Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (2): 2009011.doi: 10.3866/PKU.WHXB202009011
Special Issue: Lithium Metal Anodes
• REVIEW • Previous Articles
Jun Guan, Nianwu Li(), Le Yu()
Received:
2020-09-02
Accepted:
2020-09-28
Published:
2020-10-19
Contact:
Nianwu Li,Le Yu
E-mail:linianwu@mail.buct.edu.cn;yule@mail.buct.edu.cn
About author:
Le Yu, Email: yule@mail.buct.edu.cn (L.Y.)Supported by:
Jun Guan, Nianwu Li, Le Yu. Artificial Interphase Layers for Lithium Metal Anode[J]. Acta Phys. -Chim. Sin. 2021, 37(2), 2009011. doi: 10.3866/PKU.WHXB202009011
Fig 1
(a) Schematic of Li3PO4 inorganic protective layer; (b) schematic of pristine lithium morphology after 200 cycles at 0.5C rate in Li|LFP battery system; (c) schematic of PPA-Li morphology after 200 cycles at 0.5C rate in Li|LFP battery system 33. Adapted with permission from Ref. 33. Copyright 2015, Wiley-VCH."
Fig 2
(a) Schematic of Li-PAA organic polymer protective layer structure; (b) the AFM image of pristine lithium after plating 10 min at 0.085 mA cm-2; (c) the AFM image of LiPAA-Li after plating 25 min at 0.1 mA cm-2. (d) comparison of the cycling stability of pristine lithium and LiPAA-Li in a symmetrical cell 49. Adapted with permission from Ref. 49. Copyright 2018, Wiley-VCH."
Fig 3
(a) Schematic of inducing Li even deposition via LLN interface layer; (b) comparison of the cycling stability in a Li|Cu cell; (c) side-view scanning electron microscopy (SEM) image of bare Li after 100 h cycling, the scale bar of which is 20 μm; (d) side-view SEM image of LLN-coated Li after 100 h cycling, the scale bar of which is 20 μm 59. Adapted with permission from Ref. 59. Copyright 2019, Wiley-VCH."
Fig 4
(a) Schematic of Li deposition on the bare Li and MClx (M = In, Zn, Bi, As) protected Li; (b) comparison of the side-view SEM before cycling between bare Li and Li13In3|Li in a symmetric cell (the scale bar is consistent with picture c); (c) comparison of the side-view SEM after cycling 220 cycles between bare Li and Li13In3|Li in a symmetric cell; (d) schematic of improving wettability between Li and garnet SSE via Li-Al alloy; (e) comparison of interfacial wettability between Li and garnet SSE in pristine lithium and Li-Al alloy; (f) the side-view SEM of interfacial morphology between pristine Li and garnet SSE; (g) locally amplified side-view SEM of interfacial morphology between pristine Li and garnet SSE; (h) the side-view SEM of interfacial morphology between Li-Al alloy protected Li and garnet SSE; (i) locally amplified side-view SEM of interfacial morphology between Li-Al alloy protected Li and garnet SSE 79. (a–c) Adapted from Ref. 73. Copyright 2017, Springer Nature; (d–i) Adapted from Ref. 79. Copyright 2017, AAAS."
Fig 6
(a) Schematic of Li deposition behavior in PEO electrolyte; (b) schematic of the evolutionary processes of PEO-Mg3N2 electrolyte; (c) the AFM images of lithium with PEO-Mg3N2 electrolyte after cycling; (d) the AFM images of lithium with PEO electrolyte; (e) comparison of cycling performance between PEO electrolyte and PEO-Mg3N2 electrolyte 84. Adapted with permission from Ref. 84. Copyright 2019, Wiley-VCH."
Fig 7
(a) Schematic of the fabrication of the PIM-1 membrane on Cu/Li foil; optical photographs of Li electrode (b) after 0 h and (c) 2 weeks in air; (d) SEM image of Li deposition on Cu foil; Li@PIM-1 electrode (e) after 0 h and (f) 2 weeks in air; (g) SEM image of Li deposition on Cu@PIM-1 86. Adapted from Ref. 86. Copyright 2019, Elsevier."
1 |
Dunn B. ; Kamath H. ; Tarascon J. M. Science 2011, 334, 928.
doi: 10.1126/science.1212741 |
2 |
Grande L. ; Paillard E. ; Hassoun J. ; Park J. B. ; Lee Y. J. ; Sun Y. K. ; Passerini S. ; Scrosati B. Adv. Mater. 2015, 27, 784.
doi: 10.1002/adma.201403064 |
3 |
Lu Y. ; Tikekar M. ; Mohanty R. ; Hendrickson K. ; Ma L. ; Archer L. A. Adv. Energy Mater. 2015, 5, 1402073.
doi: 10.1002/aenm.201402073 |
4 |
Yang P. ; Tarascon J. M. Nat. Mater. 2012, 11, 560.
doi: 10.1038/nmat3367 |
5 |
Li S. ; Jiang M. ; Xie Y. ; Xu H. ; Jia J. ; Li J. Adv. Mater. 2018, 30, 1706375.
doi: 10.1002/adma.201706375 |
6 |
Choi J. W. ; Aurbach D. Nat. Rev. Mater. 2016, 1, 16013.
doi: 10.1038/natrevmats.2016.13 |
7 |
Goodenough J. B. ; Kim Y. Chem. Mater. 2010, 22, 587.
doi: 10.1021/cm901452z |
8 |
Li H. P. ; Ji X. Y. ; Liang J. J. Rare Met. 2020, 39, 861.
doi: 10.1007/s12598-020-01456-8 |
9 |
Zhang F. ; Shen F. ; Fan Z. Y. ; Ji X. ; Zhao B. ; Sun Z. T. ; Xuan Y. Y. ; Han X. G. Rare Met. 2018, 37, 510.
doi: 10.1007/s12598-018-1054-6 |
10 |
Cheng X. B. ; Zhang R. ; Zhao C. Z. ; Zhang Q. Chem. Rev. 2017, 117, 10403.
doi: 10.1021/acs.chemrev.7b00115 |
11 |
Cheng X. B. ; Zhang Q. J. Mater. Chem. A 2015, 3, 7207.
doi: 10.1039/c5ta00689a |
12 | Wang M. Q. ; Peng Z. ; Lin H. ; Li Z. D. ; Liu J. ; Ren Z. M. ; He H. Y. ; Wang D. Y. Acta Phys. -Chim. Sin. 2021, 37, 2007016. |
王木钦; 彭哲; 林欢; 李振东; 刘健; 任重民; 何海勇; 王德宇. 物理化学学报, 2021, 37, 2007016.
doi: 10.3866/PKU.WHXB202007016 |
|
13 |
Xu W. ; Wang J. ; Ding F. ; Chen X. ; Nasybulin E. ; Zhang Y. ; Zhang J. G. Energy Environ. Sci. 2014, 7, 513.
doi: 10.1039/c3ee40795k |
14 | Yu X. R. ; Ma J. ; Mou C. B. ; Cui G. L. Acta Phys. -Chim. Sin. 2021, 37, 1912061. |
虞鑫润; 马君; 牟春博; 崔光磊. 物理化学学报, 2021, 37, 1912061.
doi: 10.3866/PKU.WHXB201912061 |
|
15 | Zhang Q. Acta Phys. -Chim. Sin. 2017, 33, 1275. |
张强. 物理化学学报, 2017, 33, 1275.
doi: 10.3866/PKU.WHXB201705021 |
|
16 |
Guo Y. ; Li H. ; Zhai T. Adv. Mater. 2017, 29, 1700007.
doi: 10.1002/adma.201700007 |
17 |
Yin Y. X. ; Xin S. ; Guo Y. G. ; Wan L. J. Angew. Chem. Int. Ed. 2013, 52, 13186.
doi: 10.1002/anie.201304762 |
18 |
Li P. ; Dong X. ; Li C. ; Liu J. ; Liu Y. ; Feng W. ; Wang C. ; Wang Y. ; Xia Y. Angew. Chem. Int. Ed. 2019, 58, 2093.
doi: 10.1002/anie.201813905 |
19 |
Yoshio M. ; Wang H. ; Fukuda K. ; Hara Y. ; Adachi Y. J. Electrochem. Soc. 2000, 147, 1245.
doi: 10.1149/1.1393344 |
20 |
Cheng X. B. ; Hou T. Z. ; Zhang R. ; Peng H. J. ; Zhao C. Z. ; Huang J. Q. ; Zhang Q. Adv. Mater. 2016, 28, 2888.
doi: 10.1002/adma.201506124 |
21 |
Lin D. ; Liu Y. ; Liang Z. ; Lee H. W. ; Sun J. ; Wang H. ; Yan K. ; Xie J. ; Cui Y. Nat. Nanotechnol. 2016, 11, 626.
doi: 10.1038/nnano.2016.32 |
22 |
Liu Y. ; Lin D. ; Liang Z. ; Zhao J. ; Yan K. ; Cui Y. Nat. Commun. 2016, 7, 10992.
doi: 10.1038/ncomms10992 |
23 |
Zhang R. ; Chen X. R. ; Chen X. ; Cheng X. B. ; Zhang X. Q. ; Yan C. ; Zhang Q. Angew. Chem. Int. Ed. 2017, 56, 7764.
doi: 10.1002/anie.201702099 |
24 |
Cheng X. B. ; Peng H. J. ; Huang J. Q. ; Zhang R. ; Zhao C. Z. ; Zhang Q. ACS Nano 2015, 9, 6373.
doi: 10.1021/acsnano.5b01990 |
25 |
Zhang R. ; Cheng X. B. ; Zhao C. Z. ; Peng H. J. ; Shi J. L. ; Huang J. Q. ; Wang J. ; Wei F. ; Zhang Q. Adv. Mater. 2016, 28, 2155.
doi: 10.1002/adma.201504117 |
26 |
Zhang D. ; Zhou Y. ; Liu C. ; Fan S. Nanoscale 2016, 8, 11161.
doi: 10.1039/c6nr00465b |
27 |
Zhang Y. ; Liu B. ; Hitz E. ; Luo W. ; Yao Y. ; Li Y. ; Dai J. ; Chen C. ; Wang Y. ; Yang C. ; et al Nano Res. 2017, 10, 1356.
doi: 10.1007/s12274-017-1461-2 |
28 |
Li Q. ; Zhu S. ; Lu Y. Adv. Funct. Mater. 2017, 27, 1606422.
doi: 10.1002/adfm.201606422 |
29 |
Yang C. P. ; Yin Y. X. ; Zhang S. F. ; Li N. W. ; Guo Y. G. Nat. Commun. 2015, 6, 8058.
doi: 10.1038/ncomms9058 |
30 |
Lin D. ; Liu W. ; Liu Y. ; Lee H. R. ; Hsu P. C. ; Liu K. ; Cui Y. Nano Lett. 2016, 16, 459.
doi: 10.1021/acs.nanolett.5b04117 |
31 |
Murugan R. ; Thangadurai V. ; Weppner W. Angew. Chem. Int. Ed. 2007, 46, 7778.
doi: 10.1002/anie.200701144 |
32 |
Zeng X. X. ; Yin Y. X. ; Li N. W. ; Du W. C. ; Guo Y. G. ; Wan L. J. J. Am. Chem. Soc. 2016, 138, 15825.
doi: 10.1021/jacs.6b10088 |
33 |
Li N. W. ; Yin Y. X. ; Yang C. P. ; Guo Y. G. Adv. Mater. 2016, 28, 1853.
doi: 10.1002/adma.201504526 |
34 |
Chen H. ; Pei A. ; Lin D. ; Xie J. ; Yang A. ; Xu J. ; Lin K. ; Wang J. ; Wang H. ; Shi F. ; et al Adv. Energy Mater. 2019, 9, 1900858.
doi: 10.1002/aenm.201900858 |
35 |
Zhai P. ; Wei Y. ; Xiao J. ; Liu W. ; Zuo J. ; Gu X. ; Yang W. ; Cui S. ; Li B. ; Yang S. ; et al Adv. Energy Mater. 2020, 10, 1903339.
doi: 10.1002/aenm.201903339 |
36 |
Lu Y. ; Gu S. ; Hong X. ; Rui K. ; Huang X. ; Jin J. ; Chen C. ; Yang J. ; Wen Z. Energy Storage Mater. 2018, 11, 16.
doi: 10.1016/j.ensm.2017.09.007 |
37 |
Chen K. ; Pathak R. ; Gurung A. ; Adhamash E. A. ; Bahrami B. ; He Q. ; Qiao H. ; Smirnova A. L. ; Wu J. J. ; Qiao Q. ; et al Energy Storage Mater. 2019, 18, 389.
doi: 10.1016/j.ensm.2019.02.006 |
38 |
Li Y. ; Sun Y. ; Pei A. ; Chen K. ; Vailionis A. ; Li Y. ; Zheng G. ; Sun J. ; Cui Y. ACS Cent. Sci. 2018, 4, 97.
doi: 10.1021/acscentsci.7b00480 |
39 |
Ma G. ; Wen Z. ; Wu M. ; Shen C. ; Wang Q. ; Jin J. ; Wu X. Chem. Commun. 2014, 50, 14209.
doi: 10.1039/c4cc05535g |
40 |
Wu M. ; Wen Z. ; Liu Y. ; Wang X. ; Huang L. J. Power Sources 2011, 196, 8091.
doi: 10.1016/j.jpowsour.2011.05.035 |
41 |
Lin D. ; Liu Y. ; Chen W. ; Zhou G. ; Liu K. ; Dunn B. ; Cui Y. Nano Lett. 2017, 17, 3731.
doi: 10.1021/acs.nanolett.7b01020 |
42 |
Shen X. ; Li Y. ; Qian T. ; Liu J. ; Zhou J. ; Yan C. ; Goodenough J. B. Nat. Commun. 2019, 10, 900.
doi: 10.1038/s41467-019-08767-0 |
43 |
Lang J. ; Long Y. ; Qu J. ; Luo X. ; Wei H. ; Huang K. ; Zhang H. ; Qi L. ; Zhang Q. ; Li Z. ; et al Energy Storage Mater. 2019, 16, 85.
doi: 10.1016/j.ensm.2018.04.024 |
44 |
Fan L. ; Zhuang H. L. ; Gao L. ; Lu Y. ; Archer L. A. J. Mater. Chem. A 2017, 5, 3483.
doi: 10.1039/c6ta10204b |
45 |
Han X. ; Gong Y. ; Fu K. K. ; He X. ; Hitz G. T. ; Dai J. ; Pearse A. ; Liu B. ; Wang H. ; Rubloff G. ; et al Nat. Mater. 2017, 16, 572.
doi: 10.1038/nmat4821 |
46 |
Kozen A. C. ; Lin C. F. ; Pearse A. J. ; Schroeder M. A. ; Han X. G. ; Hu L. B. ; Lee S. B. ; Rubloff G. W. ; Noked M. ACS Nano 2015, 9, 5884.
doi: 10.1021/acsnano.5b02166 |
47 |
Lee J. I. ; Shin M. ; Hong D. ; Park S. Adv. Energy Mater. 2019, 9, 1803722.
doi: 10.1002/aenm.201803722 |
48 |
Cheng X. B. ; Zhao C. Z. ; Yao Y. X. ; Liu H. ; Zhang Q. Chem 2019, 5, 74.
doi: 10.1016/j.chempr.2018.12.002 |
49 |
Li N. W. ; Shi Y. ; Yin Y. X. ; Zeng X. X. ; Li J. Y. ; Li C. J. ; Wan L. J. ; Wen R. ; Guo Y. G. Angew. Chem. Int. Ed. 2018, 57, 1505.
doi: 10.1002/anie.201710806 |
50 |
Liu K. ; Pei A. ; Lee H. R. ; Kong B. ; Liu N. ; Lin D. ; Liu Y. ; Liu C. ; Hsu P. C. ; Bao Z. ; et al J. Am. Chem. Soc. 2017, 139, 4815.
doi: 10.1021/jacs.6b13314 |
51 |
Hu Z. ; Zhang S. ; Dong S. ; Li W. ; Li H. ; Cui G. ; Chen L. Chem. Mater. 2017, 29, 4682.
doi: 10.1021/acs.chemmater.7b00091 |
52 |
Tu Z. ; Choudhury S. ; Zachman M. J. ; Wei S. ; Zhang K. ; Kourkoutis L. F. ; Archer L. A. Joule 2017, 1, 394.
doi: 10.1016/j.joule.2017.06.002 |
53 |
Ma G. ; Wen Z. ; Wang Q. ; Shen C. ; Jin J. ; Wu X. J. Mater. Chem. A 2014, 2, 19355.
doi: 10.1039/c4ta04172k |
54 |
Gao Y. ; Zhao Y. ; Li Y. C. ; Huang Q. ; Mallouk T. E. ; Wang D. J. Am. Chem. Soc. 2017, 139, 15288.
doi: 10.1021/jacs.7b06437 |
55 |
Luo J. ; Fang C. C. ; Wu N. L. Adv. Energy Mater. 2018, 8, 1701482.
doi: 10.1002/aenm.201701482 |
56 |
Sun Y. ; Zhao Y. ; Wang J. ; Liang J. ; Wang C. ; Sun Q. ; Lin X. ; Adair K. R. ; Luo J. ; Wang D. ; et al Adv. Mater. 2019, 31, e1806541.
doi: 10.1002/adma.201806541 |
57 |
Liu J. ; Qian T. ; Wang M. ; Zhou J. ; Xu N. ; Yan C. Nano Lett. 2018, 18, 4598.
doi: 10.1021/acs.nanolett.8b01882 |
58 |
Kang D. ; Sardar S. ; Zhang R. ; Noam H. ; Chen J. ; Ma L. ; Liang W. ; Shi C. ; Lemmon J. P. Energy Storage Mater. 2020, 27, 69.
doi: 10.1016/j.ensm.2020.01.020 |
59 |
Xu R. ; Xiao Y. ; Zhang R. ; Cheng X. B. ; Zhao C. Z. ; Zhang X. Q. ; Yan C. ; Zhang Q. ; Huang J. Q. Adv. Mater. 2019, 31, e1808392.
doi: 10.1002/adma.201808392 |
60 |
Yang C. ; Liu B. ; Jiang F. ; Zhang Y. ; Xie H. ; Hitz E. ; Hu L. Nano Res. 2017, 10, 4256.
doi: 10.1007/s12274-017-1498-2 |
61 |
Liu Y. ; Lin D. ; Yuen P. Y. ; Liu K. ; Xie J. ; Dauskardt R. H. ; Cui Y. Adv. Mater. 2017, 29, 1605531.
doi: 10.1002/adma.201605531 |
62 |
Kozen A. C. ; Lin C. F. ; Zhao O. ; Lee S. B. ; Rubloff G. W. ; Noked M. Chem. Mater. 2017, 29, 6298.
doi: 10.1021/acs.chemmater.7b01496 |
63 |
Liu F. ; Xiao Q. ; Wu H. B. ; Shen L. ; Xu D. ; Cai M. ; Lu Y. Adv. Energy Mater. 2018, 8, 1701744.
doi: 10.1002/aenm.201701744 |
64 |
Adair K. R. ; Zhao C. T. ; Banis M. N. ; Zhao Y. ; Li R. Y. ; Cai M. ; Sun X. L. Angew. Chem. Int. Ed. 2019, 58, 15797.
doi: 10.1002/anie.201907759 |
65 |
Sun C. ; Huang X. ; Jin J. ; Lu Y. ; Wang Q. ; Yang J. ; Wen Z. J. Power Sources 2018, 377, 36.
doi: 10.1016/j.jpowsour.2017.11.063 |
66 |
Xu R. ; Zhang X. Q. ; Cheng X. B. ; Peng H. J. ; Zhao C. Z. ; Yan C. ; Huang J. Q. Adv. Funct. Mater. 2018, 28, 1705838.
doi: 10.1002/adfm.201705838 |
67 |
Li S. ; Fan L. ; Lu Y. Energy Storage Mater. 2019, 18, 205.
doi: 10.1016/j.ensm.2018.09.015 |
68 |
Cheng X. B. ; Yan C. ; Chen X. ; Guan C. ; Huang J. Q. ; Peng H. J. ; Zhang R. ; Yang S. T. ; Zhang Q. Chem 2017, 2, 258.
doi: 10.1016/j.chempr.2017.01.003 |
69 |
Liu Q. C. ; Xu J. J. ; Yuan S. ; Chang Z. W. ; Xu D. ; Yin Y. B. ; Li L. ; Zhong H. X. ; Jiang Y. S. ; Yan J. M. ; et al Adv. Mater. 2015, 27, 5241.
doi: 10.1002/adma.201501490 |
70 |
Liu S. ; Xia X. ; Deng S. ; Xie D. ; Yao Z. ; Zhang L. ; Zhang S. ; Wang X. ; Tu J. Adv. Mater. 2019, 31, e1806470.
doi: 10.1002/adma.201806470 |
71 |
Yan K. ; Lu Z. ; Lee H. W. ; Xiong F. ; Hsu P. C. ; Li Y. ; Zhao J. ; Chu S. ; Cui Y. Nat. Energy 2016, 1, 16010.
doi: 10.1038/nenergy.2016.10 |
72 |
Liu S. ; Ma Y. ; Zhou Z. ; Lou S. ; Huo H. ; Zuo P. ; Wang J. ; Du C. ; Yin G. ; Gao Y. Energy Storage Mater. 2020, 33, 423.
doi: 10.1016/j.ensm.2020.08.007 |
73 |
Liang X. ; Pang Q. ; Kochetkov I. R. ; Sempere M. S. ; Huang H. ; Sun X. ; Nazar L. F. Nat. Energy 2017, 2, 17119.
doi: 10.1038/nenergy.2017.119 |
74 |
Jiang Z. ; Jin L. ; Han Z. ; Hu W. ; Zeng Z. ; Sun Y. ; Xie J. Angew. Chem. Int. Ed. 2019, 58, 11374.
doi: 10.1002/anie.201905712 |
75 |
Ma L. ; Kim M. S. ; Archer L. A. Chem. Mater. 2017, 29, 4181.
doi: 10.1021/acs.chemmater.6b03687 |
76 |
Tang W. ; Yin X. ; Kang S. ; Chen Z. ; Tian B. ; Teo S. L. ; Wang X. ; Chi X. ; Loh K. P. ; Lee H. W. ; et al Adv. Mater. 2018, e1801745.
doi: 10.1002/adma.201801745 |
77 |
Hu Z. ; Liu F. ; Gao J. ; Zhou W. ; Huo H. ; Zhou J. ; Li L. Adv. Funct. Mater. 2020, 30, 1907020.
doi: 10.1002/adfm.201907020 |
78 |
Liu S. ; Zhang X. ; Li R. ; Gao L. ; Luo J. Energy Storage Mater. 2018, 14, 143.
doi: 10.1016/j.ensm.2018.03.004 |
79 |
Fu K. K. ; Gong Y. H. ; Liu B. Y. ; Zhu Y. Z. ; Xu S. M. ; Yao Y. G. ; Luo W. ; Wang C. W. ; Lacey S. D. ; Dai J. Q. ; et al Sci. Adv. 2017, 3, e1601659.
doi: 10.1126/sciadv.1601659 |
80 |
Yan C. ; Cheng X. B. ; Yao Y. X. ; Shen X. ; Li B. Q. ; Li W. J. ; Zhang R. ; Huang J. Q. ; Li H. ; Zhang Q. Adv. Mater. 2018, 30, 1804461.
doi: 10.1002/adma.201804461 |
81 |
Li T. ; Shi P. ; Zhang R. ; Liu H. ; Cheng X. B. ; Zhang Q. Nano Res. 2019, 12, 2224.
doi: 10.1007/s12274-019-2368-x |
82 |
Zheng G. ; Lee S. W. ; Liang Z. ; Lee H. W. ; Yan K. ; Yao H. ; Wang H. ; Li W. ; Chu S. ; Cui Y. Nat. Nanotechnol. 2014, 9, 618.
doi: 10.1038/nnano.2014.152 |
83 |
Yan J. ; Yu J. ; Ding B. Adv. Mater. 2018, 30, 1705105.
doi: 10.1002/adma.201705105 |
84 |
Yan M. ; Liang J. Y. ; Zuo T. T. ; Yin Y. X. ; Xin S. ; Tan S. J. ; Guo Y. G. ; Wan L. J. Adv. Funct. Mater. 2020, 30, 1908047.
doi: 10.1002/adfm.201908047 |
85 |
Huo H. ; Chen Y. ; Li R. ; Zhao N. ; Luo J. ; da Silva J. G. P. ; Muecke R. ; Kaghazchi P. ; Guo X. ; Sun X. Energy Environ. Sci. 2020, 13, 127.
doi: 10.1039/c9ee01903k |
86 |
Yang Q. ; Li W. ; Dong C. ; Ma Y. ; Yin Y. ; Wu Q. ; Xu Z. ; Ma W. ; Fan C. ; Sun K. J. Energy Chem. 2020, 42, 83.
doi: 10.1016/j.jechem.2019.06.012 |
87 |
Zhu B. ; Jin Y. ; Hu X. Z. ; Zheng Q. H. ; Zhang S. ; Wang Q. J. ; Zhu J. Adv. Mater. 2017, 29, 1603755.
doi: 10.1002/adma.201603755 |
88 |
Li Q. ; Zeng F. L. ; Guan Y. P. ; Jin Z. Q. ; Huang Y. Q. ; Yao M. ; Wang W. K. ; Wang A. B. Energy Storage Mater. 2018, 13, 151.
doi: 10.1016/j.ensm.2018.01.002 |
89 |
Luo J. ; Lee R. C. ; Jin J. T. ; Weng Y. T. ; Fang C. C. ; Wu N. L. Chem. Commun. 2017, 53, 963.
doi: 10.1039/c6cc09248a |
90 |
Yao Y. ; Zhao X. ; Razzaq A. A. ; Gu Y. ; Yuan X. ; Shah R. ; Lian Y. ; Lei J. ; Mu Q. ; Ma Y. ; et al J. Mater. Chem. A 2019, 7, 12214.
doi: 10.1039/c9ta03679b |
91 |
Jing H. K. ; Kong L. L. ; Liu S. ; Li G. R. ; Gao X. P. J. Mater. Chem. A 2015, 3, 12213.
doi: 10.1039/c5ta01490e |
[1] | Wei Zhang, Haichen Liang, Kerun Zhu, Yong Tian, Yao Liu, Jiayin Chen, Wei Li. Three-Dimensional Macro-/Mesoporous C-TiC Nanocomposites for Dendrite-Free Lithium Metal Anode [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2105024-. |
[2] | Zixu He, Yawei Chen, Fanyang Huang, Yulin Jie, Xinpeng Li, Ruiguo Cao, Shuhong Jiao. Fluorinated Solvents for Lithium Metal Batteries [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2205005-. |
[3] | Yunbo Zhang, Qiaowei Lin, Junwei Han, Zhiyuan Han, Tong Li, Feiyu Kang, Quan-Hong Yang, Wei Lü. Bacterial Cellulose-Derived Three-Dimensional Carbon Current Collectors for Dendrite-Free Lithium Metal Anodes [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2008088-. |
[4] | Huaming Qian, Xifei Li. Progress in Functional Solid Electrolyte Interphases for Boosting Li Metal Anode [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2008092-. |
[5] | Danmiao Kang, Noam Hart, Muye Xiao, John P. Lemmon. Short Circuit of Symmetrical Li/Li Cell in Li Metal Anode Research [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2008013-. |
[6] | Chen Wu, Ying Zhou, Xiaolong Zhu, Minzhi Zhan, Hanxi Yang, Jiangfeng Qian. Research Progress on High Concentration Electrolytes for Li Metal Batteries [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2008044-. |
[7] | Yumeng Zhao, Lingxiao Ren, Aoxuan Wang, Jiayan Luo. Composite Anodes for Lithium Metal Batteries [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2008090-. |
[8] | Yi Yang, Chong Yan, Jiaqi Huang. Research Progress of Solid Electrolyte Interphase in Lithium Batteries [J]. Acta Phys. -Chim. Sin., 2021, 37(11): 2010076-. |
[9] | Jinli Qin, Longtao Ren, Xin Cao, Yajun Zhao, Haijun Xu, Wen Liu, Xiaoming Sun. Porous Copper Foam Co-operation with Thiourea for Dendrite-free Lithium Metal Anode [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2009020-. |
[10] | Fanyang Huang, Yulin Jie, Xinpeng Li, Yawei Chen, Ruiguo Cao, Genqiang Zhang, Shuhong Jiao. Correlation between Li Plating Morphology and Reversibility of Li Metal Anode [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2008081-. |
[11] | Qian Wang, Kai Wu, Hangchao Wang, Wen Liu, Henghui Zhou. Lithiophilic 3D SnS2@Carbon Fiber Cloth for Stable Li Metal Anode [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2007092-. |
[12] | Ya Liu, Lei Zheng, Wei Gu, Yanbin Shen, Liwei Chen. Surface Passivation of Lithium Metal via In situ Polymerization [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2004058-. |
[13] | Fanfan Liu, Zhiwen Zhang, Shufen Ye, Yu Yao, Yan Yu. Challenges and Improvement Strategies Progress of Lithium Metal Anode [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2006021-. |
[14] | Muqin Wang, Zhe Peng, Huan Lin, Zhendong Li, Jian Liu, Zhongmin Ren, Haiyong He, Deyu Wang. A Framework with Enriched Fluorinated Sites for Stable Li Metal Cycling [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2007016-. |
[15] | Yan-Tao ZHANG,Zhen-Jie LIU,Jia-Wei WANG,Liang WANG,Zhang-Quan PENG. Recent Advances in Li Anode for Aprotic Li-O2 Batteries [J]. Acta Phys. -Chim. Sin., 2017, 33(3): 486-499. |
|