Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (4): 2008055.doi: 10.3866/PKU.WHXB202008055
Special Issue: Metal Halide Perovskite Optoelectronic Material and Device
• REVIEW • Previous Articles Next Articles
Zhang Xin, Dengbao Han, Xiaomei Chen, Yu Chen, Shuai Chang, Haizheng Zhong()
Received:
2020-08-19
Accepted:
2020-09-15
Published:
2020-09-17
Contact:
Haizheng Zhong
E-mail:hzzhong@bit.edu.cn
About author:
Haizheng Zhong, Email: hzzhong@bit.edu.cnSupported by:
Zhang Xin, Dengbao Han, Xiaomei Chen, Yu Chen, Shuai Chang, Haizheng Zhong. Effects of Solvent Coordination on Perovskite Crystallization[J].Acta Phys. -Chim. Sin., 2021, 37(4): 2008055.
Fig 2
(a) Gibbs free energy of the system as a function of crystal radius curve; (b) temperature-dependent solubility of MAPbI3 in GBL 30; (c) temperature-dependent solubility of FAPbI3 in GBL 30; (d) solubility curve of MAPbI3 in HI solution 31. (b, c) Adapted with permission from Ref. 30, Royal Society of Chemistry, 2015, (d) Adapted with permission from Ref. 31, Royal Society of Chemistry, 2015."
Table 1
Solubility of perovskite precursors in common solvents."
Solvent | PbI2 | MAI | MAPbI3 |
Methanol | × | √ | ![]() |
Ethanol | × | √ | ![]() |
Toluene | × | × | × |
N-hexane | × | × | × |
Tetrahydrofuran | ![]() | √ | ![]() |
N, N dimethylformamide | √ | √ | √ |
acetone | ![]() | √ | ![]() |
Chloroform | × | × | × |
Dichloromethane | × | × | × |
Isopropanol | × | √ | ![]() |
Acetonitrile | × | √ | √ |
√ soluble, × insoluble, partially soluble. |
Fig 3
(a) Coordination forms of perovskite precursors in solvents; (b) absorption spectra of 250 × 10?6 mol?L?1 PbI2 solution in DMF with increasing concentration of MAI from 6 to 24 × 10?3 mol?L?1 36; (c) Dn values of some common solvents 39. (b) Adapted with permission from ref. 36, Royal Society of Chemistry, 2015. (c) Adapted with permission from Ref. 39, American Chemical Society, 2017."
Fig 4
(a) Temperature-dependent solubility of FAPbBr3 in DMF 30; (b) temperature-dependent solubility of MAPbBr3 in DMF/GBL 30; (c) schematic representation of the crystallization mechanism 49. (a, b) Adapted with permission from Ref. 30, Royal Society of Chemistry, 2015, (c) Adapted with permission from Ref. 49, Nature Publishing Group, 2016."
Fig 5
(a) Schematic illustrations of the transformation process from a precursor (CH3NH3I and PbI2) to CH3NH3PbI3 perovskite in coordinated solvents (top) and noncoordinated solvents (bottom) 52; (b) XRD patterns of the resultants produced by varying the precursor ratios of PbBr2 to CsBr in DMSO and H2O 53. (a) Adapted with permission from Ref. 52, American Chemical Society, 2017. (b) Adapted with permission from Ref. 53, American Chemical Society, 2018."
1 |
Stranks S. D. ; Snaith H. J. Nat. Nanotechnol. 2015, 10, 391.
doi: 10.1038/nnano.2015.90 |
2 |
Saparov B. ; Mitzi D. B. Chem. Rev. 2016, 116, 4558.
doi: 10.1021/acs.chemrev.5b00715 |
3 |
Ha S. T. ; Su R. ; Xing J. ; Zhang Q. ; Xiong Q. Chem. Sci. 2017, 8, 2522.
doi: 10.1039/C6SC04474C |
4 | Ding L. M. ; Cheng Y. B. ; Tang J. Acta Phys. -Chim. Sin. 2018, 34, 449. |
丁黎明; 程一兵; 唐江. 物理化学学报, 2018, 34, 449.
doi: 10.3866/PKU.WHXB201710121 |
|
5 |
Hintermayr V. A. ; Richter A. F. ; Ehrat F. ; Döblinger M. ; Vanderlinden W. ; Sichert J. A. ; Tong Y. ; Polavarapu L. ; Feldmann J. ; Urban A. S. Adv. Mater. 2016, 28, 9478.
doi: 10.1002/adma.201602897 |
6 |
Zhu Z. Y. ; Yang Q. Q. ; Gao L. F. ; Zhang L. ; Shi A. Y. ; Sun C. L. ; Wang Q. ; Zhang H. L. J. Phys. Chem. Lett. 2017, 8, 1610.
doi: 10.1021/acs.jpclett.7b00431 |
7 |
Tong Y. ; Bladt E. ; Aygüler M. F. ; Manzi A. ; Milowska K. Z. ; Hintermayr V. A. ; Docampo P. ; Bals S. ; UrbanA. S. ; Polavarapu L. Angew. Chem. Int. Ed. 2016, 55, 13887.
doi: 10.1002/anie.201605909 |
8 |
Kojima A. ; Ikegami M. ; Teshima K. ; Miyasaka T. Chem. Lett. 2012, 41, 397.
doi: 10.1246/cl.2012.397 |
9 |
Niu Y. W. ; Zhang F. ; Bai Z. ; Dong Y. ; Yang J. ; Liu R. ; Zou B. ; Li J. ; Zhong H. Z. Adv. Opt. Mater. 2015, 3, 112.
doi: 10.1002/adom.201400403 |
10 |
Chang S. ; Bai Z. ; Zhong H. Z. Adv. Opt. Mater. 2018, 6, 1800380.
doi: 10.1002/adom.201800380 |
11 |
Sahli F. ; Werner J. ; Kamino B. A. Nat. Mater. 2018, 17, 820.
doi: 10.1038/s41563-018-0115-4 |
12 |
Yuan M. ; Quan L. N. ; Comin R. ; Walters G. ; Sabatini R. ; Voznyy O. ; Hoogland S. ; Zhao Y. ; Beauregard E. M. ; Kanjanaboos P. ; et al Nat. Nanotechnol. 2016, 11, 872.
doi: 10.1038/nnano.2016.110 |
13 | Xiao J. ; Zhang H. L. Acta Phys. -Chim. Sin. 2016, 32, 1894. |
肖娟; 张浩力. 物理化学学报, 2016, 32, 1894.
doi: 10.3866/PKU.WHXB201605034 |
|
14 |
Han D. ; Imran M. ; Zhang M. ; Chang S. ; Wu X. G. ; Zhang X. ; Tang J. L. ; Wang M. ; Ali S. ; Li X. ; et al ACS Nano 2018, 12, 8808.
doi: 10.1021/acsnano.8b05172 |
15 |
Ji H. ; Xu H. ; Jiang F. ; Bai Z. L. ; Zhong H. Z. International Conference on Display Technology 2019, 50, 411.
doi: 10.1002/sdtp.13513 |
16 |
Cao Y. ; Wang N. ; Tian H. ; Guo J. ; Wei Y. ; Chen H. ; Miao Y. ; Zou W. ; Pan K. ; He Y ; et al Nature 2018, 562, 249.
doi: 10.1038/s41586-018-0576-2 |
17 |
Lin K. ; Xing J. ; Quan L. N. ; de Arquer F. P. G. ; Gong X. ; Lu J. ; Xie L. ; Zhao W. ; Zhang D. ; Yan C. ; et al Nature 2018, 562, 245.
doi: 10.1038/s41586-018-0575-3 |
18 |
Shen Y. ; Cheng L. P. ; Li Y. Q. ; Li W. ; Chen J. D. ; Lee S. T. ; Tang J. X. Adv. Mater. 2019, 31, 1901517.
doi: 10.1002/adma.201901517 |
19 |
Wang L. ; Dai G. ; Deng L. ; Zhong H. Z. Sci. China Mater. 2020, 63, 1382.
doi: 10.1007/s40843-020-1336-6 |
20 |
Wei H. ; Fang Y. ; Mulligan P. ; Chuirazzi W. ; Fang H. H. ; Wang C. ; Ecker B. R. ; Gao Y. ; Loi M. A. ; Cao L. ; et al Nat. Photonics 2016, 10, 333.
doi: 10.1038/nphoton.2016.41 |
21 |
Yakunin S. ; Sytnyk M. ; Kriegner D. ; Shrestha S. ; Richter M. ; Matt G. J. ; Azimi H. ; Brabec C. J. ; Stangl J. ; Kovalenko M. V. Nat. Photonics 2015, 9, 444.
doi: 10.1038/nphoton.2015.82 |
22 |
Pan W. ; Wu H. ; Luo J. ; Deng Z. ; Ge C. ; Chen C. ; Jiang X. ; Yin W. J. ; Niu G. ; Zhu L. ; et al Nat. Photonics 2017, 11, 726.
doi: 10.1038/s41566-017-0012-4 |
23 |
Zhu W. ; Ma W. ; Su Y. ; Chen Z. ; Chen X. ; Ma Y. ; Bai L. ; Xiao W. ; Liu T. ; Zhu H. ; et al Light-Sci. Appl. 2020, 9, 112.
doi: 10.1038/s41377-020-00353-0 |
24 |
Jung M. ; Ji S. G. ; Kim G. ; Seok S. I. Chem. Soc. Rev. 2019, 48, 2011.
doi: 10.1039/C8CS00656C |
25 |
Cao X. ; Zhi L. ; Jia Y. ; Li Y. ; Zhao K. ; Cui X. ; Ci L. ; Zhuang D. ; Wei J. ACS Appl. Mater. Interfaces 2019, 11, 7639.
doi: 10.1021/acsami.8b16315 |
26 |
Li W. ; Wang Z. ; Deschler F. ; Gao S. ; Friend R. H. ; Cheetham A. K. Nat. Rev. Mater. 2017, 2, 16099.
doi: 10.1038/natrevmats.2016.99 |
27 |
Cho H. ; Kim Y. H. ; Wolf C. ; Lee H. D. ; Lee T. W. Adv. Mater. 2018, 30, 1704587.
doi: 10.1002/adma.201704587 |
28 |
Sugimoto T. Adv. Colloid Interface Sci. 1987, 28, 65.
doi: 10.1016/0001-8686(87)80009-X |
29 |
Zhang F. ; Chen C. ; Kershaw S. V. ; Xiao C. ; Han J. ; Zou B. ; Wu X. ; Chang S. ; Dong Y. ; Rogach A. L. ; et al Chem Nano Mater 2017, 3, 303.
doi: 10.1021/acsami.8b05664 |
30 |
Saidaminov M. I. ; Abdelhady A. L. ; Maculan G. ; Bakr O. M. Chem. Commun. 2015, 51, 176581.
doi: 10.1039/C5CC06916E |
31 |
Dang Y. ; Liu Y. ; Sun Y. ; Yuan D. ; Liu X. ; Lu W. ; Liu G. ; Xia H. ; Tao X. CrystEngComm 2015, 17, 665.
doi: 10.1039/C4CE02106A |
32 |
Yan K. ; Long M. ; Zhang T. ; Wei Z. ; Chen H. ; Yang S. ; Xu J. J. Am. Chem. Soc. 2015, 137, 4460.
doi: 10.1021/jacs.5b00321 |
33 |
Wu Y. ; Islam A. ; Yang X. ; Qin C. ; Liu J. ; Zhang K. ; Peng W. ; Han L. Energy Environ. Sci. 2014, 7, 2934.
doi: 10.1039/C4EE01624F |
34 |
Yang W. S. ; Noh J. H. ; Jeon N. J. ; Kim Y. C. ; Ryu S. ; Seo J. ; Seok S. I. Science 2015, 348, 1234.
doi: 10.1126/science.aaa9272 |
35 |
Lee J. W. ; Kim H. S. ; Park N. G. Acc. Chem. Res. 2016, 49, 311.
doi: 10.1021/acs.accounts.5b00440 |
36 |
Stamplecoskie K. G. ; Manser J. S. ; Kamat P. V. Energy Environ. Sci. 2015, 8, 208.
doi: 10.1039/C4EE02988G |
37 |
Jo Y. ; Oh K. S. ; Kim M. ; Kim K. H. ; Lee H. ; Lee C. W. ; Kim D. S. Adv. Mater. Interfaces 2016, 3, 1500768.
doi: 10.1002/admi.201500768 |
38 |
Li B. ; Binks D. ; Cao G. ; Tian J. Small 2019, 15, 1903613.
doi: 10.1002/smll.201903613 |
39 |
Hamill J. C. ; Schwartz J. ; Loo Y. L. ACS Energy Lett. 2018, 3, 92.
doi: 10.1021/acsenergylett.7b01057 |
40 |
Fang Y. ; Dong Q. ; Shao Y. ; Yuan Y. ; Huang J. Nat. Photonics 2015, 9, 679.
doi: 10.1038/nphoton.2015.156 |
41 |
Liu Y. ; Yang Z. ; Liu S. Adv. Sci. 2018, 5, 1700471.
doi: 10.1002/advs.201700471 |
42 |
Ding J. ; Yan Q. F. Sci. China Mater. 2017, 60, 1063.
doi: 10.1007/s40843-017-9039-8 |
43 |
Shi D. ; Adinolfi V. ; Comin R. ; Yuan M. ; Alarousu E. ; Buin A. ; Chen Y. ; Hoogland S. ; Rothenberger A. ; Katsiev K. Science 2015, 347, 519.
doi: 10.1126/science.aaa2725 |
44 | Lu Q. R. ; Li J. ; Lian Z. P. ; Zhao H. Y. ; Dong G. F. ; Li Q. ; Wang L. D. ; Yan Q. F. Acta Phys. -Chim. Sin. 2017, 33, 249. |
吕乾睿; 李晶; 廉志鹏; 赵昊岩; 董桂芳; 李强; 王立铎; 严清峰. 物理化学学报, 2017, 33, 249.
doi: 10.3866/PKU.WHXB201610142 |
|
45 |
Chen X. ; Zhang F. ; Ge Y. ; Shi L. ; Huang S. ; Tang J. ; Lv Z. ; Zhang L. ; Zou B. ; Zhong H. Adv. Funct. Mater. 2018, 28, 1706567.
doi: 10.1002/adfm.201706567 |
46 |
Wang Y. L. ; Chang S. ; Chen X. M. ; Ren Y. D. ; Shi L. F. ; Liu Y. H. ; Zhong H. Z. Chin. J. Chem. 2019, 37, 616.
doi: 10.1002/cjoc.201900071 |
47 |
Lian Z. ; Yan Q. ; Gao T. ; Ding J. ; Lv Q. ; Ning C. ; Li Q. ; Sun J. L. J. Am. Chem. Soc. 2016, 138, 9409.
doi: 10.1021/jacs.6b05683 |
48 |
Han Q. ; Bae S. H. ; Sun P. ; Hsieh Y. T. ; Yang Y. ; Rim Y. S. ; Zhao H. ; Chen Q. ; Shi W. ; Li G. Adv. Mater. 2016, 28, 2253.
doi: 10.1021/jacs.6b05683 |
49 |
Nayak P. K. ; Moore D. T. ; Wenger B. ; Nayak S. ; Haghighirad A. A. ; Fineberg A. ; Noel N. K. ; Reid O. G. ; Rumbles G. ; Kukura P ; et al Nat. Commun. 2016, 7, 13303.
doi: 10.1038/ncomms13303 |
50 |
Zhang F. ; Zhong H. Z. ; Chen C. ; Wu X. G. ; Hu X. ; Huang H. ; Han J. ; Zou B. ; Dong Y. ACS Nano 2015, 9, 4533.
doi: 10.1021/acsnano.5b01154 |
51 |
Protesescu L. ; Yakunin S. ; Bodnarchuk M. I. ; Krieg F. ; Caputo R. ; Hendon C. H. ; Yang R. X. ; Walsh A. ; Kovalenko M. V. Nano Lett. 2015, 15, 3692.
doi: 10.1021/nl5048779 |
52 |
Zhang F. ; Huang S. ; Wang P. ; Chen X. ; Zhao S. ; Dong Y. ; Zhong H. Chem. Mater. 2017, 29, 3793.
doi: 10.1021/acs.chemmater.7b01100 |
53 |
Liu M. ; Zhao J. ; Luo Z. ; Sun Z. ; Pan N. ; Ding H. ; Wang X. Chem. Mater. 2018, 30, 5846.
doi: 10.1021/acs.chemmater.8b00537 |
54 |
Li L. ; Chen Y. ; Liu Z. ; Chen Q. ; Wang X. ; Zhou H. Adv. Mater. 2016, 28, 9862.
doi: 10.1002/adma.201603021 |
55 |
Wharf I. ; Gramstad T. ; Makhija R. ; Onyszchuk M. Can. J. Chem. 1976, 54, 3430.
doi: 10.1139/v76-493 |
56 |
Miyamae H. ; Numahata Y. ; Nagata M. Chem. Lett. 1980, 9, 663.
doi: 10.1246/cl.1980.663 |
57 |
Jeon N. J. ; Noh J. H. ; Kim Y. C. ; Yang W. S. ; Ryu S. ; Seok S. I. Nat. Mater. 2014, 13, 897.
doi: 10.1038/nmat4014 |
58 |
Rong Y. ; Tang Z. ; Zhao Y. ; Zhong X. ; Venkatesan S. ; Graham H. ; Patton M. ; Jing Y. ; Guloy A. M. ; Yao Y. Nanoscale 2015, 7 (24), 10595.
doi: 10.1039/C5NR02866C |
59 |
Lee J. W. ; Dai Z. ; Lee C. ; Lee H. M. ; Han T. H. ; De Marco N. ; Lin O. ; Choi C. S. ; Dunn B. ; Koh J. J. Am. Chem. Soc. 2018, 140, 6317.
doi: 10.1021/jacs.8b01037 |
60 |
Zhang X. ; Han D. ; Wang C. ; Muhammad I. ; Zhang F. ; Shmshad A. ; Xue X. ; Ji W. ; Chang S. ; Zhong H. Adv. Opt. Mater. 2019, 7, 1900774.
doi: 10.1002/adom.201900774 |
61 |
Chao L. ; Niu T. ; Gu H. ; Yang Y. ; Wei Q. ; Xia Y. ; Hui W. ; Zuo S. ; Zhu Z. ; Pei C. ; et al Research 2020, 2616345.
doi: 10.34133/2020/2616345 |
62 |
Chao L. ; Xia Y. ; Li B. ; Xing G. ; Chen Y. ; Huang W. Chem 2019, 5, 995.
doi: 10.1016/j.chempr.2019.02.025 |
63 |
Lin Y. H. ; Sakai N. ; Da P. ; Wu J. ; Sansom H. C. ; Ramadan A. J. ; Mahesh S. ; Liu J. ; Oliver R. D. J. ; Lim J. ; et al Science 2020, 369, 96.
doi: 10.1126/science.aba1628 |
[1] | Rong Hu, Liyun Wei, Jinglin Xian, Guangyu Fang, Zhiao Wu, Miao Fan, Jiayue Guo, Qingxiang Li, Kaisi Liu, Huiyu Jiang, Weilin Xu, Jun Wan, Yonggang Yao. Microwave Shock Process for Rapid Synthesis of 2D Porous La0.2Sr0.8CoO3 Perovskite as an Efficient Oxygen Evolution Reaction Catalyst [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212025-0. |
[2] | Qiuju Liang, Yinxia Chang, Chaowei Liang, Haolei Zhu, Zibin Guo, Jiangang Liu. Application of Crystallization Kinetics Strategy in Morphology Control of Solar Cells based on Nonfullerene Blends [J]. Acta Phys. -Chim. Sin., 2023, 39(7): 2212006-0. |
[3] | Shuai Yang, Yuxin Xu, Zikun Hao, Shengjian Qin, Runpeng Zhang, Yu Han, Liwei Du, Ziyi Zhu, Anning Du, Xin Chen, Hao Wu, Bingbing Qiao, Jian Li, Yi Wang, Bingchen Sun, Rongrong Yan, Jinjin Zhao. Recent Advances in High-Efficiency Perovskite for Medical Sensors [J]. Acta Phys. -Chim. Sin., 2023, 39(5): 2211025-0. |
[4] | Yongtao Wen, Jing Li, Xiaofeng Gao, Congcong Tian, Hao Zhu, Guomu Yu, Xiaoli Zhang, Hyesung Park, Fuzhi Huang. Two-Step Sequential Blade-Coating Large-Area FA-Based Perovskite Thin Film via a Controlled PbI2 Microstructure [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2203048-0. |
[5] | Yae Qi, Yongyao Xia. Electrolyte Regulation Strategies for Improving the Electrochemical Performance of Aqueous Zinc-Ion Battery Cathodes [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2205045-0. |
[6] | Bihao Zhuang, Zicong Jin, Dehua Tian, Suiyi Zhu, Linqian Zeng, Jiandong Fan, Zaizhu Lou, Wenzhe Li. Halogen Regulation for Enhanced Luminescence in Emerging (4-HBA)SbX5∙H2O Perovskite-Like Single Crystals [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2209007-0. |
[7] | Yue Lu, Yang Ge, Manling Sui. Degradation Mechanism of CH3NH3PbI3-based Perovskite Solar Cells under Ultraviolet Illumination [J]. Acta Phys. -Chim. Sin., 2022, 38(5): 2007088-. |
[8] | Feiyu Lin, Ying Yang, Congtan Zhu, Tian Chen, Shupeng Ma, Yuan Luo, Liu Zhu, Xueyi Guo. Fabrication of Stable CsPbI2Br Perovskite Solar Cells in the Humid Air [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2005007-. |
[9] | Wusong Zha, Lianping Zhang, Long Wen, Jiachen Kang, Qun Luo, Qin Chen, Shangfeng Yang, Chang-Qi Ma. Controllable Formation of PbI2 and PbI2(DMSO) Nano Domains in Perovskite Films through Precursor Solvent Engineering [J]. Acta Phys. -Chim. Sin., 2022, 38(3): 2003022-. |
[10] | Zixu He, Yawei Chen, Fanyang Huang, Yulin Jie, Xinpeng Li, Ruiguo Cao, Shuhong Jiao. Fluorinated Solvents for Lithium Metal Batteries [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2205005-. |
[11] | Yan Li, Xingsheng Hu, Jingwei Huang, Lei Wang, Houde She, Qizhao Wang. Development of Iron-Based Heterogeneous Cocatalysts for Photoelectrochemical Water Oxidation [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2009022-. |
[12] | Zejian Wang, Jiajia Hong, Sue-Faye Ng, Wen Liu, Junjie Huang, Pengfei Chen, Wee-Jun Ong. Recent Progress of Perovskite Oxide in Emerging Photocatalysis Landscape: Water Splitting, CO2 Reduction, and N2 Fixation [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2011033-. |
[13] | Jionghua Wu, Yiming Li, Jiangjian Shi, Huijue Wu, Yanhong Luo, Dongmei Li, Qingbo Meng. UV Photodetectors Based on High Quality CsPbCl3 Film Prepared by a Two-Step Diffusion Method [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2004041-. |
[14] | Peiquan Song, Liqiang Xie, Lina Shen, Kaikai Liu, Yuming Liang, Kebin Lin, Jianxun Lu, Chengbo Tian, Zhanhua Wei. Stable Perovskite Solar Cells Using Compact Tin Oxide Layer Deposited through Electrophoresis [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2004038-. |
[15] | Haomiao Li, Hua Dong, Jingrui Li, Zhaoxin Wu. Recent Advances in Tin-Based Perovskite Solar Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2007006-. |
|