Acta Phys. -Chim. Sin. ›› 2022, Vol. 38 ›› Issue (11): 2206020.doi: 10.3866/PKU.WHXB202206020
Special Issue: Special Issue of Emerging Scientists
• REVIEW • Previous Articles Next Articles
Yongxia Shi, Man Hou, Junjun Li, Li Li, Zhicheng Zhang()
Received:
2022-06-14
Accepted:
2022-07-12
Published:
2022-07-20
Contact:
Zhicheng Zhang
E-mail:zczhang19@tju.edu.cn
About author:
Zhicheng Zhang, Email: zczhang19@tju.edu.cn; Tel.: +86-15822798044Supported by:
Yongxia Shi, Man Hou, Junjun Li, Li Li, Zhicheng Zhang. Cu-Based Tandem Catalysts for Electrochemical CO2 Reduction[J]. Acta Phys. -Chim. Sin. 2022, 38(11), 2206020. doi: 10.3866/PKU.WHXB202206020
"
Cu-based tandem catalysts | Method | Product | FE (%) | Potential (V vs. RHE) | jpartial/ (mA?cm?2) | Electrolytic cell | Electrolyte | Ref. | |
Metallic alloys | Cu4Zn | Electrodeposition | C2H5OH | 29.1 | ?10.5 | ?8.2 | H-cell | 0.1 mol?L?1 KHCO3 | |
Cu500Ag1000 | Physical mixing | C2+ products | – | ?0.7 | 160 | Flow cell | 1 mol?L?1 KOH | ||
Metallic heterojunction | Au/Cu | Physical vapour deposition | C2+ alcohols | – | – | – | H-cell | 0.1 mol?L-1 KHCO3 | |
Ag/Cu | Electroreduction | C2H4 | 42 | ?1.1 | 2.31 | H-cell | 0.1 mol?L?1 KHCO3 | ||
Ag1-Cu1.1 | Seed-mediated g rowth method | C2H4 | ~40 | ?1.1 | – | H-cell | 0.1 mol?L?1 KHCO3 | ||
Cu/Au | Galvanic replacement | multi-carbon alkenes and alcohols | ~70 | ?10.5 | ~30 | H-cell | 0.1 mol?L?1 KHCO3 | ||
Cu1.0/ZnO0.2 | Sequential air brush method | C2H4 | 49 | ?0.73 | ?292 | Flow cell | 1 mol?L?1 KOH | ||
Cu on Ag | Electrodeposition | C2H5OH C3H7OH | – | – | – | H-cell | 0.1 mol?L?1 NaHCO3 0.5 mol?L?1 NaClO4 | ||
Cuoh-Ag | Physical mixing | C2H5OH | 23.1 | ?1.4 | 2.5 | H-cell | 0.1 mol?L?1 KHCO3 | ||
Ag65-Cu35 | Seed-mediated growth method | C2H4 | 54 | ?1.2 | ~?2 | H-cell | 0.1 mol?L?1 KHCO3 | ||
Au-Cu | Seed-mediated growth Method | C2H4 C2H6 | 46.4 | ?1.0 | ~?2.25 | H-cell | 0.1 mol?L?1 KHCO3 | ||
Au1Ag1Cu5 | Seed-mediated growth Method | C2H5OH | 37.5 | ?0.8 | ~?0.6 | H-cell | 0.1 mol?L?1 KHCO3 | ||
Metallic core-shell structures | Cu@Ag-2 | Two-step reduction method | C2H4 | 32.2 | ?1.1 | 9.0 | Flow cell | 1 mol?L?1 KOH | |
Au@Cu2O yolk-shell | Hydrazine hydration reduction method | C2H5OH | 52.3 | ?0.3 | – | H-cell | 0.1 mol?L?1 KHCO3 | ||
Cu-based framework materials | Cu(111)@Cu-THQ | Electrochemical Reduction | C2H4 | 44.2 ± 3.4% | ?1.2 | – | H-cell | 0.1 mol?L?1 KHCO3 | |
PTF(Ni)/Cu | Reduction | C2H4 | 57.3 | ?1.1 | 3.1 | H-cell | 0.1 mol?L?1 KHCO3 and 0.1 mol?L?1 KCl | ||
Cu-based carbon materials | CuOx-NiNC | Wet chemical method | C2H4 | – | ?0.9 | – | H-cell | 0.1 mol?L?1 KHCO3 | |
Cu/N-CNF | One-pot synthesis method | C2H4 | 62 | ?0.57 | 373 | Flow cell | 5 mol?L?1 KOH | ||
Cu1.96S/Cu-NCNF | Electrospinning and calcination method | CO | 80.2 | ?0.68 | ~3 | H-cell | 0.5 mol?L?1 KHCO3 | ||
Cu-S1N3/Cux | High temperature calcination pyrolysis | CO | 100 | ?0.65 | ~4 | H-cell | 0.1 mol?L?1 KHCO3 | ||
Cu-Based polymer-modified materials | Cu0@PIL@CuI | Two-step procedure | C2+ products | 76.1 | ?0.85 | 304.2 | Flow cell | 1 mol?L?1 KOH |
1 |
MikkelsenM.;JørgensenM.;KrebsF. C.Energy Environ. Sci.2010,3,43.
doi: 10.1039/B912904A |
2 |
SpinnerN. S.;VegaJ. A.;MustainW. E.Catal. Sci. Technol.2012,2,19.
doi: 10.1039/C1CY00314C |
3 |
ZhuD.;LiuJ.;QiaoS.Adv. Mater.2016,28,3423.
doi: 10.1002/adma.201504766 |
4 |
PierrehumbertR. T.Am. Inst. Phys.2011,1401,232.
doi: 10.1063/1.3653855 |
5 |
LacisA. A.;SchmidtG. A.;RindD.;RuedyR. A.Science2010,330,356.
doi: 10.1126/science.119065 |
6 |
MöllerF.J. Geophys. Res1963,68,3877.
doi: 10.1029/JZ068i013p03877 |
7 |
CanadellJ. G.;QuéréC. L.;RaupachM. R.;FieldC. B.;BuitenhuisE. T.;CiaisP.;ConwayT. J.;GillettN. P.;HoughtonR. A.;MarlandG.Proc. Natl. Acad. Sci. U.S.A.2007,104,18866.
doi: 10.1073/pnas.0702737104 |
8 |
MyersS. S.;ZanobettiA.;KloogI.;HuybersP.;LeakeyA. D. B.;BloomA. J.;CarlisleE.;DietterichL. H.;FitzgeraldG.;HasegawaT.;et alNature2014,510,139.
doi: 10.1038/nature13179 |
9 |
PearsonP. N.;PalmerM. R.Nature2000,406,695.
doi: 10.1038/35021000 |
10 |
SchimelD.;StephensB. B.;FisherJ. B.Proc. Natl. Acad. Sci. U.S.A.2015,112,436.
doi: 10.1073/pnas.1407302112 |
11 |
RaupachM. R.;MarlandG.;CiaisP.;QuéréC. L.;CanadellJ. G.;KlepperG.;FieldC. B.Proc. Natl. Acad. Sci. U.S.A.2007,104,10288.
doi: 10.1073/pnas.0700609104 |
12 |
GaoS.;SunZ. T.;LiuW.;JiaoX. C.;ZuX. L.;HuQ. T.;SunY. F.;YaoT.;ZhangW. H.;WeiS. Q.;XieY.Nat. Commun.2017,8,14503.
doi: 10.1038/ncomms14503 |
13 |
QiaoJ. L.;LiuY. Y.;HongF.;ZhangJ.J. Chem. Soc. Rev.2014,43,631.
doi: 10.1039/C3CS60323G |
14 |
ArakawaH.;ArestaM.;ArmorJ. N.;BarteauM. A.;BeckmanE. J.;BellA. T.;BercawJ. E.;CreutzC.;DinjusE.;DixonD. A.Chem. Rev.2001,101,953.
doi: 10.1021/cr000018s |
15 |
WhippleD. T.;KenisP. J. A.J. Phys. Chem. Lett.2010,1,3451.
doi: 10.1021/jz1012627 |
16 |
SehZ. W.;KibsgaardJ.;DickensC. F.;ChorkendorffI.;NorskovJ. K.;JaramilloT. F.Science2017,355,eaad4998.
doi: 10.1126/science.aad4998 |
17 |
MontoyaJ. H.;SeitzL. C.;ChakthranontP.;VojvodicA.;JaramilloT. F.;NørskovJ. K.Nat. Mater.2017,16,70.
doi: 10.1038/nmat4778 |
18 |
AppelA. M.;BercawJ. E.;BocarslyA. B.;DobbekH.;DuBoisD. L.;DupuisM.;FerryJ. G.;FujitaE.;HilleR.;KenisP. J. A.;et alChem. Rev.2013,113,6621.
doi: 10.1021/cr300463y |
19 |
GattrellM.;GuptaN.;CoA.Energy Convers. Manage.2007,48,1255.
doi: 10.1016/j.enconman.2006.09.019 |
20 |
CostentinC.;RobertM.;SaveantJ.-M.Chem. Soc. Rev.2013,42,2423.
doi: 10.1039/C2CS35360A |
21 |
HoriY.;MurataA.;TakahashiR.J. Chem. Soc. Faraday Trans. 11989,85,2309.
doi: 10.1039/f19898502309 |
22 |
GarzaA. J.;BellA. T.;Head-GordonM.ACS Catal.2018,8,1490.
doi: 10.1021/acscatal.7b03477 |
23 |
MaM.;DjanashviliK.;SmithW. A.Angew. Chem. Int. Ed.2016,55,6680.
doi: 10.1002/anie.201601282 |
24 |
HoriY.;TakahashiI.;KogaO.;HoshiN.J. Phys. Chem. B2002,106,15.
doi: 10.1021/jp013478d |
25 |
SchoutenK. J. P.;KwonY.;van der HamC. J. M.;QinZ.;KoperM. T. M.Chem. Sci.2011,2,1902.
doi: 10.1039/C1SC00277E |
26 |
TakahashiI.;KogaO.;HoshiN.;HoriY.J. Electroanal. Chem.2002,533,135.
doi: 10.1016/S0022-0728(02)01081-1 |
27 |
HahnC.;HatsukadeT.;KimY.-G.;VailionisArturas;BaricuatroJ. H.;HigginsD. C.;NitopiS. A.;SoriagaM. P.;JaramilloT. F.Proc. Natl. Acad. Sci. U.S.A.2017,114,5918.
doi: 10.1073/pnas.1618935114 |
28 |
YuanJ.;ZhangJ. J.;YangM. P.;MengW. J.;WangH.;LuJ. X.Catalysts2018,8,171.
doi: 10.3390/catal8040171 |
29 |
ZhuangT. T.;PangY. J.;LiangZ. Q.;WangZ. Y.;LiY.;TanC. S.;LiJ.;DinhC. T.;De LunaP.;HsiehP. L.Nat. Catal.2018,1,946.
doi: 10.1038/s41929-018-0168-4 |
30 |
DuttaA.;RahamanM.;LuediN. C.;MohosM.;BroekmannP.ACS Catal.2016,6,3804.
doi: 10.1021/acscatal.6b00770 |
31 |
PangY. J.;BurdynyT.;DinhC. T.;KibriaM. G.;FanJ. Z.;LiuM.;SargentE. H.;SintonD.Green Chem.2017,19,4023.
doi: 10.1039/C7GC01677H |
32 |
LoiudiceA.;LobaccaroP.;KamaliE. A.;ThaoT.;HuangB. H.;AgerJ. W.;BuonsantiR.Angew. Chem. Int. Ed.2016,55,5789.
doi: 10.1002/anie.201601582 |
33 |
IyengarP.;HuangJ. F.;De GregorioG. L.;GadiyarC.;BuonsantiR.Chem. Commun.2019,55,8796.
doi: 10.1039/C9CC02522G |
34 |
MistryH.;ReskeR.;ZengZ. H.;ZhaoZ. J.;GreeleyJ.;StrasserP.;CuenyaB. R.J. Am. Chem. Soc.2014,136,16473.
doi: 10.1021/ja508879j |
35 |
GaoD. F.;ZhouH.;WangJ.;MiaoS.;YangF.;WangG. X.;WangJ. G.;BaoX. H.J. Am. Chem. Soc.2015,137,4288.
doi: 10.1021/jacs.5b00046 |
36 |
ReskeR.;MistryH.;BehafaridF.;CuenyaB. R.;StrasserP.J. Am. Chem. Soc.2014,136,6978.
doi: 10.1021/ja500328k |
37 |
MistryH.;VarelaA. S.;BonifacioC. S.;ZegkinoglouI.;SinevI.;ChoiY.-W.;KisslingerK.;StachE. A.;YangJ. C.;StrasserP.;et alNat. Commun.2016,7,12123.
doi: 10.1038/ncomms12123 |
38 |
XiaoH.;Goddard ⅢW. A.;ChengT.;LiuY. Y.Proc. Natl. Acad. Sci. U.S.A.2017,114,6685.
doi: 10.1073/pnas.1702405114 |
39 |
ZhangL. Y.;YangS.;LaiY. K.;LiuH.;FanY. A.;LiuC.;WangH. Y.;ChaiL. Y.Appl. Catal. B2020,265,118556.
doi: 10.1016/j.apcatb.2019.118556 |
40 |
YangS.;LiuZ. L.;YanX.;LiuC.;ZhangZ. Y.;LiuH.;ChaiL. Y.Energy Fuels2019,33,11380.
doi: 10.1021/acs.energyfuels.9b02376 |
41 |
MudiyanselageK.;LuoS.;KimH. Y.;YangX. F.;BaberA. E.;HoffmannF. M.;SenanayakeS.;RodriguezJ. A.;ChenJ. G.;LiuP.;et alCatal. Today2016,263,4.
doi: 10.1016/j.cattod.2015.08.025 |
42 |
YinZ. Y.;YuC.;ZhaoZ. L.;GuoX. F.;ShenM.Q.;LiN.;MuzzioM.;LiJ. R.;LiuHu.;LinH. H.;et alNano Lett.2019,19,8658.
doi: 10.1021/acs.nanolett.9b03324 |
43 |
BuckleyA. K.;LeeM.;ChengT.;KazantsevR. V.;LarsonD. M.;Goddard ⅢW. A.;TosteF. D.;TomaF. M.J. Am. Chem. Soc.2019,141,7355.
doi: 10.1021/jacs.8b13655 |
44 |
HoangT. T. H.;MaS.;GoldJ. I.;KenisP. J. A.;GewirthA. A.ACS Catal.2017,7,3313.
doi: 10.1021/acscatal.6b03613 |
45 |
HanZ. J.;KortleverR.;ChenH.-Y.;PetersJ. C.;AgapieT.ACS Cent. Sci.2017,3,853.
doi: 10.1021/acscentsci.7b00180 |
46 |
ClarkE. L.;HahnC.;JaramilloT. F.;BellA. T.J. Am. Chem. Soc.2017,139,15848.
doi: 10.1021/jacs.7b08607 |
47 |
ZhouY. S.;CheF. L.;LiuM.;ZouC. Q.;LiangZ. Q.;De LunaP.;YuanH. F.;LiJ.;WangZ. Q.;XieH. P.;et alNat. Chem.2018,10,974.
doi: 10.1038/s41557-018-0092-x |
48 |
LiC. W.;KananM. W.J. Am. Chem. Soc.2012,134,7231.
doi: 10.1021/ja3010978 |
49 |
WangX.;WangZ. Y.;ZhuangT.-T.;DinhC.-T.;LiJ.;NamD.-H.;LiF. W.;HuangC.-W.;TanC.-S.;ChenZ. T.;et alNat Commun.2019,10,5186.
doi: 10.1038/s41467-019-13190-6 |
50 |
LumY.;AgerJ. W.Angew. Chem. Int. Ed.2018,57,551.
doi: 10.1002/anie.201710590 |
51 |
Verdaguer-CasadevallA.;LiC. W.;JohanssonT. P.;ScottS. B.;McKeownJ. T.;KumarM.;StephensI. E. L.;KananM. W.;ChorkendorffI.J. Am. Chem. Soc.2015,137,9808.
doi: 10.1021/jacs.5b06227 |
52 |
MarianoR. G.;McKelveyK.;WhiteH. S.;KananM. W.Science2017,358,1187.
doi: 10.1126/science.aao3691 |
53 |
GuZ. X.;YangN.;HanP.;KuangM.;MeiB. B.;JiangZ.;ZhongJ.;LiL.;ZhengG. F.Small Methods2019,3,1800449.
doi: 10.1002/smtd.201800449 |
54 |
ChangX. X.;WangT.;ZhaoZ. J.;YangP. P.;GreeleyJ.;MuR. T.;ZhangG.;GongZ. M.;LuoZ. B.;ChenJ.;et alAngew. Chem. Int. Ed.2018,57,15415.
doi: 10.1002/anie.201805256 |
55 |
BaiS. X.;ShaoQ.;WangP. T.;DaiQ. G.;WangX. Y.;HuangX. Q.J. Am. Chem. Soc.2017,139,6827.
doi: 10.1021/jacs.7b03101 |
56 |
HuangJ. F.;MensiM.;OveisiE.;MantellaV.;BuonsantiR.J. Am. Chem. Soc.2019,141,2490.
doi: 10.11/acscatal.9b081 |
57 |
VarandiliS. B.;HuangJ. F.;OveisiE.;De GregorioG. L.;MensiM.;StrachM.;VavraJ.;GadiyarC.;BhowmikA.;BuonsantiR.ACS Catal.2019,9,5035.
doi: 10.1021/acscatal.9b00010 |
58 |
KuhlK. P.;CaveE. R.;AbramD. N.;JaramilloT. F.Energy Environ. Sci.2012,5,7050.
doi: 10.1039/C2EE21234J |
59 |
WangN.;MiaoR. K.;LeeG.;VomieroA.;SintonD.;IpA. H.;LiangH. Y.;SargentE. H.SmartMat.2021,2,12.
doi: 10.1002/smm2.1018 |
60 |
JhongH. R. M.;MaS. C.;KenisP. J.Curr. Opin. Chem. Eng.2013,2,191.
doi: 10.1016/j.coche.2013.03.005 |
61 |
RossM. B.;De LunaP.;LiY. F.;DinhC.-T.;KimD.;YangP. D.;SargentE. H.Nat. Catal.2019,2,648.
doi: 10.1038/s41929-019-0306-7 |
62 |
NitopiS.;BertheussenE.;ScottS. B.;LiuX. Y.;EngstfeldA. K.;HorchS.;SegerB.;StephensI. E. L.;ChanK.;HahnC.;et alChem. Rev.2019,119,7610.
doi: 10.1021/acs.chemrev.8b00705 |
63 |
ZhuY. T.;CuiX. Y.;LiuH. L.;GuoZ. G.;DangY. F.;FanZ. X.;ZhangZ. C.;HuW. P.Nano Res.2021,14,4471.
doi: 10.1007/s12274-021-3448-2 |
64 |
LiF. W.;LiY. C.;WangZ. Y.;LiJ.;NamD.-H.;LumY.;LuoM. C.;WangX.;OzdenA.;HungS.-F.;et alNat. Catal.2020,3,75.
doi: 10.1038/s41929-019-0383-7 |
65 |
WangN.;YaoK. L.;VomieroA.;WangY. H.;LiangH. Y.SmartMat.2021,2,423.
doi: 10.1002/smm2.1048 |
66 |
BaggerA.;JuW.;VarelaA. S.;StrasserP.;RossmeislJ.ChemPhysChem2017,18,3266.
doi: 10.1002/cphc.201700736 |
67 |
LiC. W.;CistonJ.;KananM. W.Nature2014,508,504.
doi: 10.1038/nature13249 |
68 |
GaoJ.;ZhangH.;GuoX. Y.;LuoJ. S.;ZakeeruddinS. M.;RenD.;GrätzelM.J. Am. Chem. Soc.2019,141,18704.
doi: 10.1021/jacs.9b07415 |
69 |
JagadeesanD.Appl. Catal. A2016,511,59.
doi: 10.1016/j.apcata.2015.11.033 |
70 |
HuangY. B.;LiangJ.;WangX. S.;CaoR.Chem. Soc. Rev.2017,46,126.
doi: 10.1039/C6CS00250A |
71 |
FoggD. E.;dos SantosE. N.Coord. Chem. Rev.2004,248,2365.
doi: 10.1016/j.ccr.2004.05.012 |
72 |
MataJ. A.;HahnF. E.;PerisE.Chem. Sci.2014,5,1723.
doi: 10.1039/c3sc53126k |
73 |
ZhouJ.Chem. Asian J.2010,5,422.
doi: 10.1002/asia.200900458 |
74 |
CampJ. E.Eur. J. Org. Chem.2017,3,425.
doi: 10.1002/ejoc.201600803 |
75 |
WasilkeJ. C.;ObreyS. J.;BakerR. T.;BazanG. C.Chem. Rev.2005,105,1001.
doi: 10.1021/cr020018n |
76 |
ShindohN.;TakemotoY.;TakasuK.Chem. Eur. J.2009,15,12168.
doi: 10.1002/chem.200901486 |
77 |
HoriY.;TakahashiR.;YoshinamiY.;MurataA.J. Phys. Chem. B1997,101,7075.
doi: 10.1021/jp970284i |
78 |
WangL.;NitopiS. A.;BertheussenE.;OrazovM.;Morales-GuioC. G.;LiuX. Y.;HigginsD. C.;ChanK.;NørskovJ. K.;HahnC.;et alACS Catal.2018,8,7445.
doi: 10.1021/acscatal.8b01200 |
79 |
LiX. D.;WangS. M.;LiL.;SunY. F.;XieY. J.Am. Chem. Soc2020,142,9567.
doi: 10.1021/jacs.0c02973 |
80 |
ZhangY.;GuoS. X.;ZhangX. L.;BondA. M.;ZhangJ.Nano Today2020,31,100835.
doi: 10.1016/j.nantod.2019.100835 |
81 |
WolduA. R.;HuangZ. L.;ZhaoP. X.;HuL. S.;AstrucD.Coord. Chem. Rev.2022,454,214340.
doi: 10.1016/j.ccr.2021.214340 |
82 |
MaW. C.;HeX. Y.;WangW.;XieS. J.;ZhangQ. H.;WangY.Chem. Soc. Rev.2021,50,12897.
doi: 10.1039/D1CS00535A |
83 |
KasR.;KortleverR.;YılmazH.;KoperM. T. M.;MulG.ChemElectroChem2015,2,354.
doi: 10.1002/celc.201402373 |
84 |
BirdjaY. Y.;Pérez-GallentE.;FigueiredoM. C.;GöttleA. J.;Calle-VallejoF.;KoperM. T. M.Nat. Energy2019,4,732.
doi: 10.1038/s41560-019-0450-y |
85 |
HoriY.;WakebeH.;TsukamotoT.;KogaO.Electrochim. Acta1994,39,1833.
doi: 10.1016/0013-4686(94)85172-7 |
86 |
KortleverR.;PetersI.;KoperS.;KoperM. T. M.ACS Catal.2015,5,3916.
doi: 10.1021/acscatal.5b00602 |
87 |
WuttigA.;YaguchiM.;MotobayashiK.;OsawaM.;SurendranathY.Proc. Natl. Acad. Sci. U.S.A.2016,113,E4585.
doi: 10.1073/pnas.1602984113 |
88 |
SchoutenK. J. P.;QinZ. S.;GallentE. P.;KoperM. T. M.J. Am. Chem. Soc.2012,134,9864.
doi: 10.1021/ja302668n |
89 |
GoodpasterJ. D.;BellA. T.;Head-GordonM.J. Phys. Chem. Lett.2016,7,1471.
doi: 10.1021/acs.jpclett.6b00358 |
90 |
LiJ. J.;ZhangZ. C.Rare Met.2022,41,723.
doi: 10.1007/s12598-021-01862-6 |
91 |
Calle-VallejoF.;KoperM. T. M.Angew. Chem. Int. Ed.2013,52,7282.
doi: 10.1002/ange.201301470 |
92 |
HanselmanS.;KoperM. T. M.;Calle-VallejoF.ACS Energy Lett.2018,3,1062.
doi: 10.1021/acsenergylett.8b00326 |
93 |
Ledezma-YanezI.;GallentE. P.;KoperM. T. M.;Calle-VallejoF.Catal. Today2016,262,90.
doi: 10.1016/j.cattod.2015.09.029 |
94 |
RenD.;WongN. T.;HandokoA. D.;HuangY.;YeoB. S.J. Phys. Chem. Lett.2016,7,20.
doi: 10.1021/acs.jpclett.5b02554 |
95 |
ZhangH. C.;LiJ.;ChengM. J.;LuQ.ACS Catal.2018,9,49.
doi: 10.1021/acscatal.8b03780 |
96 |
HoriY.;MurataA.;TakahashiR.;SuzukiS.J. Am. Chem. Soc.1987,109,5022.
doi: 10.1021/ja00250a044 |
97 |
LiJ.;ChangK.;ZhangH. C.;HeM.;GoddardW. A.;ChenJ. G.;ChengM. J.;LuQ.ACS Catal.2019,9,4709.
doi: 10.1021/acscatal.9b00099 |
98 |
HatsukadeT.;KuhlK. P.;CaveE. R.;AbramD. N.;JaramilloT. F.Phys. Chem. Chem. Phys.2014,16,13814.
doi: 10.1039/c4cp00692e |
99 |
RosenJ.;HutchingsG. S.;LuQ.;RiveraS.;ZhouY.;VlachosD. G.;JiaoF.ACS Catal.2015,5,4293.
doi: 10.1021/acscatal.5b00840 |
100 |
PetersonA. A.;Abild-PedersenF.;StudtF.;RossmeislJ.;NørskovJ. K.Energy Environ. Sci.2010,3,1311.
doi: 10.1039/c0ee00071j |
101 |
PetersonA. A.;NørskovJ. K.J. Phys. Chem. Lett.2012,3,251.
doi: 10.1021/jz201461p |
102 |
ZhangH. C.;ChangX. X.;ChenJ. G.;Goddard;W. A.;XuB. J.;ChengM. J.;LuQ.Nat. Commun.2019,10,1.
doi: 10.1038/s41467-019-11292-9 |
103 |
LeeS.;ParkG.;LeeJ.ACS Catal.2017,7,8594.
doi: 10.1021/acscatal.7b02822 |
104 |
GurudayalG.;BullockJ.;SrankoD. F.;TowleC. M.;LumY.;HettickM.;ScottM. C.;JaveyA.;AgerJ.Energy Environ. Sci.2017,10,2222.
doi: 10.1039/c7ee01764b |
105 |
ChangZ. Y.;HuoS. J.;ZhangW.;FangJ. H.;WangH. L.J. Phys. Chem. C2017,121,11368.
doi: 10.1021/acs.jpcc.7b01586 |
106 |
HoangT. T. H.;VermaS.;MaS.;FisterT. T.;TimoshenkoJ.;FrenkelA. I.;KenisP. J. A.;GewirthA. A.J. Am. Chem. Soc.2018,140,5791.
doi: 10.1021/jacs.8b01868 |
107 |
RenD.;GaoJ.;PanL. F.;WangZ. W.;LuoJ. S.;ZakeeruddinS. M.;HagfeldtA.;GrätzelM.Angew. Chem. Int. Ed.2019,58,15036.
doi: 10.1002/anie.201909610 |
108 |
LiJ. J.;ZhangZ. C.;HuW. P.Green Energy Environ.2021,
doi: 10.1016/j.gee.2021.11.004 |
109 |
WangY. H.;JiangW. J.;YaoW.;LiuZ. L.;LiuZ.;YangY.;GaoL. Z.Rare Met.2021,40,2327.
doi: 10.1007/s12598-021-01728-x |
110 |
Calle-VallejoF.;KoperM. T. M.Angew. Chem. Int. Ed.2013,52,7282.
doi: 10.1002/anie.201301470 |
111 |
RenD.;AngB. S.;YeoB. S.ACS Catal.2016,6,8239.
doi: 10.1021/acscatal.6b02162 |
112 |
LiJ.;ChenG. X.;ZhuY. Y.;LiangZ.;PeiA.;WuC. L.;WangH. X.;LeeH. R.;LiuK.;ChuS.Nat. Catal.2018,1,592.
doi: 10.1038/s41929-018-0108-3 |
113 |
DinhC.-T.;BurdynyT.;KibriaM. G.;SeifitokaldaniA.;GabardoC. M.;García de ArquerF. P.;KianiA.;EdwardsJ. P.;De LunaP.;BushuyevO. S.;et alScience2018,360,78.
doi: 10.1126/science.aas9100 |
114 |
NesbittN. T.;BurdynyT.;SimonsonH.;SalvatoreD.;BohraD.;KasR.;SmithW. A.ACS Catal.2020,10,14093.
doi: 10.1021/acscatal.0c03319 |
115 |
SaY. J.;LeeC. W.;LeeS. Y.;NaJ.;LeeU.;HwangY. J.Chem. Soc. Rev.2020,49,6632.
doi: 10.1039/D0CS00030B |
116 |
LeesE. W.;MowbrayB. A.;ParlaneF. G.;BerlinguetteC. P.Nat. Rev. Mater.2022,7,55.
doi: 10.1038/s41578-021-00356-2 |
117 |
ChenC. B.;LiY. F.;YuS.;LouisiaS.;JinJ. B.;LiM. F.;RossM. B.;YangP. D.Joule2020,4,1688.
doi: 10.1016/j.joule.2020.07.009 |
118 |
LiJ. J.;AbbasS. U.;WangH. Q.;ZhangZ. C.;HuW. P.Nano-Micro Lett.2021,13,216.
doi: 10.1007/s40820-021-00738-9 |
119 |
LiX.;KouZ. K.;WangJ.Small Methods2020,5,2001010.
doi: 10.1002/smtd.202001010 |
120 |
ShaoQ.;WangP. T.;HuangX. Q.Adv. Funct. Mater.2019,29,1806419.
doi: 10.1002/adfm.201806419 |
121 |
GaoD. F.;ZhangY.;ZhouZ. W.;CaiF.;ZhaoX. F.;HuangW. G.;LiY. S.;ZhuJ. F.;LiuP.;YangF.;et alJ. Am. Chem. Soc.2017,139,5652.
doi: 10.1021/jacs.7b00102 |
122 |
BackS.;KimJ. H.;KimY. T.;JungY.ACS Appl. Mater. Interfaces2016,8,23022.
doi: 10.1021/acsami.6b05903 |
123 |
DuanM. Y.;YuJ.;MengJ.;ZhuB. E.;WangY.;GaoY.Angew. Chem. Int. Ed.2018,57,6464.
doi: 10.1002/anie.201800925 |
124 |
LinY.;ZhouM.;TaiX. L.;LiH. F.;HanX.;YuJ. G.Matter2021,4,2309.
doi: 10.1016/j.matt.2021.05.005 |
125 |
Morales-GuioC. G.;CaveE. R.;NitopiS. A.;FeasterJ. T.;WangL.;KuhlK. P.;JacksonA.;JohnsonN. C.;AbramD. N.;HatsukadeT.;et alNat. Catal.2018,1,764.
doi: 10.1038/s41929-018-0139-9 |
126 |
WangJ. Q.;LiZ.;DongC. K.;FengY.;YangJ.;LiuH.;DuX. W.ACS Appl. Mater. Interfaces2019,11,2763.
doi: 10.1021/acsami.8b20545 |
127 |
HuangJ.F.;MensiM.;OveisiE.;MantellaV.;Buonsanti;R.J. Am. Chem. Soc.2019,141,2490.
doi: 10.1021/jacs.8b12381 |
128 |
HuangX. Q.;LiY. J.;ZhouH. L.;ZhongX.;DuanX. F.;HuangY.Chem. Eur. J.2012,18,9505.
doi: 10.1002/chem.201200817 |
129 |
KimN. R.;ShinK.;JungI.;ShimM.;LeeH. M.J. Phys. Chem. C2014,118,26324.
doi: 10.1021/jp506069c |
130 |
ChenZ.;MochizukiD.;MaitaniM. M.;WadaY.Nanotechnology2013,24,265602.
doi: 10.1088/0957-4484/24/26/265602 |
131 |
GaoJ.;RenD.;GuoX. Y.;ZakeeruddinS. M.;GrätzelM.Faraday Discuss2019,215,282.
doi: 10.1039/c8fd00219c |
132 |
LumY. W.;AgerJ. W.Energy Environ. Sci.2018,11,2935.
doi: 10.1039/c8ee01501e |
133 |
ZhangT. Y.;LiZ. Y.;ZhangJ. F.;WuJ. J.J. Catal.2020,387,163.
doi: 10.1016/j.jcat.2020.05.002 |
134 |
ZhangB. A.;NoceraD. G.ChemElectroChem2021,8,1918.
doi: 10.1002/celc.202100295 |
135 | HoriY.;WakebeH.;TsukamotoT.;KogaO.Surf. Sci.1995,335,258. |
136 |
MontoyaJ. H.;ShiC.;ChanK.;NørskovJ. K.J. Phys. Chem. Lett.2015,6,2032.
doi: 10.1021/acs.jpclett.5b00722 |
137 |
JiangK.;SandbergR. B.;AkeyA. J.;LiuX. Y.;BellD. C.;NørskovJ. K.;ChanK.;WangH.Nat. Catal.2018,1,111.
doi: 10.1038/s41929-017-0009-x |
138 |
SchoutenK. J. P.;GallentE. P.;KoperM. T. M.ACS Catal.2013,3,1292.
doi: 10.1021/cs4002404 |
139 |
IyengarP.;KolbM. J.;PankhurstJ. R.;Calle-VallejoF.;BuonsantiR.ACS Catal.2021,11,4456.
doi: 10.1021/acscatal.1c00420 |
140 |
MaY. B.;YuJ. L.;SunM. Z.;ChenB.;ZhouX. C.;YeC. L.;GuanZ. Q.;GuoW. H.;WangG.;LuS. Y.;et alAdv. Mater.2022,34,2110607.
doi: 10.1002/adma.202110607 |
141 |
PangX. H.;WanC. S.;WangM. Y.;LinZ. Q.Angew. Chem. Int. Ed.2014,53,5524.
doi: 10.1002/anie.201309352 |
142 |
JiaH. L.;YangY. Y.;ChowT. H.;ZhangH.;LiuX. Y.;WangJ. F.;ZhangC. Y.Adv. Funct. Mater.2021,31,2101255.
doi: 10.1002/adfm.202101255 |
143 |
ZhuY. T.;GaoZ. Q.;ZhangZ. C.;LinT.;ZhangQ. H.;LiuH. L.;GuL.;HuW. P.Nano Res.2022,
doi: 10.1007/s12274-022-4234-5 |
144 |
WangF. Q.;ZhangW. L.;WanH. B.;LiC. X.;AnW. K.;ShengX.;LiangX. Y.;WangX. P.;RenY. L.;ZhengX.Chin. Chem. Lett.2022,33,2259.
doi: 10.1016/j.cclet.2021.08.074 |
145 |
WangZ. J.;QiJ.;YangN. J.;YuR. B.;WangD.Mater. Chem. Front.2021,5,1126.
doi: 10.1039/d0qm00538j |
146 |
MonzóJ.;MalewskiY.;KortleverR.;Vidal-IglesiasF. J.;Solla-GullónJ.;KoperM. T. M.;RodriguezP.J. Mater. Chem. A2015,3,23690.
doi: 10.1039/c5ta06804e |
147 |
ZhangS. S.;ZhaoS. L.;QuD. X.;LiuX. J.;WuY. P.;ChenY. H.;HuangW.Small2021,17,2102293.
doi: 10.1002/smll.202102293 |
148 |
ZhangB. B.;WangY. H.;XuS. M.;ChenK.;YangY. G.;KongQ. H.RSC Adv.2020,10,19192.
doi: 10.1039/d0ra02482a |
149 |
ChoukrounD.;PacquetsL.;LiC.;HoekxS.;ArnoutsS.;BaertK.;HauffmanT.;BalsS.;BreugelmansT.ACS Nano2021,15,14858.
doi: 10.1021/acsnano.1c04943 |
150 |
ZhouJ. H.;YuanC. Y.;ZhengY. L.;YinH. J.;YuanK.;SunX. C.;ZhangY. W.RSC Adv.2021,11,38486.
doi: 10.1039/d1ra07507a |
151 |
ZhangS. H.;YangQ.;WangC.;LuoX. L.;KimJ.;WangZ.;YamauchiY.Adv. Sci.2018,5,1801116.
doi: 10.1002/advs.201801116 |
152 |
ChenH.;ZhouY.;GuoW.;XiaB. Y.Chin. Chem. Lett.2022,33,1831.
doi: 10.1016/j.cclet.2021.09.034 |
153 |
LiH. L.;EddaoudiM.;O'KeeffeM.;YaghiO. M.Nature1999,402,276.
doi: 10.1038/46248 |
154 | GaoZ. Q.;WangC. Y.;LiJ. J.;ZhuY. T.;ZhangZ. C.;HuW. P.Acta Phys. -Chim. Sin.2021,37,2010025. |
高增强;王聪勇;李俊俊;朱亚廷;张志成;胡文平;物理化学学报,2021,37,2010025.
doi: 10.3866/PKU.WHXB202010025 |
|
155 |
ZhangZ. C.;ChenY. F.;XuX. B.;ZhangJ. C.;XiangG. L.;HeW.;WangX.Angew. Chem. Int. Ed.2014,53,429.
doi: 10.1002/anie.201308589 |
156 |
ZhouH. C.;LongJ. R.;YaghiO. M.Chem. Rev.2012,112,673.
doi: 10.1021/cr300014x |
157 |
FurukawaH.;CordovaK. E.;O'KeeffeM.;YaghiO. M.Science2013,341,1230444.
doi: 10.1126/science.1230444 |
158 |
WangX.;SheP. F.;ZhangQ. C.SmartMat2021,2,299.
doi: 10.1002/smm2.1057 |
159 |
QiuY. L.;ZhongH. X.;ZhangT. T.;XuW. B.;SuP. P.;LiX. F.;ZhangH. M.ACS Appl. Mater. Interfaces2018,10,2480.
doi: 10.1021/acsami.7b15255 |
160 |
ZhaoZ. H.;ZhengK.;HuangN. Y.;ZhuH. L.;HuangJ. R.;LiaoP. Q.;ChenX. M.Chem. Commun.2021,57,12764.
doi: 10.1039/d1cc05376k |
161 |
MengD. L.;ZhangM. D.;SiD. H.;MaoM. J.;HouY.;HuangY. B.;CaoR.Angew. Chem. Int. Ed.2021,60,25485.
doi: 10.1002/anie.202111136 |
162 |
OttS.;OrfanidiA.;SchmiesH.;AnkeB.;NongH. N.;HübnerJ.;GernertU.;GliechM.;LerchM.;StrasserP.Nat. Mater.2019,19,77.
doi: 10.1038/s41563-019-0487-0 |
163 |
ZhangJ. T.;ZhaoZ. H.;XiaZ. H.;DaiL. M.Nat. Nanotechnol.2015,10,444.
doi: 10.1038/nnano.2015.48 |
164 |
LiW. L.;HerktB.;SeredychM.;BandoszT. J.Appl. Catal. B2017,207,195.
doi: 10.1016/j.apcatb.2017.02.023 |
165 |
PanF. P.;LiB. Y.;XiangX. M.;WangG. F.;LiY.ACS Catal.2019,9,2124.
doi: 10.1021/acscatal.9b00016 |
166 |
WuJ. J.;MaS. C.;SunJ.;GoldJ. I.;TiwaryC.;KimB.;ZhuL. Y.;ChopraN.;OdehI. N.;VajtaR.;et alNat. Commun.2016,7,13869.
doi: 10.1038/ncomms13869 |
167 |
ZamanS.;TianX. L.;SuY.-Q.;CaiW. W.;YanY.;QiR. J.;DoukaA. I.;ChenS. H.;YouB.;LiuH. F.;et alSci. Bull.2021,66,2207.
doi: 10.1016/j.scib.2021.07.001 |
168 |
RedduV.;SunL. B.;LiX. G.;JinH. L.;WangS.;WangX.SmartMat.2022,3,151.
doi: 10.1002/smm2.1081 |
169 |
BiW. T.;LiX. G.;YouR.;ChenM. L.;YuanR. L.;HuangW. X.;WuX. J.;ChuW. S.;WuC. Z.;XieY.Adv. Mater.2018,30,1706617.
doi: 10.1002/adma.201706617 |
170 |
KumarB.;AsadiM.;PisasaleD.;Sinha-RayS.;RosenB. A.;HaaschR.;AbiadeJ.;YarinA. L.;Salehi-KhojinA.Nat. Commun.2013,4,2819.
doi: 10.1038/ncomms3819 |
171 |
ZhangS.;KangP.;UbnoskeS.;BrennamanM. K.;SongN.;HouseR. L.;GlassJ. T.;MeyerT. J.J. Am. Chem. Soc.2014,136,7845.
doi: 10.1021/ja5031529 |
172 |
SharmaP. P.;WuJ. J.;YadavR. M.;LiuM. J.;WrightC. J.;TiwaryC. S.;YakobsonB. I.;LouJ.;AjayanP. M.;ZhouX. D.Angew. Chem. Int. Ed.2015,54,13701.
doi: 10.1002/ange.201506062 |
173 |
WuJ. J.;LiuM. J.;SharmaP. P.;YadavR. M.;MaL. L.;YangY. C.;ZouX. L.;ZhouX.-D.;VajtaiR.;YakobsonB. I.;et alNano Lett.2016,16,466.
doi: 10.1021/acs.nanolett.5b04123 |
174 |
GaoJ.;WangH.;FengK.;XiangC. S.;WangH. B.;QiH. H.;LiuY.;TianH.;ZhongJ.;KangZ. H.Mater. Adv.2020,1,2286.
doi: 10.1039/D0MA00433B |
175 |
SongY.;PengR.;HensleyD. K.;BonnesenP. V.;LiangL. B.;WuZ. L.;Meyer ⅢH. M.;ChiM. F.;MaC.;SumpterB. G.;et alChemistrySelect2016,1,6055.
doi: 10.1002/slct.201601169 |
176 |
LiQ.;ZhuW. L.;FuJ. J.;ZhangH. Y.;WuG.;SunS. H.Nano Energy2016,24,1.
doi: 10.1016/j.nanoen.2016.03.024 |
177 |
WangX. L.;AraújoJ. F. D.;JuW.;BaggerA.;SchmiesH.;KühlS.;RossmeislJ.;StrasserP.Nat. Nanotechnol.2019,14,1063.
doi: 10.1038/s41565-019-0551-6 |
178 |
LeeJ. C.;KimJ. Y.;JooW. H.;HongD. K.;OhS. H.;KimB.;LeeG. D.;KimM.;OhJ.;JooY. C.J. Mater. Chem. A2020,8,11632.
doi: 10.1039/d0ta03322g |
179 |
LiuS.;CaoY.;LiuH.;WangH. L.;ZhangB. S.;ZhangY. M.;ZhangL. H.;ZhangS.;SunJ.Nanoscale2021,13,16986.
doi: 10.1039/D1NR04802C |
180 |
ChenD.;ZhangL. H.;DuJ.;WangH. H.;GuoJ. Y.;ZhanJ. Y.;LiF.;YuF. S.Angew. Chem. Int. Ed.2021,60,24022.
doi: 10.1002/anie.202109579 |
181 |
WeiX.;YinZ. L;LyuK. J.;LiZ.;GongJ.;WangG. W.;XiaoL.;LuJ. T.;ZhuangL.ACS Catal.2020,10,4103.
doi: 10.1021/acscatal.0c00049 |
182 |
PanH. Q.;BarileC. J.Energy Environ. Sci.2020,13,3567.
doi: 10.1039/d0ee02189j |
183 |
WangJ. C.;ChengT.;FenwickA. Q.;BaroudT. N.;Rosas-HernándezA.;KoJ. H.;GanQ.;GoddardW. A.;GrubbsR. H.J. Am. Chem. Soc.2021,143,2857.
doi: 10.1021/jacs.0c12478 |
184 |
DuanG. Y;LiX. Q.;DingG. R.;HanL. J.;XuB. H.;ZhangS. J.Angew. Chem. Int. Ed.2021,61,e202110657.
doi: 10.1002/anie.202110657 |
[1] | Weikaixin Kong, Jingjing Lian, Chao Peng, Jie Zhu, Yulin Zheng, Weiran Huang, Bowen Zhang, Guifang Duan, Lin Ma, Xiaodong Peng, Weining Ma, Sujie Zhu, Zhuo Huang. Identification of Novel GABAA Receptor Positive Allosteric Modulators with Novel Scaffolds via Multistep Virtual Screening [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2302044-. |
[2] | Chun-An Huo, Sheng-Jie Qiu, Qing-Man Liang, Bi-Jun Geng, Zhi-Chao Lei, Gan Wang, Yu-Ling Zou, Zhong-Qun Tian, Yang Yang. Progress in the Trapping and Manipulation Volume of Optical Tweezers [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303037-. |
[3] | Hanyu Xu, Xuedan Song, Qing Zhang, Chang Yu, Jieshan Qiu. Mechanistic Insights into Water-Mediated CO2 Electrochemical Reduction Reactions on Cu@C2N Catalysts: A Theoretical Study [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303040-. |
[4] | Heran Wang, Kai Chen, Shuo Fu, Haoxuan Wang, Jiaxuan Yuan, Xingyi Hu, Wenjuan Xu, Baoxiu Mi. Isomeric Bisbenzophenothiazines: Synthesis, Theoretical Calculations, and Photophysical Properties [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303047-. |
[5] | Xinxuan Duan, Marshet Getaye Sendeku, Daoming Zhang, Daojin Zhou, Lijun Xu, Xueqing Gao, Aibing Chen, Yun Kuang, Xiaoming Sun. Tungsten-Doped NiFe-Layered Double Hydroxides as Efficient Oxygen Evolution Catalysts [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303055-. |
[6] | Ning Wang, Yi Li, Qian Cui, Xiaoyue Sun, Yue Hu, Yunjun Luo, Ran Du. Metal Aerogels: Controlled Synthesis and Applications [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212014-0. |
[7] | Weifeng Xia, Chengyu Ji, Rui Wang, Shilun Qiu, Qianrong Fang. Metal-Free Tetrathiafulvalene Based Covalent Organic Framework for Efficient Oxygen Evolution Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212057-0. |
[8] | Yao Chen, Cun Chen, Xuesong Cao, Zhenyu Wang, Nan Zhang, Tianxi Liu. Recent Advances in Defect and Interface Engineering for Electroreduction of CO2 and N2 [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2212053-0. |
[9] | Shenglong Tang, Chunlei Wang, Xiangjun Pu, Xiangkui Gu, Zhongxue Chen. Unravelling Zn2+ Intercalation Mechanism in TiX2 (X = S, Se) Anodes for Aqueous Zn-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2212037-0. |
[10] | Chang Lan, Yuyi Chu, Shuo Wang, Changpeng Liu, Junjie Ge, Wei Xing. Research Progress of Proton-Exchange Membrane Fuel Cell Cathode Nonnoble Metal M-Nx/C-Type Oxygen Reduction Catalysts [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2210036-0. |
[11] | Ganyin Yuan, Zheng Xi, Chu Wang, Xiaohuan Sun, Jie Han, Rong Guo. Construction of Supramolecular Chiral Polyaniline-Gold Nanocomposite as Nanozyme for Enantioselective Catalysis [J]. Acta Phys. -Chim. Sin., 2023, 39(7): 2212061-0. |
[12] | Yining Zhang, Ming Gao, Songtao Chen, Huiqin Wang, Pengwei Huo. Fabricating Ag/CN/ZnIn2S4 S-Scheme Heterojunctions with Plasmonic Effect for Enhanced Light-Driven Photocatalytic CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2211051-. |
[13] | Cheng Luo, Qing Long, Bei Cheng, Bicheng Zhu, Linxi Wang. A DFT Study on S-Scheme Heterojunction Consisting of Pt Single Atom Loaded G-C3N4 and BiOCl for Photocatalytic CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2212026-. |
[14] | Zhen Li, Wen Liu, Chunxu Chen, Tingting Ma, Jinfeng Zhang, Zhenghua Wang. Transforming the Charge Transfer Mechanism in the In2O3/CdSe-DETA Nanocomposite from Type-I to S-Scheme to Improve Photocatalytic Activity and Stability During Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2208030-. |
[15] | Ruyao Chen, Jiazeng Xia, Yigang Chen, Haifeng Shi. S-Scheme-Enhanced PMS Activation for Rapidly Degrading Tetracycline Using CuWO4−x/Bi12O17Cl2 Heterostructures [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2209012-. |
|