D. ; De Angelis F. Energy Environ. Sci. 2016, 9, 3180.
doi: 10.1039/c6ee01504b |
38 |
DeQuilettes D. W. ; Zhang W. ; Burlakov V. M. ; Graham D. J. ; Leijtens T. ; Osherov A. ; Bulović V. ; Snaith H. J. ; Ginger D. S. ; Stranks S. D. Nat. Commun. 2016, 7, 1.
doi: 10.1038/ncomms11683 |
39 |
Li F. ; Zhu W. ; Bao C. ; Yu T. ; Wang Y. ; Zhou X. ; Zou Z. Chem. Commun. 2016, 52, 5394.
doi: 10.1039/c6cc00753h |
40 |
Hoke E. T. ; Slotcavage D. J. ; Dohner E. R. ; Bowring A. R. ; Karunadasa H. I. ; McGehee M. D. Chem. Sci. 2015, 6, 613.
doi: 10.1039/c4sc03141e |
41 |
Samu G. F. ; Janaky C. ; Kamat P. V. ACS Energy Lett. 2017, 2, 1860.
doi: 10.1021/acsenergylett.7b00589 |
42 |
Draguta S. ; Sharia O. ; Yoon S. J. ; Brennan M. C. ; Morozov Y. V. ; Manser J. S. ; Kamat P. V. ; Schneider W. F. ; Kuno M. Nat. Commun. 2017, 8, 1.
doi: 10.1038/s41467-017-00284-2 |
43 |
Gualdrón-Reyes A. S. F. ; Yoon S. J. ; Barea E. M. ; Agouram S. ; Muñoz-Sanjosé V. ; Meléndez A. N. M. ; Niño-Gómez M. E. ; Mora-Seró I. N. ACS Energy Lett. 2018, 4, 54.
doi: 10.1021/acsenergylett.8b02207 |
44 |
Tang X. ; van den Berg M. ; Gu E. ; Horneber A. ; Matt G. J. ; Osvet A. ; Meixner A. J. ; Zhang D. ; Brabec C. J. Nano Lett. 2018, 18, 2172.
doi: 10.1021/acs.nanolett.8b00505 |
45 |
Bischak C. G. ; Hetherington C. L. ; Wu H. ; Aloni S. ; Ogletree D. F. ; Limmer D. T. ; Ginsberg N. S. Nano Lett. 2017, 17, 1028.
doi: 10.1021/acs.nanolett.6b04453 |
46 |
Chen W. ; Mao W. ; Bach U. ; Jia B. ; Wen X. Small Methods 2019, 3, 1900273.
doi: 10.1002/smtd.201900273 |
47 |
Zhao Y. C. ; Zhou W. K. ; Zhou X. ; Liu K. H. ; Yu D. P. ; Zhao Q. Light Sci. Appl. 2017, 6, e16243.
doi: 10.1038/lsa.2016.243 |
48 |
Zhang H. ; Fu X. ; Tang Y. ; Wang H. ; Zhang C. ; William W. Y. ; Wang X. ; Zhang Y. ; Xiao M. Nat. Commun. 2019, 10, 1.
doi: 10.1038/s41467-019-09047-7 |
49 |
Zhou Y. ; You L. ; Wang S. ; Ku Z. ; Fan H. ; Schmidt D. ; Rusydi A. ; Chang L. ; Wang L. ; Ren P. Nat. Commun. 2016, 7, 1.
doi: 10.1038/ncomms11193 |
50 |
Wei T. C. ; Wang H. P. ; Li T. Y. ; Lin C. H. ; Hsieh Y. H. ; Chu Y. H. ; He J. H. Adv. Mater. 2017, 29, 1701789.
doi: 10.1002/adma.201701789 |
51 |
Kirschner M. S. ; Diroll B. T. ; Guo P. ; Harvey S. M. ; Helweh W. ; Flanders N. C. ; Brumberg A. ; Watkins N. E. ; Leonard A. A. ; Evans A. M. Nat. Commun. 2019, 10, 1.
doi: 10.1038/s41467-019-08362-3 |
52 |
Kim S. J. ; Byun J. ; Jeon T. ; Jin H. M. ; Hong H. R. ; Kim S. O. ACS Appl. Mater. Interfaces 2018, 10, 2490.
doi: 10.1021/acsami.7b15470 |
53 |
Esparza D. ; Sidhik S. ; López-Luke T. ; Rivas J. M. ; De la Rosa E. Mater. Res. Express. 2019, 4, 5041.
doi: 10.1088/2053-1591/aafbce |
54 |
Dong Y. ; Hu H. ; Xu X. ; Gu Y. ; Chueh C. C. ; Cai B. ; Yu D. ; Shen Y. ; Zou Y. ; Zeng H. J. Phys. Chem. Lett. 2019, 10, 4149.
doi: 10.1021/acs.jpclett.9b01673 |
55 |
Liang Y. ; Yao Y. ; Zhang X. ; Hsu W. L. ; Gong Y. ; Shin J. ; Wachsman E. D. ; Dagenais M. ; Takeuchi I. AIP Adv. 2016, 6, 015001.
doi: 10.1063/1.4939621 |
56 |
Miyadera T. ; Sugita T. ; Tampo H. ; Matsubara K. ; Chikamatsu M. ACS Appl. Mater. Interfaces 2016, 8, 26013.
doi: 10.1021/acsami.6b07837 |
57 |
Bansode U. ; Ogale S. J. Appl. Phys. 2017, 121, 133107.
doi: 10.1063/1.4979865 |
58 |
Kawashima K. ; Okamoto Y. ; Annayev O. ; Toyokura N. ; Takahashi R. ; Lippmaa M. ; Itaka K. ; Suzuki Y. ; Matsuki N. ; Koinuma H. Sci. Technol. Adv. Mater. 2017, 18, 307.
doi: 10.1080/14686996.2017.1314172 |
59 |
Dunlap-Shohl W. A. ; Barraza E. T. ; Barrette A. ; Dovletgeldi S. ; Findik G. ; Dirkes D. J. ; Liu C. ; Jana M. K. ; Blum V. ; You W. Mater. Horizons 2019, 6, 1707.
doi: 10.1039/C9MH00366E |
60 |
Wang H. ; Wu Y. ; Ma M. ; Dong S. ; Li Q. ; Du J. ; Zhang H. ; Xu Q. ACS Appl. Energy Mater. 2019, 2, 2305.
doi: 10.1021/acsaem.9b00130 |
61 |
Chou S. S. ; Swartzentruber B. S. ; Janish M. T. ; Meyer K. C. ; Biedermann L. B. ; Okur S. ; Burckel D. B. ; Carter C. B. ; Kaehr B. J. Phys. Chem. Lett. 2016, 7, 3736.
doi: 10.1021/acs.jpclett.6b01557 |
62 |
Konidakis I. ; Maksudov T. ; Serpetzoglou E. ; Kakavelakis G. ; Kymakis E. ; Stratakis E. ACS Appl. Energy Mater. 2018, 1, 5101.
doi: 10.1021/acsaem.8b01152 |
63 |
Yuyama K. I. ; Islam M. J. ; Takahashi K. ; Nakamura T. ; Biju V. Angew. Chem. Int. Ed. 2018, 130, 13612.
doi: 10.1002/ange.201806079 |
64 |
Islam M. J. ; Yuyama K. I. ; Takahashi K. ; Nakamura T. ; Konishi K. ; Biju V. NPG Asia Mater. 2019, 11, 1.
doi: 10.1038/s41427-019-0131-0 |
65 |
Nie W. ; Blancon J. C. ; Neukirch A. J. ; Appavoo K. ; Tsai H. ; Chhowalla M. ; Alam M. A. ; Sfeir M. Y. ; Katan C. ; Even J. Nat. Commun. 2016, 7, 1.
doi: 10.1038/ncomms11574 |
66 |
Khenkin M. V. ; KM A. ; Visoly-Fisher I. ; Kolusheva S. ; Galagan Y. ; Di Giacomo F. ; Vukovic O. ; Patil B. R. ; Sherafatipour G. ; Turkovic V. ACS Appl. Energy Mater. 2018, 1, 799.
doi: 10.1021/acsaem.7b00256 |
67 |
Tiguntseva E. ; Saraeva I. ; Kudryashov S. ; Ushakova E. ; Komissarenko F. ; Ishteev A. ; Tsypkin A. ; Haroldson R. ; Milichko V. ; Zuev D. J. Phys. Conf. Ser. 2017, 917, 062002.
doi: 10.1088/1742-6596/917/6/062002 |
68 |
Shan X. ; Wang S. ; Dong W. ; Pan N. ; Shao J. ; Wang X. ; Tao R. ; Deng Z. ; Hu L. ; Kong F. Solar RRL 2019, 3, 1900020.
doi: 10.1002/solr.201900020 |
69 | Malyukov, S.; Sayenko, A.; Klunnikova, Y. 2018 International Russian Automation Conference (RusAutoCon), IEEE: 2018; pp. 1–4. doi: 10.1109/RUSAUTOCON.2018.8501763 |
70 |
Wilkes G. C. ; Deng X. ; Choi J. J. ; Gupta M. C. ACS Appl. Mater. Interfaces 2018, 10, 41312.
doi: 10.1021/acsami.8b13740 |
71 |
You P. ; Li G. ; Tang G. ; Cao J. ; Yan F. Energy Environ. Sci. 2020, 13, 1187.
doi: 10.1039/C9EE02324K |
72 |
Hu Y. ; Zhang W. ; Ye Y. ; Zhao Z. ; Liu C. ACS Appl. Nano Mater. 2019, 3, 850.
doi: 10.1021/acsanm.9b02362 |
73 |
Wu W. K. ; Wang C. M. ; Chan M. C. ; Lien J. Y. ; Su Y. M. ; Sarma M. ; Yang Z. P. ; Su H. C. ; Wong K. T. ; Wang S. L. ChemPlusChem 2018, 83, 239.
doi: 10.1002/cplu.201700422 |
74 |
Cheng Z. Y. ; Wang Z. ; Xing R. B. ; Han Y. C. ; Lin J. Chem. Phys. Lett. 2003, 376, 481.
doi: 10.1016/S0009-2614(03)01017-0 |
75 |
Wang G. ; Li D. ; Cheng H. C. ; Li Y. ; Chen C. Y. ; Yin A. ; Zhao Z. ; Lin Z. ; Wu H. ; He Q. Sci. Adv. 2015, 1, e1500613.
doi: 10.1126/sciadv.1500613 |
76 |
Feng J. ; Yan X. ; Zhang Y. ; Wang X. ; Wu Y. ; Su B. ; Fu H. ; Jiang L. Adv. Mater. 2016, 28, 3732.
doi: 10.1002/adma.201505952 |
77 |
Chen R. J. ; Yan X. L. ; Ge W. W. ; Yuan Y. J. ; Wang M. ; Sun M. Z. ; Xing Y. M. ; Zhang P. ; Fu C. Y. ; Shuai P. Nucl. Instrum. Methods Phys. Res. A 2018, 915, 111.
doi: 10.1016/j.nima.2018.07.059 |
78 |
Zarzar L. D. ; Swartzentruber B. S. ; Harper J. C. ; Dunphy D. R. ; Brinker C. J. ; Aizenberg J. ; Kaehr B. J. Am. Chem. Soc. 2012, 134, 4007.
doi: 10.1021/ja211602t |
79 |
Shamsi J. ; Abdelhady A. ; Accornero S. ; Arciniegas M. P. ; Goldoni L. ; Kandada A. R. S. ; Petrozza A. ; Manna L. ACS Energy Lett. 2016, 1, 1042.
doi: 10.1021/acsenergylett.6b00521 |
80 |
Chou S. S. ; De M. ; Luo J. ; Rotello V. M. ; Huang J. ; Dravid V. P. J. Am. Chem. Soc. 2012, 134, 16725.
doi: 10.1021/ja306767y |
81 |
Arciniegas M. P. ; Castelli A. ; Piazza S. ; Dogan S. ; Ceseracciu L. ; Krahne R. ; Duocastella M. Adv. Funct. Mater. 2017, 27, 1701613.
doi: 10.1002/adfm.201701613 |
82 |
Zhu H. ; Fu Y. ; Meng F. ; Wu X. ; Gong Z. ; Ding Q. ; Gustafsson M. V. ; Trinh M. T. ; Jin S. ; Zhu X. Y. Nat. Mater. 2015, 14, 636.
doi: 10.1038/nmat4271 |
83 |
Fischer K. A. ; Müller K. ; Rundquist A. ; Sarmiento T. ; Piggott A. Y. ; Kelaita Y. ; Dory C. ; et al Nat. Photon. 2016, 10, 163.
doi: 10.1038/nphoton.2015.276 |
84 | Xu, Y. Solution-processed Metal Halide Perovskites for Nuclear Radiation Detection. In nanoGe Fall Meeting, Berlin: Germany, July 16, 2019. doi: 10.29363/nanoge.ngfm.2019.001 |
85 |
Yang W. S. ; Noh J. H. ; Jeon N. J. ; Kim Y. C. ; Ryu S. ; Seo J. ; Seok S. I. Science 2015, 348, 1234.
doi: 10.1126/science.aaa9272 |
86 |
Binek A. ; Hanusch F. C. ; Docampo P. ; Bein T. J. Phys. Chem. Lett. 2015, 6, 1249.
doi: 10.1021/acs.jpclett.5b00380 |
87 |
Pellet N. ; Gao P. ; Gregori G. ; Yang T. Y. ; Nazeeruddin M. K. ; Maier J. Angew. Chem. Int. Ed. 2014, 53, 3151.
doi: 10.1002/anie.201309361 |
88 |
Eperon G. E. ; Stranks S. D. ; Menelaou C. ; Johnston M. B. ; Herz L. M. ; Snaith H. J. Energy Environ. Sci. 2014, 7, 982.
doi: 10.1039/C3EE43822H |
89 |
Han Q. F. ; Bae S. H. ; Sun P. Y. ; Hsieh Y. T. ; Michael Y. Adv. Mater. 2016, 28, 2253.
doi: 10.1002/adma.201505002 |
90 |
Steele J. A. ; Yuan H. ; Tan C. Y. X. ; Keshavarz M. ; Hofkens J. ACS Nano 2017, 11, 8072.
doi: 10.1021/acsnano.7b02777 |
91 |
Zhou C. ; Cao G. ; Gan Z. ; Ou Q. ; Chen W. ; Bao Q. ; Jia B. ; Wen X. ACS Appl. Mater. Interfaces 2019, 11, 26017.
doi: 10.1021/acsami.9b07708 |
92 |
Wei D. ; Wang C. ; Wang H. ; Hu X. ; Wei D. ; Fang X. ; Zhang Y. ; Wu D. ; Hu Y. ; Li J. ; Zhu S. ; Xiao M. J. Nat. Photon. 2018, 12, 596.
doi: 10.1038/s41566-018-0240-2 |
93 |
Tan D. ; Sharafudeen K. N. ; Yue Y. ; Qiu J. Prog. Mater. Sci. 2016, 76, 154.
doi: 10.1016/j.pmatsci.2015.09.002 |
94 |
Chen D. ; Yuan S. ; Chen X. ; Li J. ; Mao Q. ; Li X. ; Zhong J. J. Mater. Chem. C 2018, 6, 6832.
doi: 10.1039/C8TC02407C |
95 |
Xiongjian H ; Qianyi G ; Shiliang K ; Tianchang O ; Qinpeng C ; Xiaofeng L ; Zhiguo X ; Zhongmin Yang ; Qinyuan Z ; Jianrong Q ; Guoping D. ACS Nano 2020, 14, 3150.
doi: 10.1021/acsnano.9b08314 |
96 |
HuangX ; Shiliang K ; Tianchang O ; Qinpeng C ; Xiaofeng L ; Zhiguo X ; Zhongmin Yang ; Qinyuan Z ; Jianrong Q ; Guoping D. ACS Nano 2020, 14, 3150.
doi: 10.1021/acsnano.9b08314 |
97 |
Fernandez T. T. ; Sakakura M. ; Eaton S. M. ; Sotillo B. ; Siegel J. ; Solis J. ; Shimotsuma Y. ; Miura K. Prog. Mater. Sci. 2017, 94, 68.
doi: 10.1016/j.pmatsci.2017.12.002 |
98 |
Shimizu M. ; Sakakura M. ; Ohnishi M. ; Shimotsuma Y. ; Nakaya T. ; Miura K. ; Hirao K. J. Appl. Phys. 2010, 108, 073533.
doi: 10.1063/1.3483238 |
99 |
Liu X. ; Zhou J. ; Zhou S. ; Yue Y. ; Qiu J. Prog. Mater. Sci. 2018, 97, 38.
doi: 10.1016/j.pmatsci.2018.02.006 |
100 |
Huang X. ; Guo Q. ; Yang D. ; Xiao X. ; Dong G. Nat. Photon. 2020, 14, 1.
doi: 10.1038/s41566-019-0538-8 |
101 |
Adinolfi V. ; Ouellette O. ; Saidaminov M. I. ; Walters G. ; Abdelhady A. L. ; Bakr O. M. ; Sargent E. H. Adv. Mater. 2016, 28, 7264.
doi: 10.1002/adma.201601196 |
102 |
Yue Y. ; Yang Z. ; Liu N. ; Liu W. ; Zhang H. ; Ma Y. ; Yang C. ; Su J. ; Li L. ; Long F. ACS Nano 2016, 10, 11249.
doi: 10.1021/acsnano.6b06326 |
103 |
Hou F. ; Jin F. ; Chu B. ; Su Z. ; Gao Y. ; Zhao H. ; Cheng P. ; Tang J. ; Li W. Sol. Energy Mater. Sol. Cells 2016, 157, 989.
doi: 10.1016/j.solmat.2016.08.024 |
[1] | Tian Wang, Taiyang Zhang, Yuetian Chen, Yixin Zhao. Highly Moisture Resistant 5-Aminovaleric Acid Crosslinked CH3NH3PbBr3 Perovskite Film with ALD-Al2O3 Protection [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2007021-. |
[2] | Lei LIU, Yaya HAO, Suhui DENG, Kun WANG, Jiang LI, Lihua WANG, Chunhai FAN, Jiajun LI, Huajie LIU. Multi-Mode Full Spectrum Dark Field Microscope for Single Nanoparticle Localized Surface Plasmon Resonance Dynamics Study [J]. Acta Physico-Chimica Sinica, 2019, 35(4): 371-377. |
[3] | Hai-Xia LI,Yan-Cheng LIU,Rui-Zhi TANG,Peng ZHANG,Liu-Kui MA,Chi-Yuan WEI,Wen-Feng WANG. Reactions of Triplet-State Difloxacin with Amino Acids and dGMP: A Laser Flash Photolysis Study [J]. Acta Phys. -Chim. Sin., 2017, 33(5): 1051-1056. |
[4] | Ning-Liang LIU,Huan SHEN. Multiphoton Dissociation and Ionization Dynamics of Allyl Chloride Using Femtosecond Laser Pulses [J]. Acta Phys. -Chim. Sin., 2017, 33(3): 500-505. |
[5] | Xiao-Ye NIU,Xiao-Qin DU,Qin-Chao WANG,Xiao-Jing WU,Xin ZHANG,Yong-Ning ZHOU. AlN-Fe Nanocomposite Thin Film:A New Anode Material for Lithium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2517-2522. |
[6] | Zhen YANG,Hai LIU,Yuan-Hang HE. Molecular Dynamics Simulations of Femtosecond Laser Ablation of Energetic Materials [J]. Acta Phys. -Chim. Sin., 2016, 32(8): 1977-1982. |
[7] | Juan XIAO,Hao-Li ZHANG. Recent Progress in Organic-Inorganic Hybrid Perovskite Materials for Luminescence Applications [J]. Acta Phys. -Chim. Sin., 2016, 32(8): 1894-1912. |
[8] | Qing-Long TANG,Hai-Feng LIU,Ming-Kun LI,Ming-Fa YAO. Study on In-Cylinder Charge Stratification of a Dual-Fuel Engine Using Fuel-Tracer Laser-Induced Fluorescence and Chemical Kinetic Simulation [J]. Acta Phys. -Chim. Sin., 2016, 32(12): 2879-2890. |
[9] | CHEN Zhi-Lei, ZHANG Yong-Bin, HU Yin, LUO Li-Zhu, LIU Ke-Zhao. Influence on Surface Morphology of Uranium by Modification of Pulsed Laser Nitriding [J]. Acta Phys. -Chim. Sin., 2015, 31(Suppl): 111-116. |
[10] | TANG Qing-Long, ZHANG Peng, LIU Hai-Feng, YAO Ming-Fa. Quantitative Measurements of Soot Volume Fractions in Diesel Engine Using Laser-Induced Incandescence Method [J]. Acta Phys. -Chim. Sin., 2015, 31(5): 980-988. |
[11] | Qing-Long. TANG,Chao. GENG,Ming-Kun. LI,Hai-Feng. LIU,Ming-Fa. YAO. Laser-Induced Fluorescence Measurements of Formaldehyde and OH Radicals in Dual-Fuel Combustion Process in Engine [J]. Acta Phys. -Chim. Sin., 2015, 31(12): 2269-2277. |
[12] | ZHANG Peng, LIU Hai-Feng, CHEN Bei-Ling, TANG Qing-Long, YAO Ming-Fa. Fluorescence Spectra of Polycyclic Aromatic Hydrocarbons and Soot Concentration in Partially Premixed Flames of Diesel Surrogate Containing Oxygenated Additives [J]. Acta Phys. -Chim. Sin., 2015, 31(1): 32-40. |
[13] | WANG Liu-Heng, PENG Rong-Zong, ZHAO Yu-Xia, WU Fei-Peng. Synthesis and Optical Limiting Behaviors of Malononitrile Derivatives [J]. Acta Phys. -Chim. Sin., 2014, 30(5): 980-986. |
[14] | HU Ren-Zhi, XIE Pin-Hua, ZHANG Qun, SI Fu-Qi, CHEN Yang. Temperature Dependence of C2(a3Пu) Radical Reactions with Sulfur Bearing Molecules [J]. Acta Phys. -Chim. Sin., 2014, 30(5): 797-802. |
[15] | SUN Jin, LIANGWan-Zhen. Effects of External Field and Nanoribbon Length on the Electronic Structure and Properties of Graphene Nanoribbons [J]. Acta Phys. -Chim. Sin., 2014, 30(3): 439-445. |
|