Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (2): 2008092.doi: 10.3866/PKU.WHXB202008092
Special Issue: Lithium Metal Anodes
• REVIEW • Previous Articles Next Articles
Huaming Qian1,2,3, Xifei Li1,2,3,*()
Received:
2020-08-31
Published:
2020-10-20
Contact:
Xifei Li
E-mail:xfli2011@hotmail.com
About author:
Xifei Li, Email: xfli2011@hotmail.com. Tel.: +86-29-82312516Supported by:
Huaming Qian, Xifei Li. Progress in Functional Solid Electrolyte Interphases for Boosting Li Metal Anode[J]. Acta Phys. -Chim. Sin. 2021, 37(2), 2008092. doi: 10.3866/PKU.WHXB202008092
Fig 2
(a) Rough lithium electrodeposition through poorly wetted, bare lithium surface and uniform and smooth lithium electrodeposition through uniformly wetted, ALD Al2O3 coated lithium surface; (b) schematic of the dendrite suppression and enhanced stability of Li encapsulated with ALD ZrO2 compared to pristine Li; (c) schematic illustration of SiO2-based passivation layer deposited on the surface of Li metal by chemical vapor deposition method, the inset in the below: top-view SEM images of morphologies of pristine Li, SiO2-modified Li electrode (SL-3) after galvanostatic cycles at a current density of 3 mA·cm-2 with a capacity of 3 mAh·cm-2 and potential profiles of symmetric coin cell with pristine Li, SL-3 electrodes at 3 mA·cm-2. (a) Adapted from Ref. 4. Copyright 2017, Royal Society of Chemistry. (b) Adapted from Ref. 62. Copyright 2018, American Chemical Society. (c) Adapted from Ref. 63. Copyright 2018, American Chemical Society."
Fig 3
(a) The schematic diagram of surface modification of Li metal by CS2 and I2; (b) schematic illustration of fabrication process of Li2S/Li2Se@Li anode using SeS2 gas; (c) schematics illustrating the fabrication method for a MoS2-coated Li anode via sputtering and subsequent lithiation. (a) Adapted from Ref. 64. Copyright 2019, American Chemical Society. (b) Adapted from Ref. 65. Copyright 2020, Wiley-VCH. (c) Adapted from Ref. 66. Copyright 2018, Springer Nature."
Fig 4
(a) Schematic illustrations of structural evolution upon deposition and corresponding mechanisms over the bare Li anode and the g-C3N4 nanosheet modified Li anode; (b) schematic illustration of the fabrication process for the [LiNBH]n layer and its effect toward stabilizing Li metal anode; (c) schematic illustration of the preparation procedure of the solid-state Li/LLZTO interface. (a) Adapted from Ref. 68. Copyright 2019, Wiley-VCH. (b) Adapted from Ref. 69. Copyright 2020, Wiley-VCH. (c) Adapted from Ref. 70. Copyright 2020, Wiley-VCH."
Fig 5
(a) Schematic diagram of the MCI and its functions on Li plating; (b) the diagrams of the Li plating/stripping in different environments without and with the waterproof protective layer; (c) schematics of morphology evolution on (top) bare Li and (down) housed Li during stripping/plating cycles; (d) schematic illustration of the mechanism of Li ions inter-calation into perovskite lattice, the formation of perovskite-alloy gradient Li ion conductor and the Li deposition process. (a) Adapted from Ref. 73. Copyright 2018, Wiley-VCH. (b) Adapted from Ref. 75. Copyright 2018, Wiley-VCH. (c) Adapted from Ref. 78. Copyright 2018, Elsevier. (d) Adapted from Ref. 79. Copyright 2018, Springer Nature."
Fig 6
(a) Schematic illustration of Li plating on bare Li metal and that with parallelly aligned Ti3C2Tx film; (b) schematic representation of the preparation process of LixSi layer on Li metal and Li deposition/stripping behavior on Li metal before and after modification; (c) schematics of the different Li anode structures: the general Li metal and Li3PO4 modified Li metal anode during SEI formation and cycling. (a) Adapted from Ref. 81. Copyright 2019, Wiley-VCH. (b) Adapted from Ref. 83. Copyright 2018, Wiley-VCH. (c) Adapted from Ref. 84. Copyright 2016, Wiley-VCH."
Fig 7
(a) Sketch of using sol-gel electrospinning followed by sintering to fabricate the hybrid LLTO/Al2O3 nanofiber films and sketch of Li-plating behaviors on Li-metal anodes with and without the ionic gradient lithiophilic interphase protection layer; (b) Li stripping/plating mechanism on Li metal coated with CNT and GZCNT interfacial layer. (a) Adapted from Ref. 87. Copyright 2019, Wiley-VCH. (b) Adapted from Ref. 88. Copyright 2018, Springer Nature."
Fig 8
(a) Schematic diagrams showing the effect of COF film on a Li anode when cycling: the COF is Li+ conducting and TFSI- blocking; (b) comparison of Li plating/stripping on polished Li and COF-Li; (c) growth of Li dendrites for unprotected Li metal anode, while the covered Silly Putty can eliminate SEI cracking and potential catastrophic dendrite growth; (d) schematic illustration compares the fragile SEI layer and integrated SEI layer with PDMS/DFB layer during the Li deposition/stripping process; (e) the mechanism illustrating the MSP modification for Li metal, the inset is the cross-sectional view of the MSP-modified Li metal after Li plating. (a, b) Adapted from Ref. 90. Copyright 2019, Wiley-VCH. (c) Adapted from Ref. 6. Copyright 2017, American Chemical Society. (d) Adapted from Ref. 91. Copyright 2018, American Chemical Society. (e) Adapted from Ref. 92. Copyright 2017, American Chemical Society."
Fig 9
(a) Formation of an electrolyte-derived SEI via electrolyte decomposition (top) and design of a polymer-inorganic SEI using the RPC precursor rather than the electrolyte; (b) schematic illustration of the fabrication of the Cu3N and SBR composite artificial SEI (upper figure) and the Li plating/stripping behavior on bare Li and the artificial SEI protected Li (lower figure); (c) schematic diagram illustrating the SEI formation process and Li deposition in spontaneously formed SEI and SiCl4 cross-linked SEI; (d) schematic illustrations of the working mechanism of hybrid artificial SEI layer composed of PVDF and mesoporous SiO2. (a) Adapted from Ref. 97. Copyright 2019, Springer Nature. (b) Adapted from Ref. 98. Copyright 2016, Wiley-VCH. (c) Adapted from Ref. 100. Copyright 2018, Wiley-VCH. (d) Adapted from Ref. 102. Copyright 2020, American Chemical Society."
Table 1
The role of different kinds of SEI film with various structure and component in regulating Li deposition."
Type of SEI film | Ion conductivity | Mechanical strength | Electron insulation | Highlights | Ref. | ||
Inorganic SEI | Oxides | MgO nanosheet | √ | √ | Uniform Li ion transfer towards interface | ||
ALD Al2O3 | √ | √ | Uniform and dense SEI | ||||
ALD ZrO2 | √ | √ | Uniform and dense SEI | ||||
Anti oxidation and hightemperature | |||||||
SiO2 | √ | √ | Chemical stability | ||||
Metal sulfide | Li2S/LiI | √ | √ | Self-healing ability | |||
Li2S/Li2Se | √ | √ | Superior ion conductivity | ||||
MoS2 sheet | √ | √ | Uniform Li plating within the sheet structure | ||||
Nitrides | Li3N particles | √ | √ | 3D network Li deposits | |||
g-C3N4 nanosheet | √ | √ | Abundant nucleation sites High modulus | ||||
[LiNBH]n | √ | √ | √ | Li deposition under the SEI layer | |||
Li3N/Zn/ZnLix/Li2O | √ | √ | Well interface contact with solid electrolyte | ||||
Inorganic SEI | Halides | LiF/Cu | √ | √ | Preferential Li deposition at the grain boundary | ||
CeF3 | √ | √ | Li deposition along specific crystal facet | ||||
LiCl/Ge/GeOxLi2CO3/ | √ | √ | Favorable waterproofness | ||||
LiOH/Li2O | |||||||
LiF/F-doped | √ | √ | Uniform Li plating between | ||||
carbon layer | LiF and Li metal | ||||||
LiF/graphene | √ | √ | Stable in air at room temperature | ||||
Cu/LiF@Li/ | √ | √ | Uniform Li plating | ||||
carbon fiber | Large Li storage space | ||||||
Metal chloride perovskite | √ | √ | Fast lithium ion shuttle under a low energy barrier | ||||
2D layered Layered graphene | √ | √ | In situ covalent binding | ||||
structure Ti3C2Tx multilayered | √ | √ | Fast Li ion transfer | ||||
structure | Li growth along horizontal direction | ||||||
Phosphates Li3PO4, Li2HPO4 | √ | √ | High modulus | ||||
Interfacial compatibility | |||||||
“Janus” Li0.33La0.56TiO3/Al2O3 | √ | √ | Gradient lithiophilicity Uniform | ||||
composites ZnO/Carbon nanotubes | Li plating near the substrate | ||||||
Organic SEI | Covalent Organic Frameworks | √ | √ | Shortened transport path for Li ion | |||
Cross-linked | Sill Putty | √ | √ | Dynamic response characteristic | |||
polymer | PDMS/DFB | √ | √ | 3D network Self-healing ability | |||
MSP/Oligomer | √ | √ | √ | Li plating near the matrix | |||
High-density Li deposits | |||||||
Inorganic/organic | Graphene oxide/LiF/P(SF-DOL) | √ | √ | In situ dense and uniform film Buffer layer | |||
composite SEI | Li3N/Styrene-butadiene copolymer | √ | √ | Promising flexibility | |||
Li3N/LiNxOy/PECA | √ | √ | In situ formed composite film | ||||
LiCl/Organic framework composed of Si—O —Si bond | √ | √ | Even and fast Li plating | ||||
Li6(Si2O7)/Polymer containing Si—O—Si bond | √ | √ | Reduced side reactions with H2O and O2 | ||||
Mesoporous SiO2/PVDF | √ | √ | Facilitated Li diffusion Uniform Li deposition |
1 |
Zhang Y. ; Zuo T. T. ; Popovic J. ; Lim K. ; Yin Y. X. ; Maier J. ; Guo Y. G. Mater. Today 2020, 33, 56.
doi: 10.1016/j.mattod.2019.09.018 |
2 |
Liu J. ; Bao Z. ; N; Cui Y. ; Dufek E. J. ; Goodenough J. B. ; Khalifah P. ; Li Q. Y. ; Liaw B. Y. ; Liu P. ; Manthiram A. ; et al Nat. Energy 2019, 4, 180.
doi: 10.1038/s41560-019-0338-x |
3 |
Adair K. R. ; Iqbal M. ; Wang C. H. ; Zhao Y. ; Banis M. N. ; Li R. Y. ; Zhang L. ; Yang R. ; Lu S. G. ; Sun X. L. Nano Energy 2018, 54, 375.
doi: 10.1016/j.nanoen.2018.10.002 |
4 |
Chen L. ; Connell J. G. ; Nie A. ; Huang Z. N. ; Zavadil K. R. ; Klavetter K. C. ; Yuan Y. F. ; Sharifi-Asl S. ; Shahbazian-Yassar R. ; Libera J. A. J. Mater. Chem. A 2017, 5, 12297.
doi: 10.1039/C7TA03116E |
5 |
Jin S. ; Sun Z. W. ; Guo Y. L. ; Qi Z. K. ; Guo C. K. ; Kong X. H. ; Zhu Y. W. ; Ji H. X. Adv. Mater. 2017, 29, 1700783.
doi: 10.1002/adma.201700783 |
6 |
Liu K. ; Pei A. ; Lee H. R. ; Kong B. ; Liu N. ; Lin D. C. ; Liu Y. Y. ; Liu C. ; Hsu P. C. ; Bao Z. N. ; et al J. Am. Chem. Soc. 2017, 139, 4815.
doi: 10.1021/jacs.6b13314 |
7 |
An Y. L. ; Zhang Z. ; Fei H. F. ; Xu X. Y. ; Xiong S. L. ; Feng J. K. ; Ci L. J. J. Power Sources 2017, 363, 193.
doi: 10.1016/j.jpowsour.2017.07.101 |
8 |
Wang M. Q. ; Peng Z. ; Luo W. W. ; Zhang Q. ; Li Z. D. ; Zhu Y. ; Lin H. ; Cai L. T. ; Yao X. Y. ; Ouyang C. Y. ; et al Adv. Sci. 2020, 7, 2000237.
doi: 10.1002/advs.202000237 |
9 | Liu F. F ; Zhang Z. W. ; Ye S. F. ; Yao Y. ; Yu Y. Acta Phys. -Chim. Sin. 2021, 37, 2006021. |
刘凡凡; 张志文; 叶淑芬; 姚雨; 余彦. 物理化学学报, 2021, 37, 2006021.
doi: 10.3866/PKU.WHXB202006021 |
|
10 |
Zhang X. ; Yang Y. A. ; Zhou Z. Chem. Soc. Rev. 2020, 49, 3040.
doi: 10.1039/c9cs00838a |
11 |
Xie J. ; Lu Y. C. Nat. Commun. 2020, 11, 2499.
doi: 10.1038/s41467-020-16259-9 |
12 |
Zhang R. ; Li N. W. ; Cheng X. B. ; Yin Y. X. ; Zhang Q. ; Guo Y. G. Adv. Sci. 2017, 4, 1600445.
doi: 10.1002/advs.201600445 |
13 |
Liang X. ; Pang Q. ; Kochetkov I. R. ; Sempere M. S. ; Huang H. ; Sun X. Q. ; Nazar L. F. Nat. Energy 2017, 2, 17119.
doi: 10.1038/nenergy.2017.119 |
14 |
Lin D. C ; Liu Y. Y. ; Cui Y. Nat. Nanotechnol. 2017, 12, 194.
doi: 10.1038/NNANO.2017.16 |
15 |
Wu F. X. ; Maier J. ; Yu Y. Chem. Soc. Rev. 2020, 49, 1569.
doi: 10.1039/c7cs00863e |
16 |
Lee D. ; Sun S. ; Kwon J. ; Park H. ; Jang M. ; Park E. ; Son B. ; Jung Y. ; Song T. ; Paik U. Adv. Mater. 2020, 32, e1905573.
doi: 10.1002/adma.201905573 |
17 |
Zhai P. B. ; Liu L. X. ; Gu X. K. ; Wang T. S. ; Gong Y. J. Adv. Energy Mater. 2020, 2001257.
doi: 10.1002/aenm.202001257 |
18 |
Kim M. S. ; Ryu J. H. ; Deepika; ; Lim Y. R. ; Nah I. W. ; Lee K. R. ; Archer L. A. ; Cho W. I. Nat. Energy 2018, 3, 889.
doi: 10.1038/s41560-018-0237-6 |
19 |
Brissot C. ; Rosso M. ; Chazalviel J. N. ; Lascaud S. J. Power Sources 1999, 925, 81- 82.
doi: 10.1016/S0378-7753(98)00242-0 |
20 |
Han F. D. ; Westover A. S. ; Yue J. ; Fan X. L. ; Wang F. ; Chi M. F. ; Leonard D. N. ; Dudney N. J. ; Wang H. ; Wang C. S. Nat. Energy 2019, 4, 187.
doi: 10.1038/s41560-018-0312-z |
21 |
Chen X. R. ; Yao Y. X. ; Yan C. ; Zhang R. ; Cheng X. B. ; Zhang Q. Angew. Chem. Int. Ed. 2020, 59, 7743.
doi: 10.1002/anie.202000375 |
22 |
Peled E. ; Golodnitsky D. ; Ardel G. J. Electrochem. Soc. 1997, 144, L208.
doi: 10.1149/1.1837858 |
23 |
Peled E. ; Menkin S. J. Electrochem. Soc. 2017, 164, A1703.
doi: 10.1149/2.1441707jes |
24 |
Yu X. W. ; Manthiram A. Energy Environ. Sci. 2018, 11, 527.
doi: 10.1039/C7EE02555F |
25 |
Zhang W. D. ; Zhuang H. L. L. ; Fan L ; Gao L. N. ; Lu Y. Y. Sci. Adv. 2018, 4, eaar4410.
doi: 10.1126/sciadv.aar4410 |
26 |
Tikekar M. D. ; Choudhury S. ; Tu Z. Y. ; Archer L. A. Nat. Energy 2016, 1, 16114.
doi: 10.1038/NENERGY.2016.114 |
27 |
Shi F. F. ; Pei A. ; Boyle D. T. ; Xie J. ; Yu X. Y. ; Zhang X. K. ; Cui Y. Proc. Natl. Acad. Sci. U.S.A. 2018, 115, 8529.
doi: 10.1073/pnas.1806878115 |
28 |
Cheng X. B. ; Zhang R. ; Zhao C. Z. ; Zhang Q. Chem. Rev. 2017, 117, 10403.
doi: 10.1021/acs.chemrev.7b00115 |
29 |
Han B. ; Feng D. Y. ; Li S. ; Zhang Z. ; Zou Y. C. ; Gu M. ; Meng H. ; Wang C. Y. ; Xu K. ; Zhao Y. S. ; et al Nano Lett. 2020, 20, 4029.
doi: 10.1021/acs.nanolett.0c01400 |
30 |
Liu D. H. ; Bai Z. Y. ; Li M. ; Yu A. P. ; Luo D. ; Liu W. W. ; Yang L. ; Lu J. ; Amine K. ; Chen Z. W. Chem. Soc. Rev. 2020, 49, 5407.
doi: 10.1039/c9cs00636b |
31 |
Bai P. ; Li J. ; Brushett F. R. ; Bazant M. Z. Energy Environ. Sci. 2016, 9, 3221.
doi: 10.1039/c6ee01674j |
32 |
Wang X. F. ; Pawar G. ; Li Y. J. ; Ren X. D. ; Zhang M. Z. ; Lu B. Y. ; Banerjee A. ; Liu P. ; Dufek E. J. ; Zhang J. G. ; et al Nat. Mater. 2020, 1.
doi: 10.1038/s41563-020-0729-1 |
33 |
Li Y. B. ; Huang W. ; Li Y. Z. ; Chiu W. ; Cui Y. ACS Nano 2020, 14, 9263.
doi: 10.1021/acsnano.0c05020 |
34 |
Wang X. F. ; Zhang M. H. ; Alvarado J. ; Wang S. ; Sina M. ; Lu B. Y. ; Bouwer J. ; Xu W. ; Xiao J. ; Zhang J. G. ; et al Nano Lett. 2017, 17, 7606.
doi: 10.1021/acs.nanolett.7b03606 |
35 |
Zachman M. J. ; Tu Z. Y. ; Choudhury S. ; Archer L. A. ; Kourkoutis L. F. Nature 2018, 560, 345.
doi: 10.1038/s41586-018-0397-3 |
36 |
Wang W. W. ; Gu Y. ; Yan H. ; Li S. ; He J. W. ; Xu H. Y. ; Wu Q. H. ; Yan J. W. ; Mao B. W. Chem 2020, 6, 1.
doi: 10.1016/j.chempr.2020.07.014 |
37 |
Zhang W. D. ; Shen Z. ; Li S. Y. ; Fan L. ; Wang X. Y. ; Chen F. ; Zang X. X. ; Wu T. ; Ma F. Y. ; Lu Y. Y. Adv. Funct. Mater. 2020, 2003800.
doi: 10.1002/adfm.202003800 |
38 |
Zhao J. M. ; Cano M. ; Giner-Casares J. J. ; Luque R. ; Xu G. B. Energy Environ. Sci. 2020, 13, 2618.
doi: 10.1039/D0EE01184C |
39 |
Huang W. ; Wang H. S. ; Boyle D. T. ; Li Y. Z. ; Cui Y. ACS Energy Lett. 2020, 5, 1128.
doi: 10.1021/acsenergylett.0c00194 |
40 |
Adair K. R. ; Banis M. N. ; Zhao Y. ; Bond T. ; Li R. Y. ; Sun X. L. Adv. Mater. 2020, 32, 2002550.
doi: 10.1002/adma.202002550 |
41 |
Zhou Y. F. ; Su M. ; Yu X. F. ; Zhang Y. Y. ; Wang J. G. ; Ren X. D. ; Cao R. G. ; Xu W. ; Baer D. R. ; Du Y. G. ; et al Nat. Nanotechnol. 2020, 15, 224.
doi: 10.1038/s41565-019-0618-4 |
42 |
Chang H. J. ; Ilott A. J. ; Trease N. M. ; Mohammadi M. ; Jerschow A. ; Grey C. P. J. Am. Chem. Soc. 2015, 137, 15209.
doi: 10.1021/jacs.5b09385 |
43 |
Li H. ; Chao D. L. ; Chen B. ; Chen X. ; Chuah C. ; Tang Y. H. ; Jiao Y. ; Jaroniec M. ; Qiao S. Z. J. Am. Chem. Soc. 2020, 142, 2012.
doi: 10.1021/jacs.9b11774 |
44 |
Chen Y. M. ; Wang Z. Q. ; Li X. Y. ; Yao X. H. ; Wang C. ; Li Y. T. ; Xue W. J. ; Yu D. W. ; Kim S. Y. ; Yang F. ; et al Nature 2020, 578, 251.
doi: 10.1038/s41586-020-1972-y |
45 |
Ding F. ; Xu W. ; Graff G. L. ; Zhang J. ; Sushko M. L. ; Chen X. L. ; Shao Y. Y. ; Engelhard M. H. ; Nie Z. M. ; Xiao J. ; et al J. Am. Chem. Soc. 2013, 135, 4450.
doi: 10.1021/ja312241y |
46 | Yang S. J. ; Xu X. Q. ; Cheng X. B. ; Wang X. M. ; Chen J. X. ; Xiao Y. ; Yuan H. ; Liu H. ; Chen A. B. ; Zhu W. C. ; et al Acta Phys. -Chim. Sin. 2021, 37, 2007058. |
杨世杰; 徐向群; 程新兵; 王鑫萌; 陈金秀; 肖也; 袁洪; 刘鹤; 陈爱兵; 朱万诚; 等. 物理化学学报, 2021, 37, 2007058.
doi: 10.3866/PKU.WHXB202007058 |
|
47 |
Qian J. F. ; Henderson W. A. ; Xu W. ; Bhattacharya P. ; Engelhard M. ; Borodin O. ; Zhang J. G. Nat. Commun. 2015, 6, 6362.
doi: 10.1038/ncomms7362 |
48 |
Yu Z. A. ; Cui Y. ; Bao Z. N. Cell Rep. Phys. Sci. 2020, 1, 100119.
doi: 10.1016/j.xcrp.2020.100119 |
49 |
Gao S. L. ; Sun F. Y. ; Liu N. ; Yang H. B. ; Cao P. F. Mater. Today 2020.
doi: 10.1016/j.mattod.2020.06.011 |
50 |
Fu C. Y. ; Venturi V. ; Kim J. ; Ahmad Z. ; Ells A. W. ; Viswanathan V. ; Helms B. A. Nat. Mater. 2020, 19, 758.
doi: 10.1038/s41563-020-0655-2 |
51 |
Lin C. F. ; Kozen A. C. ; Noked M. ; Liu C. Y. ; Rubloff G. W. Adv. Mater. Interfaces. 2016, 3, 1600426.
doi: 10.1002/admi.201600426 |
52 |
Lee J. I. ; Shin M. ; Hong D. ; Park S. Adv. Energy Mater. 2019, 9, 1803722.
doi: 10.1002/aenm.201803722 |
53 |
Zhang F. ; Shen F. ; Fan Z. Y. ; Ji X. ; Zhao B. ; Sun Z. T. ; Xuan Y. Y. ; Han X. G. Rare Met. 2018, 37, 510.
doi: 10.1007/s12598-018-1054-6 |
54 |
Gao Y. ; Zhao Y. M. ; Li Y. C. ; Huang Q. Q. ; Mallouk T. E. ; Wang D. H. J. Am. Chem. Soc. 2017, 139, 15288.
doi: 10.1021/jacs.7b06437 |
55 |
Jang E. K. ; Ahn J. ; Yoon S. ; Cho K. Y. Adv. Funct. Mater. 2019, 29, 1905078.
doi: 10.1002/adfm.201905078 |
56 |
Chai J. C. ; Chen B. B. ; Xian F. ; Wang P. ; Du H. P. ; Zhang J. J. ; Liu Z. H. ; Zhang H. R. ; Dong S. M. ; Zhou X. H. ; et al Small 2018, 14, 1802244.
doi: 10.1002/smll.201802244 |
57 |
Bai W. L. ; Zhang Z. ; Chen X. ; Wei X. ; Zhang Q. ; Xu Z. X. ; Liu Y. S. ; Chang B. B. ; Wang K. X. ; Chen J. S. Energy Storage Mater. 2020, 31, 373.
doi: 10.1016/j.ensm.2020.06.036 |
58 |
Shen Z. Y. ; Zhang W. D. ; Li S. Y. ; Mao S. L. ; Wang X. Y. ; Chen F. ; Lu Y. Y. Nano Lett. 2020, 20, 6606.
doi: 10.1021/acs.nanolett.0c02371 |
59 |
Zhu J. G. ; Li P. K. ; Chen X. ; Legut D. ; Fan Y. C. ; Zhang R. F. ; Lu Y. Y. ; Cheng X. B. ; Zhang Q. Energy Storage Mater. 2019, 16, 426.
doi: 10.1016/j.ensm.2018.06.023 |
60 |
Han X. G. ; Gong Y. H. ; Fu K. K. ; He X. F. ; Hitz G. T. ; Dai J. Q. ; Pearse A. ; Liu B. Y. ; Wang H. ; Rubloff G. ; et al Nat. Mater. 2017, 16, 572.
doi: 10.1038/NMAT4821 |
61 |
Zhou Y. G. ; Zhang X. ; Ding Y. ; Bae J. ; Guo X. L. ; Zhao Y. ; Yu G. H. Adv. Mater. 2020, 32, 2003920.
doi: 10.1002/adma.202003920 |
62 |
Alaboina P. K. ; Rodrigues S. ; Rottmayer M. ; Cho S. J. ACS Appl. Mater. Interfaces 2018, 10, 32801.
doi: 10.1021/acsami.8b08585 |
63 |
Kim J. Y. ; Kim A. Y. ; Liu G. C. ; Woo J. Y. ; Kim H. ; Lee J. K. ACS Appl. Mater. Interfaces 2018, 10, 8692.
doi: 10.1021/acsami.7b18997 |
64 |
Nan Y. ; Li S. M. ; Zhu M. Q. ; Li B. ; Yang S. B. ACS Appl. Mater. Interfaces 2019, 11, 28878.
doi: 10.1021/acsami.9b07942 |
65 |
Liu F. F. ; Wang L. F. ; Zhang Z. W. ; Shi P. C. ; Feng Y. Z. ; Yao Y. ; Ye S. F. ; Wang H. Y. ; Wu X. J. ; Yu Y. Adv. Funct. Mater. 2020, 30, 2001607.
doi: 10.1002/adfm.202001607 |
66 |
Cha E. ; Patel M. D. ; Park J. ; Hwang J. ; Prasad V. ; Cho K. ; Choi W. Nat. Nanotechnol. 2018, 13, 337.
doi: 10.1038/s41565-018-0061-y |
67 |
Park K. ; Goodenough J. B. Adv. Energy Mater. 2017, 7, 1700732.
doi: 10.1002/aenm.201700732 |
68 |
Guo Y. P. ; Niu P. ; Liu Y. Y. ; Ouyang Y. ; Li D. ; Zhai T. Y. ; Li H. Q. ; Cui Y. Adv. Mater. 2019, 31, 1900342.
doi: 10.1002/adma.201900342 |
69 |
Wang Z. J. ; Wang Y. Y. ; Zhang Z. H. ; Chen X. W. ; Lie W. ; He Y. B. ; Zhou Z. ; Xia G. L. ; Guo Z. P. Adv. Funct. Mater. 2020, 30, 2002414.
doi: 10.1002/adfm.202002414 |
70 |
Zhong Y. R. ; Xie Y. J. ; Hwang S. ; Wang Q. ; Cha J. J. ; Su D. ; Wang H. L. Angew. Chem. Int. Ed. 2020, 59, 14003.
doi: 10.1002/anie.202004477 |
71 |
Huang Z. M. ; Meng J. T. ; Xie M. L. ; Shen Y. ; Huang Y. H. J. Mater. Chem. A 2020, 8, 14198.
doi: 10.1039/D0TA05147K |
72 |
Xu S. M. ; Duan H. ; Shi J. L. ; Zuo T. T. ; Hu X. C. ; Lang S. Y. ; Yan M. ; Liang J. Y. ; Yang Y. G. ; Kong ; et al Nano Res. 2020, 13, 430.
doi: 10.1007/s12274-020-2625-z |
73 |
Yan C. ; Cheng X. B. ; Yao Y. X. ; Shen X. ; Li B. Q. ; Li W. J. ; Zhang R. ; Huang J. Q. ; Li H. ; Zhang Q. Adv. Mater. 2018, 30, 1804461.
doi: 10.1002/adma.201804461 |
74 |
Liu Y. Y. ; Xiong S. Z. ; Deng J. K. ; Jiao X. X. ; Song B. R. ; Matic A. ; Song J. X. Sci. China Mater. 2020, 63, 1036.
doi: 10.1007/s40843-019-1277-3 |
75 |
Liao K. M. ; Wu S. C. ; Mu X. W. ; Lu Q. ; Han M. ; He P. ; Shao Z. P. ; Zhou H. S. Adv. Mater. 2018, 30, 1705711.
doi: 10.1002/adma.201705711 |
76 |
Yu Y. ; Huang G. ; Wang J. Z. ; Li K. ; Ma J. L. ; Zhang X. B. Adv. Mater. 2020, 2004157.
doi: 10.1002/adma.202004157 |
77 |
Shen X. W. ; Li Y. T. ; Qian T. ; Liu J. ; Zhou J. Q. ; Yan C. L. ; Goodenough J. B. Nat. Commun. 2019, 10, 900.
doi: 10.1038/s41467-019-08767-0 |
78 |
Shen X. ; Cheng X. B. ; Shi P. ; Huang J. Q. ; Zhang X. Q. ; Yan C. ; Li T. ; Zhang Q. J. Energy Chem. 2019, 37, 29.
doi: 10.1016/j.jechem.2018.11.016 |
79 |
Yin Y. C. ; Wang Q. ; Yang J. T. ; Li F. ; Zhang G. Z. ; Jiang C. H. ; Mo H. S. ; Yao J. S. ; Wang K. H. ; Zhou F. ; et al Nat. Commun. 2020, 11, 1761.
doi: 10.1038/s41467-020-15643-9 |
80 |
Bai M. H. ; Xie K. Y. ; Yuan K. ; Zhang K. ; Li N. ; Shen C. ; Lai Y. Q. ; Vajtai R. ; Ajayan P. ; Wei B. Q. Adv. Mater. 2018, 30, 1801213.
doi: 10.1002/adma.201801213 |
81 |
Zhang D. ; Wang S. ; Li B. ; Gong Y. J. ; Yang S. B. Adv. Mater. 2019, 31, 1901820.
doi: 10.1002/adma.201901820 |
82 |
Chen X. ; Shang M. W. ; Niu J. J. Nano Lett. 2020, 20, 2639.
doi: 10.1021/acs.nanolett.0c00201 |
83 |
Tang W. ; Yin X. S. ; Kang S. J. ; Chen Z. X. ; Tian B. B. ; Teo S. L. ; Wang X. W. ; Chi X. ; Loh K. P. ; Lee H. W. ; et al Adv. Mater. 2018, 30, 1801745.
doi: 10.1002/adma.201801745 |
84 |
Li N. W. ; Yin Y. X. ; Yang C. P. ; Guo Y. G. Adv. Mater. 2016, 28, 1853.
doi: 10.1002/adma.201504526 |
85 |
Bai M. H. ; Xie K. Y. ; Hong B. ; Yuan K. ; Li Z. B. ; Huang Z. M. ; Shen C. ; Lai Y. Q. Solid State Ionics 2019, 333, 101.
doi: 10.1016/j.ssi.2019.01.016 |
86 |
Zhang Z. H. ; Chen S. J. ; Yang J. ; Wang J. Y. ; Yao L. L. ; Yao X. Y. ; Cui P. ; Xu X. X. ACS Appl. Mater. Interfaces 2018, 10, 2556.
doi: 10.1021/acsami.7b16176 |
87 |
Lai Y. M. ; Zhao Y. ; Cai W. P. ; Song J. ; Jia Y. T. ; Ding B. ; Yan J. H. Small 2019, 15, 1905171.
doi: 10.1002/smll.201905171 |
88 |
Zhang H. M. ; Liao X. B. ; Guan Y. P. ; Xiang Y. ; Li M. ; Zhang W. F. ; Zhu X. Y. ; Ming H. ; Lu L. ; Qiu J. Y. ; et al Nat. Commun. 2018, 9, 3729.
doi: 10.1038/s41467-018-06126-z |
89 |
Zhang X. ; Zhang Q. M. ; Wang X. G. ; Wang C. Y. ; Chen Y. N. ; Xie Z. J. ; Zhou Z. Angew. Chem. Int. Ed. 2018, 57, 12814.
doi: 10.1002/anie.201807985 |
90 |
Chen D. D. ; Huang S. ; Zhong L. ; Wang S. J. ; Xiao M. ; Han D. M. ; Meng Y. Z. Adv. Funct. Mater. 2019, 30, 1907717.
doi: 10.1002/adfm.201907717 |
91 |
Cui X. M. ; Chu Y. ; Qin L. M. ; Pan Q. M. ACS Sustain. Chem. Eng. 2018, 6, 11097.
doi: 10.1021/acssuschemeng.8b02564 |
92 |
Lee Y. G. ; Ryu S. ; Sugimoto T. ; Yu T. ; Chang W. S. ; Yang Y. ; Jung C. ; Woo J. ; Kang S. G. ; Han H. N. ; et al Chem. Mater. 2017, 29, 5906.
doi: 10.1021/acs.chemmater.7b01304 |
93 |
Wang C. H. ; Yang Y. F. ; Liu X. J. ; Zhong H. ; Xu H. ; Xu Z. B. ; Shao H. X. ; Ding F. ACS Appl. Mater. Interfaces 2017, 9, 13694.
doi: 10.1021/acsami.7b00336 |
94 |
Li G. X. ; Gao Y. ; He X. ; Huang Q. Q. ; Chen S. R. ; Kim S. H. ; Wang D. H. Nat. Commun. 2017, 8, 850.
doi: 10.1038/s41467-017-00974-x |
95 |
Yan C. ; Cheng X. B. ; Tian Y. ; Chen X. ; Zhang X. Q. ; Li W. J. ; Huang J. Q. ; Zhang Q. Adv. Mater. 2018, 30, e1707629.
doi: 10.1002/adma.201707629 |
96 |
Liu S. F. ; Xia X. H. ; Deng S. J. ; Xie D. ; Yao Z. J. ; Zhang L. Y. ; Zhang S. Z. ; Wang X. L. ; Tu J. P. Adv. Mater. 2019, 31, 1806470.
doi: 10.1002/adma.201806470 |
97 |
Gao Y. ; Yan Z. F. ; Gray J. L. ; He X. ; Wang D. W. ; Chen T. H. ; Huang Q. Q. ; Li Y. G. C. ; Wang H. Y. ; Kim S. H. ; et al Nat. Mater. 2019, 18, 384.
doi: 10.1038/s41563-019-0305-8 |
98 |
Liu Y. Y. ; Lin D. C. ; Yuen P. Y. ; Liu K. ; Xie J. ; Dauskardt R. H. ; Cui Y. Adv. Mater. 2017, 29, 1605531.
doi: 10.1002/adma.201605531 |
99 |
Hu Z. L. ; Zhang S. ; Dong S. M. ; Li W. J. ; Li H. ; Cui G. L. ; Chen L. Q. Chem. Mater. 2017, 29, 4682.
doi: 10.1021/acs.chemmater.7b00091 |
100 |
Zhao Q. ; Tu Z. Y. ; Wei S. Y. ; Zhang K. H. ; Choudhury S. ; Liu X. T. ; Archer L. A. Angew. Chem. Int. Ed. 2018, 57, 992.
doi: 10.102/anie.201711598 |
101 |
Liang W. ; Lian F. ; Meng N. ; Lu J. H. ; Ma L. J. ; Zhao C. Z. ; Zhang Q. Energy Storage Mater. 2020, 28, 350.
doi: 10.1016/j.ensm.2020.03.022 |
102 |
Wu C. ; Guo F. H. ; Zhuang L. ; Ai X. P. ; Zhong F. P. ; Yang H. X. ; Qian J. F. ACS Energy Lett. 2020, 5, 1644.
doi: 10.1021/acsenergylett.0c00804 |
103 |
Zhao Y. ; Goncharova L. V. ; Sun Q. ; Li X. ; Lushington A. ; Wang B. Q. ; Li R. Y. ; Dai F. ; Cai M. ; Sun X. L. Small Methods 2018, 2, 1700417.
doi: 10.1002/smtd.201700417 |
104 |
Sun Y. P. ; Amirmaleki M. ; Zhao Y. ; Zhao C. T. ; Liang J. N. ; Wang C. H. ; Adair K. R. ; Li J. J. ; Cui T. ; Wang G. R. ; et al Adv. Energy Mater. 2020, 10, 2001139.
doi: 10.1002/aenm.202001139 |
105 |
Wood D. L. ; Li J. L. ; An S. J. Joule 2019, 3, 2884.
doi: 10.1016/j.joule.2019.11.002 |
106 |
Zhao Y. ; Goncharova L. V. ; Zhang Q. ; Kaghazchi P. ; Sun Q. ; Lushington A. ; Wang B. Q. ; Li R. Y. ; Sun X. L. Nano Lett. 2017, 17, 5653.
doi: 10.1021/acs.nanolett.7b02464 |
107 |
Xie J. ; Wang J. Y. ; Lee H. R. ; Yan K. ; Li Y. Z. ; Shi F. F. ; Huang W. ; Pei A. ; Chen G. ; Subbaraman R. ; et al Sci. Adv. 2018, 4, eaat5168.
doi: 10.1126/sciadv.aat5168 |
[1] | Danmiao Kang, Noam Hart, Muye Xiao, John P. Lemmon. Short Circuit of Symmetrical Li/Li Cell in Li Metal Anode Research [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2008013-. |
[2] | Jun Guan, Nianwu Li, Le Yu. Artificial Interphase Layers for Lithium Metal Anode [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2009011-. |
[3] | Fanyang Huang, Yulin Jie, Xinpeng Li, Yawei Chen, Ruiguo Cao, Genqiang Zhang, Shuhong Jiao. Correlation between Li Plating Morphology and Reversibility of Li Metal Anode [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2008081-. |
[4] | Fanfan Liu, Zhiwen Zhang, Shufen Ye, Yu Yao, Yan Yu. Challenges and Improvement Strategies Progress of Lithium Metal Anode [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2006021-. |
[5] | Muqin Wang, Zhe Peng, Huan Lin, Zhendong Li, Jian Liu, Zhongmin Ren, Haiyong He, Deyu Wang. A Framework with Enriched Fluorinated Sites for Stable Li Metal Cycling [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2007016-. |
|