Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (1): 2008065.doi: 10.3866/PKU.WHXB202008065
Special Issue: Lithium Metal Anodes
• REVIEW • Previous Articles Next Articles
Shichao Zhang, Zeyu Shen, Yingying Lu()
Received:
2020-08-22
Accepted:
2020-09-16
Published:
2020-09-21
Contact:
Yingying Lu
E-mail:yingyinglu@zju.edu.cn
About author:
Yingying Lu. Email: yingyinglu@zju.edu.cnSupported by:
Shichao Zhang, Zeyu Shen, Yingying Lu. Research Progress of Thermal Runaway and Safety for Lithium Metal Batteries[J]. Acta Phys. -Chim. Sin. 2021, 37(1), 2008065. doi: 10.3866/PKU.WHXB202008065
Table 1
Comparison of melting point, boiling point and flash point of carbonate and ether electrolyte solvents commonly used in lithium batteries 29."
Solvent | Melting point/℃ | Boiling point/℃ | Flash point/℃ |
Ethylene Carbonate (EC) | 36.4 | 248 | 160 |
Propylene Carbonate (PC) | –48.8 | 242 | 132 |
Dimethyl Carbonate (DMC) | 4.6 | 91 | 18 |
Diethyl Carbonate (DEC) | –74.3 | 126 | 31 |
Ethyl Methyl Carbonate (EMC) | –53 | 110 | 23 |
1, 2-Dimethoxyethane (DME) | –95 | 78 | 1 |
1, 3-Dioxolane (DOL) | –58 | 84 | 0 |
Fig 2
(a) The general characteristics of thermal runaway of lithium ion batteries 19; (b) DSC heating curve of lithium metal and sulfur 40; (c) DSC curve of lithium metal in 1 mol·L-1 LiPF6/(EC + DEC) electrolyte 40; (d) ARC test curve of lithium metal and four ISEs and schematic diagram of the cause of thermal runaway 38. (a, d) Adapted from Elsevier publisher. (b, c) Adapted from IOP publisher "
Fig 3
(a) SEM images of the morphological evolution of lithium dendrites in lithium-lithium symmetric batteries under different current densities 43; (b) SEM images of the lithium layer under different current densities and temperatures 49; (c) schematic diagram of the principle of lithium nucleation and deposition processes at high and low temperatures 49; (d) cryo-EM shows the difference in SEI nanostructures formed at low and high temperatures 50; (e) three basic processes in the process of lithium ion electrodeposition Schematic diagram 53. (a) Adapted from The American Association for the Advancement of Science publisher. (b, c) Adapted with permission from copyright 2019, John Wiley and Sons publisher. (d) Adapted from Springer Nature publisher. (e) Adapted with permission from copyright 2020, American Chemical Society."
Fig 4
(a) Comparison of the burning phenomenon of EC + DMC solvent (left) and TEP + FEC (right) with an external fire (Ⅰ) or without external fire (Ⅱ) 56; (b) 25 and 60 ℃ cross-section and top SEM image of the lithium deposition layer after the next 50 cycles 47; (c) comparison of battery cycle efficiency and stability using conventional electrolyte, HCE and LHCE 58. (a) Adapted with permission from copyright 2018, Royal Society of Chemistry publisher. (b) Adapted with permission from copyright 2018, John Wiley and Sons publisher. (c) Adapted from Elsevier publisher."
Fig 5
(a) Comparison of battery cycle performance and coulombic efficiency with different amounts of IL addition 61; (b) comparison of wettability and contact angle of separator with DIL (diluted ionic liquid), CIL (highly concentrated ionic liquid) and LCIL 62; (c) top and cross-sectional SEM images of SEI formed in DIL, CIL and LCIL 62. (a) Adapted with permission from copyright 2013, Royal Society of Chemistry publisher. (b) Adapted with permission from copyright 2020, John Wiley and Sons publisher. (c) Adapted with permission from copyright 2020, John Wiley and Sons publisher."
Fig 6
(a) Common substances in electrolytes and diagrams of lithium ion solvation structure in dilute ether, concentrated ether, and concentrated siloxane electrolytes 64; (b) different electrolytes after 100 cycles (the solvents in Ⅰ, Ⅱ, and Ⅲ are respectively EC/DMC, DMC/FEC and FEC/FEMC/HFE) SEM images of lithium metal morphology 65; (c) schematic diagram of super electrolyte using non-polar solvent 66. (a) Adapted with permission from copyright 2020, John Wiley and Sons publisher. (b) Adapted from Springer Nature publisher. (c) Adapted from Springer Nature publisher."
Fig 7
(a) Bare PE separator (the first three from top to bottom) and PDA coating (fourth)) digital camera images of PE separator under different RF sputtering power and time 72; (b) schematic diagram of egg and eggshell structure and RESM preparation process 73; (c) schematic diagram of phase inversion method mechanism and overall process of material preparation 74. (a) Adapted with permission from copyright 2015, RSC Publishing publisher. (b, c) Adapted from Elsevier publisher."
Fig 8
(a) Comparison of thermal shrinkage behavior of two kinds of membranes exposed to different temperatures for 0.5 h 77; (b) schematic diagram of CPC membrane production process 79; (c) original state of CPC membrane comparison with SEM which has a thermal shutdown effect at 200 ℃ 79. (a) Adapted from Elsevier publisher. (b, c) Adapted with permission from copyright 2018, John Wiley and Sons publisher."
Fig 9
(a) Comparison of the burning time of liquid electrolyte in FRS and PE/PP separators 28; (b) schematic diagram of the principle of the flame retardant separator with a core-shell structure 82. (a) Adapted from Elsevier publisher. (b) Adapted from American Association for the Advancement of Science publisher."
Fig 10
(a) Schematic diagram of the design and manufacturing principle of smart batteries 83; (b) SiO2 sandwich separator to eliminate lithium dendrites Schematic diagram 85; (c) schematic diagram of the principle of the smart separator changing the growth direction of lithium dendrites 86. (a, c) Adapted from Springer Nature publisher. (b) Adapted with permission from copyright 2016, John Wiley and Sons publisher."
1 |
Cheng X. B. ; Zhang R. ; Zhao C. Z. ; Zhang Q. Chem. Rev. 2017, 117, 10403.
doi: 10.1021/acs.chemrev.7b00115 |
2 |
Dunn J. B. ; Gaines L. ; Kelly J. C. ; James C. ; Gallagher K. G. Energy Environ. Sci. 2015, 8, 158.
doi: 10.1039/c4ee03029j |
3 |
Whittingham M. S. Chem. Rev. 2014, 114, 11414.
doi: 10.1021/cr5003003 |
4 |
Wang Q. S. ; Ping P. ; Zhao X. J. ; Chu G. Q. ; Sun J. H. ; Chen C. H. J. Power Sources 2012, 208, 210.
doi: 10.1016/j.jpowsour.2012.02.038 |
5 |
Lu L. G. ; Han X. B. ; Li J. Q. ; Hua J. F. ; Ouyang M. G. J. Power Sources 2013, 226, 272.
doi: 10.1016/j.jpowsour.2012.10.060 |
6 |
Janek J. ; Zeier W. G. Nat. Energy 2016, 1, 16141.
doi: 10.1038/nenergy.2016.141 |
7 |
Zhang Y. ; Zuo T. T. ; Popovic J. ; Lim K. ; Yin Y. X. ; Maier J. ; Guo Y. G. Mater. Today 2020, 33, 56.
doi: 10.1016/j.mattod.2019.09.018 |
8 |
Gao X. ; Zhou Y. N. ; Han D. ; Zhou J. ; Zhou D. ; Tang W. ; Goodenough J. B. Joule 2020, 4, 1864.
doi: 10.1016/j.joule.2020.06.016 |
9 |
Liu J. ; Bao Z. N. ; Cui Y. ; Dufek E. J. ; Goodenough J. B. ; Khalifah P. ; Li Q. Y. ; Liaw B. Y. ; Liu P. ; Manthiram A. ; et al Nat. Energy 2019, 4, 180.
doi: 10.1038/s41560-019-0338-x |
10 |
Lin D. C. ; Liu Y. Y. ; Cui Y. Nat. Nanotech. 2017, 12, 194.
doi: 10.1038/nnano.2017.16 |
11 | Liu F. F. ; Zhang Z. W. ; Ye S. F. ; Yao Y. ; Yu Y. Acta Phys. -Chim. Sin. 2021, 37, 2006021. |
刘凡凡; 张志文; 叶淑芬; 姚雨; 余彦. 物理化学学报, 2021, 37, 2006021.
doi: 10.3866/PKU.WHXB202006021 |
|
12 |
Bruce P. G. ; Freunberger S. A. ; Hardwick L. J. ; Tarascon J. M. Nat. Mater. 2012, 11, 19.
doi: 10.1038/nmat3191 |
13 |
Fang R. P. ; Zhao S. Y. ; Sun Z. H. ; Wang D. W. ; Cheng H. M. ; Li F. Adv. Mater. 2017, 29, 1606823.
doi: 10.1002/adma.201606823 |
14 |
Xia C. ; Kwok C. Y. ; Nazar L. F. Science 2018, 361, 777.
doi: 10.1126/science.aas9343 |
15 | Yue X. Y. ; Ma C. ; Bao J. ; Yang S. Y. ; Chen D. ; Wu X. J. ; Zhou Y. N. Acta Phys. -Chim. Sin. 2021, 37, 2005012. |
岳昕阳; 马萃; 包戬; 杨思宇; 陈东; 吴晓京; 周永宁. 物理化学学报, 2021, 37, 2005012.
doi: 10.3866/PKU.WHXB202005012 |
|
16 |
Koch S. ; Fill A. ; Birke K. P. J. Power Sources 2018, 398, 106.
doi: 10.1016/j.jpowsour.2018.07.051 |
17 |
Xu G. J. ; Huang L. ; Lu C. L. ; Zhou X. H. ; Cui G. L. Energy Storage Mater. 2020, 31, 72.
doi: 10.1016/j.ensm.2020.06.004 |
18 |
Lyu P. Z. ; Liu X. J. ; Qu J. ; Zhao J. T. ; Huo Y. T. ; Qu Z. G. ; Rao Z. H. Energy Storage Mater. 2020, 31, 195.
doi: 10.1016/j.ensm.2020.06.042 |
19 |
Feng X. N. ; Ren D. S. ; He X. M. ; Ouyang M. G. Joule 2020, 4, 743.
doi: 10.1016/j.joule.2020.02.010 |
20 |
Feng X. N. ; Ouyang M. G. ; Liu X. ; Lu L. G. ; Xia Y. ; He X. M. Energy Storage Mater. 2018, 10, 246.
doi: 10.1016/j.ensm.2017.05.013 |
21 |
Offer G. ; Patel Y. ; Hales A. ; Diaz L. B. ; Marzook M. Nature 2020, 582, 485.
doi: 10.1038/d41586-020-01813-8 |
22 |
Jia Y. K. ; Uddin M. ; Li Y. X. ; Xu J. J. Energy Storage 2020, 31, 101668.
doi: 10.1016/j.est.2020.101668 |
23 |
Wang S. J. ; Rafiz K. ; Liu J. L. ; Jin Y. ; Lin J. Y. S. Sustain Energy Fuels 2020, 4, 2342.
doi: 10.1039/d0se00027b |
24 |
Yuan L. M. ; Dubaniewicz T. ; Zlochower I. ; Thomas R. ; Rayyan N. Proc. Saf. Environ. Prot. 2020, 144, 186.
doi: 10.1016/j.psep.2020.07.028 |
25 |
Chen S. C. ; Wang Z. R. ; Yan W. J. Hazard. Mater. 2020, 400, 123169.
doi: 10.1016/j.jhazmat.2020.123169 |
26 |
Liao Z. H. ; Zhang S. ; Li K. ; Zhang G. Q. ; Habetler T. G. J. Power Sources 2019, 436, 226879.
doi: 10.1016/j.jpowsour.2019.226879 |
27 |
Orendorff C. J. ; Lambert T. N. ; Chavez C. A. ; Bencomo M. ; Fenton K. R. Adv. Energy Mater. 2013, 3, 314.
doi: 10.1002/aenm.201200292 |
28 |
Woo J. J. ; Nam S. H. ; Seo S. J. ; Yun S. H. ; Kim W. B. ; Xu T. W. ; Moon S. H. Electrochem. Commun. 2013, 35, 68.
doi: 10.1016/j.elecom.2013.08.005 |
29 |
Xu K. Chem. Rev. 2014, 114, 11503.
doi: 10.1021/cr500003w |
30 |
Shen X. ; Liu H. ; Cheng X. B. ; Yan C. ; Huang J. Q. Energy Storage Mater. 2018, 12, 161.
doi: 10.1016/j.ensm.2017.12.002 |
31 |
Rodrigues M. T. F. ; Babu G. ; Gullapalli H. ; Kalaga K. ; Sayed F. N. ; Kato K. ; Joyner J. ; Ajayan P. M. Nat. Energy 2017, 2, 17108.
doi: 10.1038/nenergy.2017.108 |
32 |
Geng Z. ; Lu J. Z. ; Li Q. ; Qiu J. L. ; Wang Y. ; Peng J. Y. ; Huang J. ; Li W. J. ; Yu X. Q. ; Li H. Energy Storage Mater. 2019, 23, 646.
doi: 10.1016/j.ensm.2019.03.005 |
33 |
Mandal B. K. ; Padhi A. K. ; Shi Z. ; Chakraborty S. ; Filler R. J. Power Sources 2006, 161, 1341.
doi: 10.1016/j.jpowsour.2006.06.008 |
34 |
Balakrishnan P. G. ; Ramesh R. ; Kumar T. P. J. Power Sources 2006, 155, 401.
doi: 10.1016/j.jpowsour.2005.12.002 |
35 |
Ghazi Z. A. ; Sun Z. H. ; Sun C. G. ; Qi F. L. ; An B. G. ; Li F. ; Cheng H. M. Small 2019, 15, 1900687.
doi: 10.1002/smll.201900687 |
36 |
Han C. P. ; He Y. B. ; Liu M. ; Li B. H. ; Yang Q. H. ; Wong C. P. ; Kang F. Y. J. Mater. Chem. A 2017, 5, 6368.
doi: 10.1039/c7ta00303j |
37 |
Gao Y. L. ; Guo M. Y. ; Yuan K. ; Shen C. ; Ren Z. Y. ; Zhang K. ; Zhao H. ; Qiao F. H. ; Gu J. L. ; Qi Y. Q. ; et al Adv. Energy Mater. 2020, 10, 1903362.
doi: 10.1002/aenm.201903362 |
38 |
Chen R. S. ; Nolan A. M. ; Lu J. Z. ; Wang J. Y. ; Yu X. Q. ; Mo Y. F. ; Chen L. Q. ; Huang X. J. ; Li H. Joule 2020, 4, 812.
doi: 10.1016/j.joule.2020.03.012 |
39 |
Feng X. N. ; Zheng S. Q. ; Ren D. S. ; He X. M. ; Wang L. ; Cui H. ; Liu X. ; Jin C. Y. ; Zhang F. S. ; Xu C. S. ; et al Appl. Energy 2019, 246, 53.
doi: 10.1016/j.apenergy.2019.04.009 |
40 |
Puthusseri D. ; Paramananda M. ; Mukherjee P. P. ; Pol V. G. J. Electrochem. Soc. 2020, 167, 120513.
doi: 10.1149/1945-7111/ababd2 |
41 |
Xu W. ; Wang J. L. ; Ding F. ; Chen X. L. ; Nasybulin E. ; Zhang Y. H. ; Zhang J. G. Energy Environ. Sci. 2014, 7, 513.
doi: 10.1039/c3ee40795k |
42 |
Pei A. ; Zheng G. Y. ; Shi F. F. ; Li Y. Z. ; Cui Y. Nano Lett. 2017, 17, 1132.
doi: 10.1021/acs.nanolett.6b04755 |
43 |
Li L. ; Basu S. ; Wang Y. P. ; Chen Z. Z. ; Hundekar P. ; Wang B. W. ; Shi J. ; Shi Y. F. ; Narayanan S. ; Koratkar N. Science 2018, 359, 1513.
doi: 10.1126/science.aap8787 |
44 |
Hundekar P. ; Basu S. ; Pan J. L. ; Bartolucci S. F. ; Narayanan S. ; Yang Z. Y. ; Koratkar N. Energy Storage Mater. 2019, 20, 291.
doi: 10.1016/j.ensm.2019.04.013 |
45 |
Ishikawa M. J. Electrochem. Soc. 1997, 144, L90.
doi: 10.1149/1.1837563 |
46 |
Mistry A. ; Fear C. ; Carter R. ; Love C. T. ; Mukherjee P. P. ACS Energy Lett. 2019, 4, 156.
doi: 10.1021/acsenergylett.8b02003 |
47 |
Yang H. J. ; Guo C. ; Chen J. H. ; Naveed A. ; Yang J. ; Nuli Y. ; Wang J. L. Angew. Chem. Int. Ed. 2019, 58, 791.
doi: 10.1002/anie.201811291 |
48 |
Hong Z. ; Viswanathan V. ACS Energy Lett. 2019, 4, 1012.
doi: 10.1021/acsenergylett.9b00433 |
49 |
Yan K. ; Wang J. Y. ; Zhao S. Q. ; Zhou D. ; Sun B. ; Cui Y. ; Wang G. X. Angew. Chem. Int. Ed. 2019, 58, 11364.
doi: 10.1002/anie.201905251 |
50 |
Wang J. Y. ; Huang W. ; Pei A. ; Li Y. Z. ; Shi F. F. ; Yu X. Y. ; Cui Y. Nat. Energy 2019, 4, 664.
doi: 10.1038/s41560-019-0413-3 |
51 |
Zhu Y. Y. ; Xie J. ; Pei A. ; Liu B. F. ; Wu Y. C. ; Lin D. C. ; Li J. ; Wang H. S. ; Chen H. ; Xu J. W. ; et al Nat. Commun. 2019, 10, 2067.
doi: 10.1038/s41467-019-09924-1 |
52 |
Golozar M. ; Paolella A. ; Demers H. ; Bessette S. ; Lagacé M. ; Bouchard P. ; Guerfi A. ; Gauvin R. ; Zaghib K. Commun. Chem. 2019, 2, 131.
doi: 10.1038/s42004-019-0234-0 |
53 |
Vishnugopi B. S. ; Hao F. ; Verma A. ; Mukherjee P. P. ACS Appl. Mater. Interfaces 2020, 12, 23931.
doi: 10.1021/acsami.0c04355 |
54 |
Deng K. R. ; Zeng Q. G. ; Wang D. ; Liu Z. ; Wang G. X. ; Qiu Z. P. ; Zhang Y. F. ; Xiao M. ; Meng Y. Z. Energy Storage Mater. 2020, 32, 425.
doi: 10.1016/j.ensm.2020.07.018 |
55 |
Yao X. L. ; Xie S. ; Chen C. H. ; Wang Q. S. ; Sun J. H. ; Li Y. L. ; Lu S. X. J. Power Sources 2005, 144, 170.
doi: 10.1016/j.jpowsour.2004.11.042 |
56 |
Yang H. J. ; Li Q. Y. ; Guo C. ; Naveed A. ; Yang J. ; Nuli Y. ; Wang J. L. Chem. Commun. 2018, 54, 4132.
doi: 10.1039/c7cc09942h |
57 |
Dong Y. ; Zhang N. ; Li C. X. ; Zhang Y. F. ; Jia M. ; Wang Y. Y. ; Zhao Y. R. ; Jiao L. F. ; Cheng F. Y. ; Xu J. Z. ACS Appl. Energy Mater. 2019, 2, 2708.
doi: 10.1021/acsaem.9b00027 |
58 |
Chen S. R. ; Zheng J. M. ; Yu L. ; Ren X. D. ; Engelhard M. H. ; Niu C. ; Lee H. ; Xu W. ; Xiao J. ; Liu J. ; et al Joule 2018, 2, 1548.
doi: 10.1016/j.joule.2018.05.002 |
59 |
Yang G. ; Song Y. D. ; Wang Q. ; Zhang L. B. ; Deng L. J. Mater. Des. 2020, 190, 108563.
doi: 10.1016/j.matdes.2020.108563 |
60 |
Huie M. M. ; DiLeo R. A. ; Marschilok A. C. ; Takeuchi K. J. ; Takeuchi E. S. ACS Appl. Mater. Interfaces 2015, 7, 11724.
doi: 10.1021/acsami.5b00496 |
61 |
Zheng J. M. ; Gu M. ; Chen H. H. ; Meduri P. ; Engelhard M. H. ; Zhang J. G. ; Liu J. ; Xiao J. J. Mater. Chem. A 2013, 1, 8464.
doi: 10.1039/c3ta11553d |
62 |
Lee S. ; Park K. ; Koo B. ; Park C. ; Jang M. ; Lee H. ; Lee H. Adv. Funct. Mater. 2020, 30, 2003132.
doi: 10.1002/adfm.202003132 |
63 |
Suo L. M. ; Hu Y. S. ; Li H. ; Armand M. ; Chen L. Q. Nat. Commun. 2013, 4, 1481.
doi: 10.1038/ncomms2513 |
64 |
Amine R. ; Liu J. Z. ; Acznik I. ; Sheng T. ; Lota K. ; Sun H. ; Sun C. J. ; Fic K. ; Zuo X. B. ; Ren Y. ; et al Adv. Energy Mater. 2020, 10, 2000901.
doi: 10.1002/aenm.202000901 |
65 |
Fan X. L. ; Chen L. ; Borodin O. ; Ji X. ; Chen J. ; Hou S. ; Deng T. ; Zheng J. ; Yang C. Y. ; Liou S. C. ; et al Nat. Nanotechnol. 2018, 13, 715.
doi: 10.1038/s41565-018-0183-2 |
66 |
Fan X. L. ; Ji X. ; Chen L. ; Chen J. ; Deng T. ; Han F. D. ; Yue J. ; Piao N. ; Wang R. X. ; Zhou X. Q. ; et al Nat. Energy 2019, 4, 882.
doi: 10.1038/s41560-019-0474-3 |
67 |
Liu H. Y. ; Xu J. ; Guo B. H. ; He X. M. Ceram. Int. 2014, 40, 14105.
doi: 10.1016/j.ceramint.2014.05.142 |
68 |
Peng L. Q. ; Shen X. ; Dai J. H. ; Wang X. ; Zeng J. ; Huang B. Y. ; Li H. ; Zhang P. ; Zhao J. B. J. Electrochem. Soc. 2019, 166, A2111.
doi: 10.1149/2.1141910jes |
69 |
Jeon H. ; Jin S. Y. ; Park W. H. ; Lee H. ; Kim H. T. ; Ryou M. H. ; Lee Y. M. Electrochim. Acta 2016, 212, 649.
doi: 10.1016/j.electacta.2016.06.172 |
70 |
Deng N. P. ; Kang W. M. ; Liu Y. B. ; Ju J. G. ; Wu D. Y. ; Li L. ; Hassan B. S. ; Cheng B. W. J. Power Sources 2016, 331, 132.
doi: 10.1016/j.jpowsour.2016.09.044 |
71 |
Lee T. ; Kim W. K. ; Lee Y. ; Ryou M. H. ; Lee Y. M. Macromol. Res. 2014, 22, 1190.
doi: 10.1007/s13233-014-2163-1 |
72 |
Lee T. ; Lee Y. ; Ryou M. H. ; Lee Y. M. RSC Adv. 2015, 5, 39392.
doi: 10.1039/C5RA01061F |
73 |
Ma L. B. ; Chen R. P. ; Hu Y. ; Zhang W. J. ; Zhu G. Y. ; Zhao P. Y. ; Chen T. ; Wang C. X. ; Yan W. ; Wang Y. R. ; et al Energy Storage Mater. 2018, 14, 258.
doi: 10.1016/j.ensm.2018.04.016 |
74 |
Song Q. Q. ; Li A. J. ; Shi L. ; Qian C. ; Feric T. G. ; Fu Y. K. ; Zhang H. R. ; Li Z. Y. ; Wang P. Y. ; Li Z. ; et al Energy Storage Mater. 2019, 22, 48.
doi: 10.1016/j.ensm.2019.06.033 |
75 |
Cheng C. L. ; Wan C. C. ; Wang Y. Y. ; Wu M. S. J. Power Sources 2005, 144, 238.
doi: 10.1016/j.jpowsour.2004.12.043 |
76 |
Shi Q. ; Ni L. ; Zhang Y. F. ; Feng X. S. ; Chang Q. H. ; Meng J. Q. J. Mater. Chem. A 2017, 5, 13610.
doi: 10.1039/C7TA02552A |
77 |
Zhang X. K. ; Li N. ; Hu Z. M. ; Yu J. R. ; Wang Y. ; Zhu J. J. Membr. Sci. 2019, 581, 355.
doi: 10.1016/j.memsci.2019.03.071 |
78 |
He L. Y. ; Qiu T. ; Xie C. J. ; Tuo X. L. J. Appl. Polym. Sci. 2018, 135, 46697.
doi: 10.1002/app.46697 |
79 |
Pan R. J. ; Xu X. X. ; Sun R. ; Wang Z. H. ; Lindh J. ; Edström K. ; Strømme M. ; Nyholm L. Small 2018, 14, 1704371.
doi: 10.1002/smll.201704371 |
80 |
Gitina R. M. ; Oksent'yevich L. A. ; Kuznetsov A. A. ; Danilina L. I. ; Izyumnikov A. L. ; Rogozhkina Y. D. ; Bogachev Y. S. ; Kopylov V. V. ; Novikov S. N. ; Pravednikov A. N. Polym. Sci. U.S.S.R. 1984, 26, 1184.
doi: 10.1016/0032-3950(84)90339-3 |
81 |
Xu T. W. ; Wu D. ; Wu L. Prog. Polym. Sci. 2008, 33, 894.
doi: 10.1016/j.progpolymsci.2008.07.002 |
82 |
Liu K. ; Liu W. ; Qiu Y. C. ; Kong B. A. ; Sun Y. M. ; Chen Z. ; Zhuo D. ; Lin D. C. ; Cui Y. Sci. Adv. 2017, 3, 8.
doi: 10.1126/sciadv.1601978 |
83 |
Wu H. ; Zhuo D. ; Kong D. S. ; Cui Y. Nat. Commun. 2014, 5, 5193.
doi: 10.1038/ncomms6193 |
84 |
Moon S. ; Tamwattana O. ; Park H. ; Yoon G. ; Seong W. M. ; Lee M. H. ; Park K. Y. ; Meethong N. ; Kang K. J. Mater. Chem. A 2019, 7, 24807.
doi: 10.1039/C9TA08032E |
85 |
Liu K. ; Zhuo D. ; Lee H. W. ; Liu W. ; Lin D. C. ; Lu Y. Y. ; Cui Y. Adv. Mater. 2017, 29, 1603987.
doi: 10.1002/adma.201603987 |
86 |
Liu Y. D. ; Liu Q. ; Xin L. ; Liu Y. Z. ; Yang F. ; Stach E. A. ; Xie J. Nat. Energy 2017, 2, 17083.
doi: 10.1038/nenergy.2017.83 |
87 |
Tikekar M. D. ; Archer L. A. ; Koch D. L. Sci. Adv. 2016, 2, e1600320.
doi: 10.1126/sciadv.1600320 |
88 |
Zhou W. D. ; Gao H. C. ; Goodenough J. B. Adv. Energy Mater. 2016, 6, 1501802.
doi: 10.1002/aenm.201501802 |
89 |
Pan Q. W. ; Barbash D. ; Smith D. M. ; Qi H. ; Gleeson S. E. ; Li C. Y. Adv. Energy Mater. 2017, 7, 1701231.
doi: 10.1002/aenm.201701231 |
90 |
Wu N. ; Shi Y. R. ; Lang S. Y. ; Zhou J. M. ; Liang J. Y. ; Wang W. ; Tan S. J. ; Yin Y. X. ; Wen R. ; Guo Y. G. Angew. Chem. Int. Ed. 2019, 58, 18146.
doi: 10.1002/anie.201910478 |
91 |
Shi Y. ; Ha H. ; Al-Sudani A. ; Ellison C. J. ; Yu G. H. Adv. Mater. 2016, 28, 7921.
doi: 10.1002/adma.201602239 |
92 |
Zhou J. Q. ; Qian T. ; Liu J. ; Wang M. F. ; Zhang L. ; Yan C. L. Nano Lett. 2019, 19, 3066.
doi: 10.1021/acs.nanolett.9b00450 |
93 |
Li Y. Z. ; Huang W. ; Li Y. B. ; Pei A. ; Boyle D. T. ; Cui Y. Joule 2018, 2, 2167.
doi: 10.1016/j.joule.2018.08.004 |
94 |
Li Y. Z. ; Li Y. B. ; Pei A. L. ; Yan K. ; Sun Y. M. ; Wu C. L. ; Joubert L. M. ; Chin R. ; Koh A. L. ; Yu Y. ; et al Science 2017, 358, 506.
doi: 10.1126/science.aam6014 |
95 |
Jin Y. ; Zheng Z. K. ; Wei D. H. ; Jiang X. ; Lu H. F. ; Sun L. ; Tao F. B. ; Guo D. L. ; Liu Y. ; Gao J. F. ; et al Joule 2020, 4, 1714.
doi: 10.1016/j.joule.2020.05.016 |
96 |
Shen K. ; Wang Z. ; Bi X. X. ; Ying Y. ; Zhang D. ; Jin C. B. ; Hou G. Y. ; Cao H. Z. ; Wu L. K. ; Zheng G. Q. ; et al Adv. Energy Mater. 2019, 9, 1900260.
doi: 10.1002/aenm.201900260 |
97 |
Chen Y. X. ; Dou X. Y. ; Wang K. ; Han Y. S. Adv. Energy Mater. 2019, 9, 1900019.
doi: 10.1002/aenm.201900019 |
98 |
Adair K. R. ; Banis M. N. ; Zhao Y. ; Bond T. ; Li R. Y. ; Sun X. L. Adv. Mater. 2020, 32, 2002550.
doi: 10.1002/adma.202002550 |
99 |
Deng Z. ; Huang Z. Y. ; Shen Y. ; Huang Y. H. ; Ding H. ; Luscombe A. ; Johnson M. ; Harlow J. E. ; Gauthier R. ; Dahn J. R. Joule 2020, 4, 2017.
doi: 10.1016/j.joule.2020.07.014 |
100 |
Bommier C. ; Chang W. ; Lu Y. F. ; Yeung J. ; Davies G. ; Mohr R. ; Williams M. ; Steingart D. Cell Rep. Phys. Sci. 2020, 1, 100035.
doi: 10.1016/j.xcrp.2020.100035 |
101 |
Deng Z. ; Lin X. ; Huang Z. Y. ; Meng J. T. ; Zhong Y. ; Ma G. T. ; Zhou Y. ; Shen Y. ; Ding H. ; Huang Y. H. Adv. Energy Mater. 2020, 2000806
doi: 10.1002/aenm.202000806 |
[1] | Guoyong Xue, Jing Li, Junchao Chen, Daiqian Chen, Chenji Hu, Lingfei Tang, Bowen Chen, Ruowei Yi, Yanbin Shen, Liwei Chen. A Single-Ion Polymer Superionic Conductor [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2205012-0. |
[2] | Yingying Zhu, Yong Wang, Miao Xu, Yongmin Wu, Weiping Tang, Di Zhu, Yu-Shi He, Zi-Feng Ma, Linsen Li. Tracking Pressure Changes and Morphology Evolution of Lithium Metal Anodes [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2110040-0. |
[3] | Wei Zhang, Haichen Liang, Kerun Zhu, Yong Tian, Yao Liu, Jiayin Chen, Wei Li. Three-Dimensional Macro-/Mesoporous C-TiC Nanocomposites for Dendrite-Free Lithium Metal Anode [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2105024-. |
[4] | Zixu He, Yawei Chen, Fanyang Huang, Yulin Jie, Xinpeng Li, Ruiguo Cao, Shuhong Jiao. Fluorinated Solvents for Lithium Metal Batteries [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2205005-. |
[5] | Zibo Zhang, Wei Deng, Xufeng Zhou, Zhaoping Liu. LiC6 Heterogeneous Interface for Stable Lithium Plating and Stripping [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2008092-. |
[6] | Guangbin Hua, Yanchen Fan, Qianfan Zhang. Application of Computational Simulation on the Study of Lithium Metal Anodes [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2008089-. |
[7] | Yumeng Zhao, Lingxiao Ren, Aoxuan Wang, Jiayan Luo. Composite Anodes for Lithium Metal Batteries [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2008090-. |
[8] | Yunbo Zhang, Qiaowei Lin, Junwei Han, Zhiyuan Han, Tong Li, Feiyu Kang, Quan-Hong Yang, Wei Lü. Bacterial Cellulose-Derived Three-Dimensional Carbon Current Collectors for Dendrite-Free Lithium Metal Anodes [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2008088-. |
[9] | Xinyang Yue, Cui Ma, Jian Bao, Siyu Yang, Dong Chen, Xiaojing Wu, Yongning Zhou. Failure Mechanisms of Lithium Metal Anode and Their Advanced Characterization Technologies [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2005012-. |
[10] | Gaolong Zhu, Chenzi Zhao, Hong Yuan, Haoxiong Nan, Bochen Zhao, Lipeng Hou, Chuangxin He, Quanbing Liu, Jiaqi Huang. Liquid Phase Therapy with Localized High-Concentration Electrolytes for Solid-State Li Metal Pouch Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2005003-. |
[11] | Yuheng Sun, Mingda Gao, Hui Li, Li Xu, Qing Xue, Xinran Wang, Ying Bai, Chuan Wu. Application of Metal-Organic Frameworks to the Interface of Lithium Metal Batteries [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2007048-. |
[12] | Shijie Yang, Xiangqun Xu, Xinbing Cheng, Xinmeng Wang, Jinxiu Chen, Ye Xiao, Hong Yuan, He Liu, Aibing Chen, Wancheng Zhu, Jiaqi Huang, Qiang Zhang. Columnar Lithium Metal Deposits: the Role of Non-Aqueous Electrolyte Additive [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2007058-. |
[13] | Guorui Zheng, Yuxuan Xiang, Yong Yang. Neutron Depth Profiling Technique for Studying Rechargeable Lithium Metal Anodes [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2008094-. |
[14] | Jinli Qin, Longtao Ren, Xin Cao, Yajun Zhao, Haijun Xu, Wen Liu, Xiaoming Sun. Porous Copper Foam Co-operation with Thiourea for Dendrite-free Lithium Metal Anode [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2009020-. |
[15] | Xiaoguang Qiu, Wei Liu, Jiuding Liu, Junzhi Li, Kai Zhang, Fangyi Cheng. Nucleation Mechanism and Substrate Modification of Lithium Metal Anode [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2009012-. |
|