Acta Phys. -Chim. Sin. ›› 2022, Vol. 38 ›› Issue (11): 2205005.doi: 10.3866/PKU.WHXB202205005
Special Issue: Special Issue of Emerging Scientists
• REVIEW • Previous Articles Next Articles
Zixu He, Yawei Chen, Fanyang Huang, Yulin Jie, Xinpeng Li, Ruiguo Cao, Shuhong Jiao()
Received:
2022-05-03
Accepted:
2022-05-27
Published:
2022-06-06
Contact:
Shuhong Jiao
E-mail:jiaosh@ustc.edu.cn
About author:
Shuhong Jiao, Email: jiaosh@ustc.edu.cn; Tel.: +86-551-63607418Supported by:
Zixu He, Yawei Chen, Fanyang Huang, Yulin Jie, Xinpeng Li, Ruiguo Cao, Shuhong Jiao. Fluorinated Solvents for Lithium Metal Batteries[J]. Acta Phys. -Chim. Sin. 2022, 38(11), 2205005. doi: 10.3866/PKU.WHXB202205005
Fig 1
(a) Schematic diagram of energy levels of electrodes and electrolytes of LMB 16; (b) the decomposition path differences between EC and FEC solvents 17. (a) Adapted with permission from Ref. 16, copyright 2017 Royal Society of Chemistry publisher; (b) Adapted with permission from Ref. 17, copyright 2020 American Chemical Society."
Table 1
Localized high-concentration electrolytes formula and the battery performance."
Electrolyte Formula | Coulombic Efficiency | Cell Configuration | Protocol | Discharge Capacity | Ref. |
3 mol?L?1 LiFSI/DME/TTE (8:2 by vol.) + 1% (w) FEC | 500 cycles, 99.3% | 100 μm Li||NMC811 | 0.9 mA?cm?2, 1/2C | 197.4 mAh?g?1 | |
20 μm Li||NMC811 | 0.9 mA?cm?2, 1/2C | 119 cycles, 84.2% | |||
LiFSI/DME/TTE (1 : 1.2 : 3 by mol) | 300 cycles, 99.3% | 450 μm Li||NMC811 | 0.5 mA?cm?2, 1/3C | 250 cycles, 82% | |
50 μm Li||NMC811 | 0.42 mA?cm?2, 1/10C | 155 cycles, 80% | |||
Li||NMC811 anode free | 0.42 mA?cm?2, 1/10C | 70 cycles, 77% | |||
LiFSI/DMC/TTE (1 : 1.2 : 3 by mol) | 99.3% | Li||NMC811 | 0.5 mA?cm?2, 1/3C | 300 cycles, 56% | |
LiFSI/TMS/TTE (1 : 3 : 3 by mol) | 99.2% | Li||NMC811 | 0.5 mA?cm?2, 1/3C | 300 cycles, 13% | |
LiFSI/TEP/TTE (1 : 1.4 : 3 by mol) | 99.1% | Li||NMC811 | 0.5 mA?cm?2, 1/3C | 300 cycles, 85% | |
LiFSI/DME/TTE (1:1:3 by mol) | 99.5% | Li||NMC811 | 0.5 mA?cm?2, 1/3C | 300 cycles, 90% | |
2 mol?L?1 LiFSI/DMC/1, 2dfBen (3 : 7 by vol.) | 288 cycles, > 90% | 40 μm Li ||NMC523 | 1.5 mA?cm?2, 1/2C | 80 cycles | |
2 mol?L?1 LiFSI/DMC/BTFE (3 : 7 by vol.) | 159 cycles, > 90% | 40 μm Li ||NMC523 | 1.5 mA?cm?2, 1/2C | 70 cycles, 111 mAh·g-1 | |
1.28 mol?L?1 LiFSI/FEMC/FEC in D2 | 100 cycles, 99.4% | Li||NMA | 0.4 mA?cm?2, 1/3C | 450 cycles, 150 mAh?g?1 | |
1.2 mol?L?1 LiFSI/DMC/BTFE (0.75 : 1 : 3 by mol) | 99.2% | Li||NMC622 | 1.6 mA?cm?2, 1C | 600 cycles, 97% | |
LiFSI/TMS/TTE (1 : 3 : 3 by mol) | 150 cycles, 98.8% | 450 μm Li||NMC333 | 0.5 mA?cm?2, 1/3C | 300 cycles | |
1 mol?L?1 LiFSI/DME/TFEO (1.2 : 3 by mol) | 99.5% | 50 μm Li||NMC811 | 0.5 mA?cm?2, 1/3C | 300 cycles, 80% | |
LiFSI/DMC/TTE (1 : 1.5 : 1.5 by mol) | 400 cycles, 98.6% | Li||NMC622 | 0.5 mA?cm?2, 1/2C | 100 cycles, 93.5% | |
1.2 mol?L?1 LiFSI/DMC/BTFE (1 : 2 by mol) | 99.3% | Li||NMC333 | 2 mA?cm?2, 1C | 300 cycles, 95% | |
LiFSI/DME/BTFE (1 : 1.2 : 3 by mol) | 99.4% | 450 μm Li||NMC811 | 0.5 mA?cm?2, 1/3C | 162 cycles, 80% | |
LiFSI/DME/TTE (1 : 1.2 : 3 by mol) | 99.5% | 450 μm Li||NMC811 | 0.5 mA?cm?2, 1/3C | 262 cycles, 80% | |
LiFSI/DME/BTFEC (1 : 1.2 : 3 by mol) | 96.8% | 450 μm Li||NMC811 | 0.5 mA?cm?2, 1/3C | 50 cycles, 80% | |
LiFSI/DME/TFEB (1 : 1.4 : 3 by mol) | 95.4% | 450 μm Li||NMC811 | 0.5 mA?cm?2, 1/3C | 32 cycles, 80% |
Fig 4
(a) Physicochemical properties of LiFSI/DMC/TTE in different proportions 56; (b) curves of dielectric constant as a function of diluent ratio 58; (c) binding energy and dielectric constant of different solvents with Li+ 59; (d, e) conductivity and magnetic susceptibility of electrolyte vary with temperature 54. (a) Adapted with permission from Ref. 56, copyright 2019 John Wiley and Sons Publisher; (b) adapted with permission from Ref. 58, copyright 2021 John Wiley and Sons Publisher; (c) adapted with permission from Ref. 59, copyright 2021 John Wiley and Sons publisher; (d, e) Adapted with permission from Ref. 54, copyright 2019 Springer Nature publisher."
Fig 5
(a, b) Raman spectra and NMR-17O data of LiFSI/DME /TFEO electrolyte in different proportions 30; (c) thinner divides the AGG structure into CIP schematic 62; (d) schematic diagram of solvation structure of LHCE 51; (e) structure of HCE and LHCE electrolyte under theoretical simulation 64. (a, b) Adapted with permission from Ref. 30, copyright 2021 Elsevier publisher; (c) adapted with permission from Ref. 62, copyright 2022 American Chemical Society; (d) adapted with permission from Ref. 51, copyright 2019 Elsevier publisher; (e) adapted with permission from Ref. 64, copyright 2020 American Chemical Society."
Fig 6
(a) Diluents involved in SEI construction confirmed by XPS 50; (b) TEM image and XPS of the Li||NMC811 in LiFSI/DME and LiFSI/DME/TTE after 50 cycles 51. (a) Adapted with permission from Ref. 50, copyright 2020 Elsevier publisher; (b) adapted with permission from Ref. 51, copyright 2019 Elsevier publisher."
Table 2
Partially fluorinated solvent electrolytes formula and battery performance."
Electrolyte Formula | Coulombic Efficiency | Cell Configuration | Protocol | Discharge Capacity | Ref. |
1 mol?L?1 LiFSI/FDMB | 99.52% | 50 μm Li||NMC532 | 3.0–4.2 V, N/P ~6, E/C ~30 g?Ah?1, 1/3C | 420 cycles, 90% | |
20 μm Li||NMC532 | 2.7–4.2 V, N/P ~2.5, E/C ~6 g?Ah?1, 1/3C | 210 cycles, 100% | |||
Li||NMC532 anode free | 2.8–4.4 V, E/C ~2 g?Ah?1, 1/5C–1/3C | 100 cycles, 80% | |||
1 mol?L?1 LiFSI/FDMH/DME | 99.5% | 20 μm Li||NMC532 | 3.0–4.2 V, N/P ~1.6, 1/3C | 250 cycles, 84% | |
20 μm Li||NMC532 | 2.8–4.4 V, N/P ~2, 1/2C | 250 cycles, 76% | |||
Li||NMC811 anode free | 2.8–4.2 V, 40–50 mA | 120 cycles, 75% | |||
4 mol?L?1 LiFSI/DME | 99.04% | 50 μm Li||NMC811 | 2.8–4.4 V, 0.8–1.3 mA?cm?2 | 94 cycles, 80% | |
4 mol?L?1 LiFSI/DEE | 99.38% | 50 μm Li||NMC811 | 2.8–4.4 V, 0.8–1.3 mA?cm?2 | 182 cycles, 80% | |
1.2 mol?L?1 LiFSI/F3DEE | 99.3% | 50 μm Li||NMC811 | 2.8–4.4 V, E/C ~8 g?Ah?1, 1/5C–1/3C | 120 cycles, 80% | |
1.2 mol?L?1 LiFSI/F6DEE | 99.3% | 50 μm Li||NMC811 | 2.8–4.4 V, E/C ~8 g?Ah?1, 1/5C–1/3C | 120 cycles, 80% | |
1.2 mol?L?1 LiFSI/F4DEE | 99.5% | 50 μm Li||NMC811 | 2.8–4.4 V, E/C ~8 g?Ah?1, 1/5C–1/3C | 170 cycles, 80% | |
Cu||LFP | 2.5–3.84 V, E/C ~2.4 g?Ah?1, 1/5C–2C | 110 cycles, 80% | |||
Cu||LFP | 2.5–3.84 V, E/C ~2.4 g?Ah?1, 1/2C–2C | 110 cycles, 80% | |||
Cu||LFP | 2.5–3.84 V, E/C ~2.4·g?Ah?1, 1C–2C | 80–90 cycles | |||
1.2 mol?L?1 LiFSI/F5DEE | 99.5% | 50 μm Li||NMC811 | 2.8–4.4 V, E/C ~8 g?Ah?1, 1/5C–1/3C | 200 cycles, 80% | |
50 μm Li||NMC811 | 2.8–4.4 V, E/C ~8 g?Ah?1, 1/10C–1/3C | 270 cycles, 80% | |||
Cu||LFP | 2.5–3.84 V, E/C ~2.4 g?Ah?1, 1/5C–2C | 140 cycles, 80% | |||
Cu||LFP | 2.5–3.84 V, E/C~2.4 g?Ah?1, 1/2C–2C | 110 cycles, 80% | |||
Cu||LFP | 2.5–3.84 V, E/C~2.4 g?Ah?1, 1C–2C | 80-90 cycles |
Fig 8
(a) Diagram of Li-F interaction in FDMB 22; (b) theoretically optimized structures of ligands of LiFSI/DME and LiFSI/FDMB systems Li+ 22; (c, d) performance and impedance of LiFSI/6FDMH-DME series electrolytes 75; (e) structure-activity relationships of DME-FTEG molecular 76; (f) synthesis methods of DME-FTEG series moleculars 76. (a, b) Adapted with permission from Ref.22, copyright 2020 Springer Nature publisher; (c, d) adapted with permission from Ref. 75, copyright 2021 John Wiley and Sons publisher; (e, f) adapted with permission from Ref. 76, copyright 2020 American Chemical Society."
Fig 9
(a) ―CF3 group and ―CHF2 group in FXDEE series molecules; (b, c) Li|Cu half-cell performance and oxidation stability of FXDEE series electrolytes; (d, e) schematic diagram of the equilibrium relationship between oxidative stability and ability to dissolve salts in electrolytes 23. Adapted with permission from Ref. 23, copyright 2022 Springer Nature publisher."
Fig 10
(a) Molecular structure of fluorinated amide salt and fluorinated amide solvent; (b) schematic diagram of the advantages of DMTMSA electrolyte compared to carbonate electrolyte 37; (c) molecular structures of fluorinated cyclic carbonates and full cell test performance 88. (b) Adapted with permission from Ref. 37, copyright 2021 Springer Nature publisher; (c) adapted with permission from Ref. 88, copyright 2019 Elsevier publisher."
1 |
Evarts E. C. Nature 2015, 526, S93.
doi: 10.1038/526S93a |
2 |
Winter M. ; Barnett B. ; Xu K. Chem. Rev. 2018, 118, 11433.
doi: 10.1021/acs.chemrev.8b00422 |
3 |
Janek J. ; Zeier W. G. Nat. Energy 2016, 1, 16141.
doi: 10.1038/Nenergy.2016.141 |
4 |
Cano Z. P. ; Banham D. ; Ye S. Y. ; Hintennach A. ; Lu J. ; Fowler M. ; Chen Z. W. Nat. Energy 2018, 3, 279.
doi: 10.1038/s41560-018-0108-1 |
5 |
Huang F. Y. ; Jie Y. L. ; Li X. P. ; Chen Y. W. ; Cao R. G. ; Zhang G. Q. ; Jiao S. H. Acta Phys. -Chim. Sin. 2021, 37, 2008081.
doi: 10.3866/PKU.WHXB202008081 |
黄凡洋; 揭育林; 李新鹏; 陈亚威; 曹瑞国; 章根强; 焦淑红. 物理化学学报, 2021, 37, 2008081.
doi: 10.3866/PKU.WHXB202008081 |
|
6 |
Niu C. J. ; Pan H. L. ; Xu W. ; Xiao J. ; Zhang J. G. ; Luo L. L. ; Wang C. M. ; Mei D. H. ; Meng J. S. ; Wang X. P. ; et al Nat. Nanotechnol. 2019, 14, 594.
doi: 10.1038/s41565-019-0427-9 |
7 |
Li M. ; Lu J. ; Chen Z. W. ; Amine K. Adv. Mater. 2018, 30, 1800561.
doi: 10.1002/adma.201800561 |
8 |
Zhang C. ; Wang F. ; Han J. ; Bai S. ; Tan J. ; Liu J. ; Li F. Small Structures 2021, 2, 2100009.
doi: 10.1002/sstr.202100009 |
9 |
Zhang J. G. ; Xu W. ; Xiao J. ; Cao X. ; Liu J. Chem. Rev. 2020, 120, 13312.
doi: 10.1021/acs.chemrev.0c00275 |
10 |
Jiao S. H. ; Zheng J. M. ; Li Q. Y. ; Li X. ; Engelhard M. H. ; Cao R. G. ; Zhang J. G. ; Xu W. Joule 2018, 2, 110.
doi: 10.1016/j.joule.2017.10.007 |
11 |
Liu F. F. ; Zhang Z. W. ; Ye S. F. ; Yao Y. ; Yu Y. Acta Phys. -Chim. Sin. 2021, 37, 2006021.
doi: 10.3866/PKU.WHXB202006021 |
刘凡凡; 张志文; 叶淑芬; 姚雨; 余彦. 物理化学学报, 2021, 37, 2006021.
doi: 10.3866/PKU.WHXB202006021 |
|
12 |
Chen C. -Y. ; Tsuda T. ; Oshima Y. ; Kuwabata S. Small Structures 2021, 2, 2100018.
doi: 10.1002/sstr.202100018 |
13 |
Cheng X. B. ; Zhang R. ; Zhao C. Z. ; Zhang Q. Chem. Rev. 2017, 117, 10403.
doi: 10.1021/acs.chemrev.7b00115 |
14 |
Fang C. C. ; Li J. X. ; Zhang M. H. ; Zhang Y. H. ; Yang F. ; Lee J. Z. ; Lee M. H. ; Alvarado J. ; Schroeder M. A. ; Yang Y. Y. C. ; et al Nature 2019, 572, 511.
doi: 10.1038/s41586-019-1481-z |
15 |
Ding J. F. ; Xu R. ; Ma X. X. ; Xiao Y. ; Yao Y. X. ; Yan C. ; Huang J. Q. Angew. Chem. Int. Ed. 2022, 61, e2021156.
doi: 10.1002/anie.202115602 |
16 |
Li W. D. ; Song B. H. ; Manthiram A. Chem. Soc. Rev. 2017, 46, 3006.
doi: 10.1039/C6CS00875E |
17 |
Wang Y. ; Liu Y. ; Tu Y. ; Wang Q. J. Phys. Chem. C 2020, 124, 9099.
doi: 10.1021/acs.jpcc.9b10535 |
18 |
Goodenough J. B. ; Kim Y. Chem. Mater. 2010, 22, 587.
doi: 10.1021/cm901452z |
19 |
Manthiram A. Nat. Commun. 2020, 11, 1550.
doi: 10.1038/s41467-020-15355-0 |
20 |
Lyu Y. C. ; Wu X. ; Wang K. ; Feng Z. J. ; Cheng T. ; Liu Y. ; Wang M. ; Chen R. M. ; Xu L. M. ; Zhou J. J. ; et al Adv. Energy Mater. 2021, 11, 2000982.
doi: 10.1002/aenm.202000982 |
21 |
Asl H. Y. ; Manthiram A. Science 2020, 369, 140.
doi: 10.1126/science.abc5454 |
22 |
Yu Z. ; Wang H. S. ; Kong X. ; Huang W. ; Tsao Y. C. ; Mackanic D. G. ; Wang K. C. ; Wang X. C. ; Huang W. X. ; Choudhury S. ; et al Nat. Energy 2020, 5, 526.
doi: 10.1038/s41560-020-0634-5 |
23 |
Yu Z. ; Rudnicki P. E. ; Zhang Z. W. ; Huang Z. J. ; Celik H. ; Oyakhire S. T. ; Chen Y. L. ; Kong X. ; Kim S. C. ; Xiao X. ; et al Nat. Energy 2022, 7, 94.
doi: 10.1038/s41560-021-00962-y |
24 |
Zhang H. ; Eshetu G. G. ; Judez X. ; Li C. ; Rodriguez-Martinez L. M. ; Armand M. Angew. Chem. Int. Ed. 2018, 57, 15002.
doi: 10.1002/anie.201712702 |
25 |
Lee S. H. ; Hwang J. Y. ; Ming J. ; Cao Z. ; Nguyen H. A. ; Jung H. G. ; Kim J. ; Sun Y. K. Adv. Energy Mater. 2020, 10, 2000567.
doi: 10.1002/aenm.202000567 |
26 |
Zhang S. ; Yang G. ; Liu Z. ; Li X. ; Wang X. ; Chen R. ; Wu F. ; Wang Z. ; Chen L. Nano Lett. 2021, 21, 3310.
doi: 10.1021/acs.nanolett.1c00848 |
27 |
Jiao S. ; Ren X. ; Cao R. ; Engelhard M. H. ; Liu Y. ; Hu D. ; Mei D. ; Zheng J. ; Zhao W. ; Li Q. ; et al Nat. Energy 2018, 3, 739.
doi: 10.1038/s41560-018-0199-8 |
28 |
Pham T. D. ; Bin Faheem A. ; Chun S. Y. ; Rho J. R. ; Kwak K. ; Lee K. K. Adv. Energy Mater. 2021, 11, 2003520.
doi: 10.1002/aenm.202003520 |
29 |
Fan X. ; Chen L. ; Borodin O. ; Ji X. ; Chen J. ; Hou S. ; Deng T. ; Zheng J. ; Yang C. ; Liou S. C. ; et al Nat. Nanotechnol. 2018, 13, 715.
doi: 10.1038/s41565-018-0183-2 |
30 |
Cao X. ; Zou L. ; Matthews B. E. ; Zhang L. ; He X. ; Ren X. ; Engelhard M. H. ; Burton S. D. ; El-Khoury P. Z. ; Lim H. -S. ; et al Energy Stor. Mater. 2021, 34, 76.
doi: 10.1016/j.ensm.2020.08.035 |
31 |
He M. ; Hu L. ; Xue Z. ; Su C. C. ; Redfern P. ; Curtiss L. A. ; Polzin B. ; von Cresce A. ; Xu K. ; Zhang Z. J. Electrochem. Soc. 2015, 162, A1725.
doi: 10.1149/2.0231509jes |
32 |
Markevich E. ; Salitra G. ; Aurbach D. ACS Energy Lett. 2017, 2, 1337.
doi: 10.1021/acsenergylett.7b00163 |
33 |
Zhang X. -Q. ; Cheng X. -B. ; Chen X. ; Yan C. ; Zhang Q. Adv. Funct. Mater. 2017, 27, 1605989.
doi: 10.1002/adfm.201605989 |
34 |
Zhang Z. ; Hu L. ; Wu H. ; Weng W. ; Koh M. ; Redfern P. C. ; Curtiss L. A. ; Amine K. Energy Environ. Sci. 2013, 6, 1806.
doi: 10.1039/c3ee24414h |
35 |
von Aspern N. ; Roschenthaler G. V. ; Winter M. ; Cekic-Laskovic I. Angew. Chem. Int. Ed. 2019, 58, 15978.
doi: 10.1002/anie.201901381 |
36 |
Cao X. ; Jia H. ; Xu W. ; Zhang J. -G. J. Electrochem. Soc. 2021, 168, 010522.
doi: 10.1149/1945-7111/abd60e |
37 |
Xue W. ; Huang M. ; Li Y. ; Zhu Y. G. ; Gao R. ; Xiao X. ; Zhang W. ; Li S. ; Xu G. ; Yu Y. ; et al Nat. Energy 2021, 6, 495.
doi: 10.1038/s41560-021-00792-y |
38 |
Yamada Y. ; Yamada A. J. Electrochem. Soc. 2015, 162, A2406.
doi: 10.1149/2.0041514jes |
39 |
Wu C. ; Zhou Y. ; Zhu X. L. ; Zhan M. Z. ; Yang H. X. ; Qian J. F. Acta Phys. -Chim. Sin. 2021, 37, 2008044.
doi: 10.3866/PKU.WHXB202008044 |
吴晨; 周颖; 朱晓龙; 詹忞之; 杨汉西; 钱江锋. 物理化学学报, 2021, 37, 2008044.
doi: 10.3866/PKU.WHXB202008044 |
|
40 |
Yamada Y. ; Wang J. ; Ko S. ; Watanabe E. ; Yamada A. Nat. Energy 2019, 4, 269.
doi: 10.1038/s41560-019-0336-z |
41 |
Qian J. F. ; Henderson W. A. ; Xu W. ; Bhattacharya P. ; Engelhard M. ; Borodin O. ; Zhang J. G. Nat. Commun. 2015, 6, 6362.
doi: 10.1038/ncomms7362(2015 |
42 |
Suo L. ; Xue W. ; Gobet M. ; Greenbaum S. G. ; Wang C. ; Chen Y. ; Yang W. ; Li Y. ; Li J. Proc. Natl. Acad. Sci. USA 2018, 115, 1156.
doi: 10.1073/pnas.1712895115 |
43 |
Ren X. ; Zou L. ; Jiao S. ; Mei D. ; Engelhard M. H. ; Li Q. ; Lee H. ; Niu C. ; Adams B. D. ; Wang C. ; et al ACS Energy Lett. 2019, 4, 896.
doi: 10.1021/acsenergylett.9b00381 |
44 |
Wang J. ; Yamada Y. ; Sodeyama K. ; Chiang C. H. ; Tateyama Y. ; Yamada A. Nat. Commun. 2016, 7, 12032.
doi: 10.1038/ncomms12032 |
45 |
Wang J. ; Yamada Y. ; Sodeyama K. ; Watanabe E. ; Takada K. ; Tateyama Y. ; Yamada A. Nat. Energy 2017, 3, 22.
doi: 10.1038/s41560-017-0033-8 |
46 |
Wang A. A. ; Gunnarsdottir A. B. ; Fawdon J. ; Pasta M. ; Grey C. P. ; Monroe C. W. ACS Energy Lett. 2021, 6, 3086.
doi: 10.1021/acsenergylett.1c01213 |
47 |
Jiang G. ; Li F. ; Wang H. ; Wu M. ; Qi S. ; Liu X. ; Yang S. ; Ma J. Small Structures 2021, 2, 2000122.
doi: 10.1002/sstr.202000122 |
48 |
Ren X. ; Chen S. ; Lee H. ; Mei D. ; Engelhard M. H. ; Burton S. D. ; Zhao W. ; Zheng J. ; Li Q. ; Ding M. S. ; et al Chem. 2018, 4, 1877.
doi: 10.1016/j.chempr.2018.05.002 |
49 |
Chen S. ; Zheng J. ; Mei D. ; Han K. S. ; Engelhard M. H. ; Zhao W. ; Xu W. ; Liu J. ; Zhang J. G. Adv. Mater. 2018, 30, e1706102.
doi: 10.1002/adma.201706102 |
50 |
Lee Y. ; Lee T. K. ; Kim S. ; Lee J. ; Ahn Y. ; Kim K. ; Ma H. ; Park G. ; Lee S. -M. ; Kwak S. K. ; et al Nano Energy 2020, 67, 104309.
doi: 10.1016/j.nanoen.2019.104309 |
51 |
Ren X. ; Zou L. ; Cao X. ; Engelhard M. H. ; Liu W. ; Burton S. D. ; Lee H. ; Niu C. ; Matthews B. E. ; Zhu Z. ; et al Joule 2019, 3, 1662.
doi: 10.1016/j.joule.2019.05.006 |
52 |
Ren X. ; Gao P. ; Zou L. ; Jiao S. ; Cao X. ; Zhang X. ; Jia H. ; Engelhard M. H. ; Matthews B. E. ; Wu H. ; et al Proc. Natl. Acad. Sci. USA 2020, 117, 28603.
doi: 10.1073/pnas.2010852117 |
53 |
Yoo D. J. ; Yang S. ; Kim K. J. ; Choi J. W. Angew. Chem. Int. Ed. 2020, 59, 14869.
doi: 10.1002/anie.202003663 |
54 |
Fan X. ; Ji X. ; Chen L. ; Chen J. ; Deng T. ; Han F. ; Yue J. ; Piao N. ; Wang R. ; Zhou X. ; et al Nat. Energy 2019, 4, 882.
doi: 10.1038/s41560-019-0474-3 |
55 |
Cao X. ; Ren X. ; Zou L. ; Engelhard M. H. ; Huang W. ; Wang H. ; Matthews B. E. ; Lee H. ; Niu C. ; Arey B. W. ; et al Nat. Energy 2019, 4, 796.
doi: 10.1038/s41560-019-0464-5 |
56 |
Piao N. ; Ji X. ; Xu H. ; Fan X. ; Chen L. ; Liu S. ; Garaga M. N. ; Greenbaum S. G. ; Wang L. ; Wang C. ; et al Adv. Energy Mater. 2020, 10, 1903568.
doi: 10.1002/aenm.201903568 |
57 |
Cao X. ; Gao P. ; Ren X. ; Zou L. ; Engelhard M. H. ; Matthews B. E. ; Hu J. ; Niu C. ; Liu D. ; Arey B. W. ; et al Proc. Natl. Acad. Sci. USA 2021, 118, 9.
doi: 10.1073/pnas.2020357118 |
58 |
Yao N. ; Chen X. ; Shen X. ; Zhang R. ; Fu Z. H. ; Ma X. X. ; Zhang X. Q. ; Li B. Q. ; Zhang Q. Angew. Chem. Int. Ed. 2021, 60, 21473.
doi: 10.1002/anie.202107657 |
59 |
Ding J. F. ; Xu R. ; Yao N. ; Chen X. ; Xiao Y. ; Yao Y. X. ; Yan C. ; Xie J. ; Huang J. Q. Angew. Chem. Int. Ed. 2021, 60, 11442.
doi: 10.1002/anie.202101627 |
60 |
Gupta A. ; Manthiram A. Adv. Energy Mater. 2020, 10, 2001972.
doi: 10.1002/aenm.202001972 |
61 |
Zhao F. P. ; Zhang S. M. ; Li Y. G. ; Sun X. L. Small Structures 2022, 3, 2100146.
doi: 10.1002/sstr.202100146 |
62 |
Ren F. ; Li Z. ; Chen J. ; Huguet P. ; Peng Z. ; Deabate S. ACS. Appl. Mater. Interfaces 2022, 14, 4211.
doi: 10.1021/acsami.1c21638 |
63 |
Amanchukwu C. V. ; Kong X. ; Qin J. ; Cui Y. ; Bao Z. N. Adv. Energy Mater. 2019, 9, 1902116.
doi: 10.1002/aenm.201902116 |
64 |
Perez Beltran S. ; Cao X. ; Zhang J. -G. ; Balbuena P. B. Chem. Mater. 2020, 32, 5973.
doi: 10.1021/acs.chemmater.0c00987 |
65 |
Perez Beltran S. ; Cao X. ; Zhang J. -G. ; El-Khoury P. Z. ; Balbuena P. B. J. Mater. Chem. A 2021, 9, 17459.
doi: 10.1039/d1ta04737j |
66 |
Dong L. ; Liu Y. ; Wen K. ; Chen D. ; Rao D. ; Liu J. ; Yuan B. ; Dong Y. ; Wu Z. ; Liang Y. ; et al Adv. Sci. 2022, 9, e2104699.
doi: 10.1002/advs.202104699 |
67 |
Zheng Y. ; Balbuena P. B. J. Chem. Phys. 2021, 154, 104702.
doi: 10.1063/5.0042896 |
68 |
Jiang Z. P. ; Zeng Z. Q. ; Liang X. M. ; Yang L. ; Hu W. ; Zhang C. ; Han Z. L. ; Feng J. W. ; Xie J. Adv. Func. Mater. 2021, 31, 2005991.
doi: 10.1002/adfm.202005991 |
69 |
Jiang Z. P. ; Zeng Z. Q. ; Zhai B. Y. ; Li X. ; Hu W. ; Zhang H. ; Cheng S. J. ; Xie J. J. Power Sources 2021, 506, 230086.
doi: 10.1016/j.jpowsour.2021.230086 |
70 |
Chang Z. ; Qiao Y. ; Deng H. ; Yang H. ; He P. ; Zhou H. Joule 2020, 4, 1776.
doi: 10.1016/j.joule.2020.06.011 |
71 |
Zhu X. ; Chang Z. ; Yang H. ; Qian Y. ; He P. ; Zhou H. Energy Stor. Mater. 2022, 44, 360.
doi: 10.1016/j.ensm.2021.09.022 |
72 |
Li T. ; Zhang X. Q. ; Yao N. ; Yao Y. X. ; Hou L. P. ; Chen X. ; Zhou M. Y. ; Huang J. Q. ; Zhang Q. Angew. Chem. Int. Ed. 2021, 60, 22683.
doi: 10.1002/anie.202107732 |
73 |
Holoubek J. ; Liu H. ; Wu Z. ; Yin Y. ; Xing X. ; Cai G. ; Yu S. ; Zhou H. ; Pascal T. A. ; Chen Z. ; et al Nat. Energy 2021, 6, 303.
doi: 10.1038/s41560-021-00783-z |
74 |
Yao Y. X. ; Chen X. ; Yan C. ; Zhang X. Q. ; Cai W. L. ; Huang J. Q. ; Zhang Q. Angew. Chem. Int. Ed. 2021, 60, 4090.
doi: 10.1002/anie.202011482 |
75 |
Wang H. ; Yu Z. ; Kong X. ; Huang W. ; Zhang Z. ; Mackanic D. G. ; Huang X. ; Qin J. ; Bao Z. ; Cui Y. Adv. Mater. 2021, 33, e2008619.
doi: 10.1002/adma.202008619 |
76 |
Amanchukwu C. V. ; Yu Z. ; Kong X. ; Qin J. ; Cui Y. ; Bao Z. J. Am. Chem. Soc. 2020, 142, 7393.
doi: 10.1021/jacs.9b11056 |
77 |
Chen Y. ; Yu Z. ; Rudnicki P. ; Gong H. ; Huang Z. ; Kim S. C. ; Lai J. C. ; Kong X. ; Qin J. ; Cui Y. ; et al J. Am. Chem. Soc. 2021, 143, 18703.
doi: 10.1021/jacs.1c09006 |
78 |
Kim S. C. ; Kong X. ; Vila R. A. ; Huang W. ; Chen Y. ; Boyle D. T. ; Yu Z. ; Wang H. ; Bao Z. ; Qin J. ; et al J. Am. Chem. Soc. 2021, 143, 10301.
doi: 10.1021/jacs.1c03868 |
79 |
Zhang Z. W. ; Li Y. Z. ; Xu R. ; Zhou W. J. ; Li Y. B. ; Oyakhire S. T. ; Wu Y. C. ; Xu J. W. ; Wang H. S. ; Yu Z. A. ; et al Science 2022, 375, 66.
doi: 10.1126/science.abi8703 |
80 |
Ma P. ; Mirmira P. ; Amanchukwu C. V. ACS. Cent. Sci. 2021, 7, 1232.
doi: 10.1021/acscentsci.1c00503 |
81 |
Han H. B. ; Zhou S. S. ; Zhang D. J. ; Feng S. W. ; Li L. F. ; Liu K. ; Feng W. F. ; Nie J. ; Li H. ; Huang X. J. ; et al J. Power Sources 2011, 196, 3623.
doi: 10.1016/j.jpowsour.2010.12.040 |
82 |
Dahbi M. ; Ghamouss F. ; Tran-Van F. ; Lemordant D. ; Anouti M. J. Power Sources 2011, 196, 9743.
doi: 10.1016/j.jpowsour.2011.07.071 |
83 |
Shyamsunder A. ; Beichel W. ; Klose P. ; Pang Q. ; Scherer H. ; Hoffmann A. ; Murphy G. K. ; Krossing I. ; Nazar L. F. Angew. Chem. Int. Ed. 2017, 56, 6192.
doi: 10.1002/anie.201701026 |
84 |
Feng S. ; Huang M. ; Lamb J. R. ; Zhang W. ; Tatara R. ; Zhang Y. ; Zhu Y. G. ; Perkinson C. F. ; Johnson J. A. ; Shao-Horn Y. Chem. 2019, 5, 2630.
doi: 10.1016/j.chempr.2019.07.003 |
85 |
Xue W. ; Shi Z. ; Huang M. ; Feng S. ; Wang C. ; Wang F. ; Lopez J. ; Qiao B. ; Xu G. ; Zhang W. ; et al Energy Environ. Sci. 2020, 13, 212.
doi: 10.1039/c9ee02538c |
86 |
Xue W. ; Gao R. ; Shi Z. ; Xiao X. ; Zhang W. ; Zhang Y. ; Zhu Y. G. ; Waluyo I. ; Li Y. ; Hill M. R. ; et al Energy Environ. Sci. 2021, 14, 6030.
doi: 10.1039/d1ee01265g |
87 |
Zhang Y. ; Viswanathan V. J. Phys. Chem. Lett. 2021, 12, 5821.
doi: 10.1021/acs.jpclett.1c01522 |
88 |
Su C. -C. ; He M. ; Amine R. ; Chen Z. ; Sahore R. ; Dietz Rago N. ; Amine K. Energy Stor. Mater. 2019, 17, 284.
doi: 10.1016/j.ensm.2018.11.003 |
89 |
Markevich E. ; Salitra G. ; Chesneau F. ; Schmidt M. ; Aurbach D. ACS Energy Lett. 2017, 2, 1321.
doi: 10.1021/acsenergylett.7b00300 |
90 |
Zhang X. Q. ; Chen X. ; Cheng X. B. ; Li B. Q. ; Shen X. ; Yan C. ; Huang J. Q. ; Zhang Q. Angew. Chem. Int. Ed. 2018, 57, 5301.
doi: 10.1002/anie.201801513 |
91 |
Zhang Y. M. ; Krishnamurthy D. ; Viswanathan V. J. Electrochem. Soc. 2020, 167, 070554.
doi: 10.1149/1945-7111/ab836b |
92 |
Zhu Y. Y. ; Pande V. ; Li L. S. ; Wen B. H. ; Pan M. S. ; Wang D. ; Ma Z. F. ; Viswanathan V. ; Chiang Y. M. P. Natl. Acad. Sci. USA 2020, 117, 27195.
doi: 10.1073/pnas.2001923117 |
93 |
Su C. C. ; He M. N. ; Cai M. ; Shi J. Y. ; Amine R. ; Rago N. D. ; Guo J. C. ; Rojas T. ; Ngo A. T. ; Amine K. Nano Energy 2022, 92, 106720.
doi: 10.1016/j.nanoen.2021.106720 |
94 |
Xiao P. T. ; Zhao Y. ; Piao Z. H. ; Li B. H. ; Zhou G. M. ; Cheng H. M. Energy Environ. Sci. 2022,
doi: 10.1039/d1ee02959b |
95 | Yang Y. ; Yan C. ; Huang J. Q. Acta Phys. -Chim. Sin. 2021, 37 (11), 2010076. |
杨毅; 闫崇; 黄佳琦. 物理化学学报, 2021, 37 (11), 2010076.
doi: 10.3866/PKU.WHXB202010076 |
|
96 |
Yu L. ; Wang J. ; Xu Z. J. Small Structures 2020, 2, 2000043.
doi: 10.1002/sstr.202000043 |
97 |
Liu H. ; Li T. ; Xu X. Q. ; Shi P. ; Zhang X. Q. ; Xu R. ; Cheng X. B. ; Huang J. Q. Chinese J. Chem. Eng. 2021, 37, 152.
doi: 10.1016/j.cjche.2021.03.021 |
98 |
Hobold G. M. ; Lopez J. ; Guo R. ; Minafra N. ; Banerjee A. ; Shirley Meng Y. ; Shao-Horn Y. ; Gallant B. M. Nat. Energy 2021, 6, 951.
doi: 10.1038/s41560-021-00910-w |
99 |
Xu Y. ; Dong K. ; Jie Y. ; Adelhelm P. ; Chen Y. ; Xu L. ; Yu P. ; Kim J. ; Kochovski Z. ; Yu Z. ; et al Adv. Energy Mater. 2022, 12, 2200398.
doi: 10.1002/aenm.202200398 |
[1] | Guoyong Xue, Jing Li, Junchao Chen, Daiqian Chen, Chenji Hu, Lingfei Tang, Bowen Chen, Ruowei Yi, Yanbin Shen, Liwei Chen. A Single-Ion Polymer Superionic Conductor [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2205012-0. |
[2] | Yae Qi, Yongyao Xia. Electrolyte Regulation Strategies for Improving the Electrochemical Performance of Aqueous Zinc-Ion Battery Cathodes [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2205045-0. |
[3] | Jun Guan, Nianwu Li, Le Yu. Artificial Interphase Layers for Lithium Metal Anode [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2009011-. |
[4] | Chen Wu, Ying Zhou, Xiaolong Zhu, Minzhi Zhan, Hanxi Yang, Jiangfeng Qian. Research Progress on High Concentration Electrolytes for Li Metal Batteries [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2008044-. |
[5] | Yumeng Zhao, Lingxiao Ren, Aoxuan Wang, Jiayan Luo. Composite Anodes for Lithium Metal Batteries [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2008090-. |
[6] | Yi Yang, Chong Yan, Jiaqi Huang. Research Progress of Solid Electrolyte Interphase in Lithium Batteries [J]. Acta Phys. -Chim. Sin., 2021, 37(11): 2010076-. |
[7] | Xiaoguang Qiu, Wei Liu, Jiuding Liu, Junzhi Li, Kai Zhang, Fangyi Cheng. Nucleation Mechanism and Substrate Modification of Lithium Metal Anode [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2009012-. |
[8] | Guorui Zheng, Yuxuan Xiang, Yong Yang. Neutron Depth Profiling Technique for Studying Rechargeable Lithium Metal Anodes [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2008094-. |
[9] | Shichao Zhang, Zeyu Shen, Yingying Lu. Research Progress of Thermal Runaway and Safety for Lithium Metal Batteries [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2008065-. |
[10] | Muqin Wang, Zhe Peng, Huan Lin, Zhendong Li, Jian Liu, Zhongmin Ren, Haiyong He, Deyu Wang. A Framework with Enriched Fluorinated Sites for Stable Li Metal Cycling [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2007016-. |
[11] | Yuheng Sun, Mingda Gao, Hui Li, Li Xu, Qing Xue, Xinran Wang, Ying Bai, Chuan Wu. Application of Metal-Organic Frameworks to the Interface of Lithium Metal Batteries [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2007048-. |
[12] | Shijie Yang, Xiangqun Xu, Xinbing Cheng, Xinmeng Wang, Jinxiu Chen, Ye Xiao, Hong Yuan, He Liu, Aibing Chen, Wancheng Zhu, Jiaqi Huang, Qiang Zhang. Columnar Lithium Metal Deposits: the Role of Non-Aqueous Electrolyte Additive [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2007058-. |
[13] | Yan-Tao ZHANG,Zhen-Jie LIU,Jia-Wei WANG,Liang WANG,Zhang-Quan PENG. Recent Advances in Li Anode for Aprotic Li-O2 Batteries [J]. Acta Phys. -Chim. Sin., 2017, 33(3): 486-499. |
[14] | Xing-Rui LIU,Hui-Juan YAN,Dong WANG,Li-Jun WAN. In situ AFM Investigation of Interfacial Morphology of Single Crystal Silicon Wafer Anode [J]. Acta Phys. -Chim. Sin., 2016, 32(1): 283-289. |
[15] | QIU Xiang-Yun, ZHUANG Quan-Chao, WANG Hong-Ming, CUI Yong-Li, FANG Liang, SUN Shi-Gang. Influence of Electrolyte Composition on the Intercalation-Deintercalation Process of Lithium Ion in Spinel LiMn2O4 [J]. Acta Phys. -Chim. Sin., 2010, 26(06): 1499-1506. |
|